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Abstract

Speech synthesis is the process of converting written text into machine-generated synthetic speech.

Concatenative speech synthesis systems form utterances by concatenating pre-recorded speech units.

Corpus-based methods use a large inventory to select the units to be concatenated. In this paper, we

design and develop an intelligible and natural sounding corpus-based concatenative speech synthesis sys-

tem for the Turkish language. The implemented system contains a front-end comprised of text analysis,

phonetic analysis, and optional use of transplanted prosody. The unit selection algorithm is based on

commonly used Viterbi decoding algorithm of the best-path in the network of the speech units using spec-

tral discontinuity and prosodic mismatch objective cost measures. The back-end is the speech waveform

generation based on the harmonic coding of speech and overlap-and-add mechanism. Harmonic coding

enabled us to compress the unit inventory size by a factor of three. In this study, a Turkish phoneme

set has been designed and a pronunciation lexicon for root words has been constructed. The importance

of prosody in unit selection has been investigated by using transplanted prosody. A Turkish Diagnostic

Rhyme Test (DRT) word list that can be used to evaluate the intelligibility of Turkish Text-to-Speech

(TTS) systems has been compiled. Several experiments have been performed to evaluate the quality of the

synthesized speech and we obtained 4.2 Mean Opinion Score (MOS) in the listening tests for our system,

which is the first unit selection based system published for Turkish.

1. Introduction

Speech synthesis is the process of converting written text into machine-generated synthetic speech. In the
literature, there are three main approaches to speech synthesis: articulatory, formant, and concatenative
[1-4]. Articulatory synthesis tries to model the human articulatory system, i.e. the vocal cords, the vocal
tract, etc. Formant synthesis employs some set of rules to synthesize speech using the formants that are
the resonance frequencies of the vocal tract. Since the formants constitute the main frequencies that make
sounds distinct, speech is synthesized using these estimated frequencies. On the other hand, concatenative
speech synthesis is based on the idea of concatenating pre-recorded speech units to construct the utterance.
Concatenative systems tend to be more natural than the other two since original speech recordings are used
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instead of models and parameters. In concatenative systems, speech units can be either fixed-size diphones
or variable length units such as syllables and phones. The latter approach is known as unit selection, since
a large speech corpus containing more than one instance of a unit is recorded and variable length units are
selected based on some estimated objective measure to optimize the synthetic speech quality.

Corpus-based concatenative speech synthesis (unit selection) has emerged as a promising methodology

to solve the problems with the fixed-size unit inventory synthesis, e.g. diphone synthesis [3-7]. In corpus-
based systems, the acoustic units of varying sizes are selected from a large speech corpus and concatenated.
The speech corpus contains more than one instance of each unit to capture prosodic and spectral variability
found in natural speech; hence the signal modifications needed on the selected units are minimized if an
appropriate unit is found in the unit inventory. The use of more than one instance of each unit requires a
unit selection algorithm to choose the units from the inventory that match best the target specification of
the input sequence of units. The unit selection algorithm favors choosing consecutive speech segments in
order to minimize the number of joins.

The output speech quality of unit selection in terms of naturalness is much better than fixed-size unit
inventory synthesis. However, the unit selection presents some challenges to speech synthesis. Although the
speech quality is acceptable most of the time, it is not consistent. If the unit selection algorithm fails to find
a good match for a target unit, the selected unit is needed to undergo some prosodic modifications which
degrade the speech quality at this segment join. Some systems even choose not to do any signal modifications
on the selected units [8]. To ensure a consistent quality, a good speech corpus design that covers all the
prosodic and acoustic variations of the units that can be found in an utterance has to be addressed. It is
not feasible to record larger and larger databases given the complexity and combinatorics of the language;
instead we need to find a way for optimal coverage of the language [9]. Another point is that concatenating
the speech waveforms results in some glitches at the concatenation points in the synthesized utterance.
Therefore, to ensure smooth concatenation of speech waveforms and to enable prosodic modifications on the
speech units, a speech model is generally used for speech representation and waveform generation [10-12].

ATR v-Talk speech synthesis system developed at ATR laboratories introduced the unit selection
approach from a large speech database [3]. The selection of units was based on minimizing an acoustic
distance measure between the selected units and target spectrum. In CHATR speech synthesis system,
prosodic features like duration and intonation have been added to the target specification to choose more
appropriate units [4]. Hunt and Black have contributed to the area the idea of applying Viterbi decoding of

best-path algorithm for unit selection [13]. The Next-Gen speech synthesis system developed at the AT&

T laboratories is one of the commercial systems that use unit selection [5]. The front-end, i.e. the text
and linguistic analysis and prosody generation is from Flextalk, the unit selection is a modified version of
CHATR, and the framework for all these was borrowed from the Festival. As an improvement to the CHATR
unit selection, the system uses half phones compared to phonemes as the basic speech units [14]. This allows
phoneme or diphone concatenation at a unit boundary. For the back-end, a Harmonic plus Noise Model
(HNM) representation of the speech has been developed [11]. Unit selection based concatenative speech

synthesis approach has also been used in the IBM Trainable Speech Synthesis System [7]. The system uses

the Hidden Markov Models (HMMs) to phonetically label the recorded speech corpus and aligns HMM
states to the data. The units used in the unit selection process are HMM state sized speech segments. The
unit selection is a dynamic programming based search, which uses decision trees to facilitate the choice of
appropriate units, with a cost function to optimize. The segments in the speech database are coded into
Mel-Frequency Cepstrum Coefficients (MFCCs).
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In this paper, we propose an intelligible and natural sounding corpus-based speech synthesis system for
Turkish. The system consists of an analysis component which converts the text into a linguistic and prosodic
description, a unit selection component based on Viterbi decoding, and a waveform generation component
based on the harmonic coding of speech and the overlap-and-add mechanism. The research in this paper
is directed towards agglutinative languages in general and Turkish in particular. Speech synthesis systems
are currently being developed for languages like English and successful results are obtained. However, the
studies on Turkish which is an agglutinative language and has a highly complex morphological structure are
quite limited. In this study, we take the special characteristics of Turkish into account, propose solutions
for them, and develop a speech synthesis system for the language. To the best of our knowledge, this is the
first unit selection based system published for Turkish.

The paper is organized as follows: Section 2 presents the overall architecture of the proposed system
and gives the details of the text and speech corpora. Section 3 explains the analysis component comprised of
text analysis, phonetic analysis, and transplanted prosody. In Sections 4 and 5, we explain the methodologies
and the algorithms used for unit selection and waveform generation, respectively. Section 6 covers the details
and the results of the experiments. The last section is for the conclusions.

2. System Architecture

The architecture of the system is shown in Figure 1. The components shown are common in most of the
speech synthesis systems that use unit selection. The system can be mainly divided into three parts: analysis
(front-end), unit selection, and generation (back-end). The analysis module is responsible for producing an
internal linguistic and prosodic description of the input text. This description is fed into the unit selection
module as the target specification. The unit selection module uses this specification to choose the units from
the speech database such that a cost function between the specification and the chosen units is minimized.
The waveforms for the selected units are then concatenated in the generation module, where the smoothing
of concatenation points is also handled.

The system uses an internal data structure to store the information for the text to be synthesized.
This structure is communicated between components and each component appends extracted information
using the already existing information in the structure. This enables each system component to be developed
independently and makes it flexible to improve the functionalities of each component if required.

2.1. Text corpus

The fragments that form the text corpus have been collected from online Turkish text materials. These text
fragments have been preprocessed and divided into phrases by making use of the punctuation marks. They
have been checked manually and only the phrases that were complete and well-formed have been included
while the rest have been discarded. Then a Greedy algorithm has been employed which aims to choose the
phrases according to their phonetic context. The algorithm assigns a score to each phrase, calculated as the
total frequency of the triphone contexts found in the phrase normalized by the number of the triphones.
Then the phrase having the greatest score is selected. The algorithm updates the frequencies of the triphones
in the selected phrase to zero and runs on the remaining phrases. The algorithm produced 30000 phrases.
In this way, each recording script was formed of phrases (word groups) rather than full sentences in order to
prevent repetition of common words, which increases the size of the database but adds little to the overall
synthesis quality.
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Figure 1. Corpus-based concatenative Turkish speech synthesis system architecture.

In order to observe the effect of the corpus size on the output quality and on the performance of the
algorithms, we have also constructed a smaller corpus of 5000 phrases. The phrases in this corpus were
selected among the 30000 phrases in the original corpus (after the original corpus has been divided into

training and test sets – see below). For this purpose, a Greedy algorithm similar to the one used in forming
the original corpus was used. The algorithm tries to identify and thus choose the phrases containing syllables
that have not yet been covered in the selected phrases. In Turkish, syllables have a prosodic integrity in
themselves. We can categorize syllables in Turkish as having the patterns v , vc, vcc, cv, cvc, and cvcc, where
c designates a consonant phoneme and v a vowel phoneme. We have also considered syllable boundaries,
sentence start and end points, and word boundaries. In this way, we have identified the subset of the corpus
that covers all variations of these patterns.

2.2. Speech corpus

The speech corpus used by the algorithms developed in this research contains about 20 hours of speech
recorded by a professional female speaker covering the 30000 Turkish phrases in the text corpus. The speech
corpus has been phonetically aligned by a speech recognition engine and then the phone boundaries have
been corrected manually. The corpus has been divided into two sets: training set and test set. The test
set contains 1000 phrases used for the purpose of evaluating the synthesis quality. From the remaining
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recordings (training set), two speech unit inventories of different sizes have been constructed. One contains

all the recordings in the training set (about 19 hours of speech) and the other contains 5000 phrases (about

3 hours of speech) extracted as explained above.

The content of the speech corpus has a major effect on speech quality. During unit selection process,
finding units that match best the target specification is more probable if sufficient prosodic and acoustic
variability for the phones can be represented in the corpus. The speech quality is severely degraded when
appropriate units cannot be found and significant prosodic modifications are performed.

3. Forming Linguistic and Prosodic Description

In a language, phonemes are the smallest units of sound that distinguish one word from another [1]. Turkish

alphabet contains 29 letters classified as 8 vowels (a, e, ı, i, o, ö, u, ü) and 21 consonants (b, c, ç, d, f, g,

ğ, h, j, k, l, m, n, p, r, s, ş, t, v, y, z). However, Turkish orthography cannot represent all the sounds in
Turkish. In this study, for phonetic transcriptions we developed a new phoneme set based on the SAMPA
phonetic alphabet [15]. The SAMPA identifies 8 vowels and 24 consonants (excluding two consonantal

allophones /w/ of /v/ and /N/ of /n/) for representing Turkish sounds and designates a length mark /:/ to
represent the lengthening of some vowels in loanwords in Turkish. The new phoneme set is shown in Table
1, with example words and corresponding SAMPA phonemes. The set includes new symbols for some of the
SAMPA phonemes and introduces three more phonemes, /öo/, /üu/, /ea/, corresponding to allophones of

the phonemes /o/, /u/, /a/, respectively. The decision to extend the SAMPA phoneme set with these three
allophones was based on our experiments with the unit selection process. For instance, instead of considering
the vowels ‘o’ in the words kol (arm) and alkol (alcohol) as corresponding both to the same phoneme /o/,

representing the first one with /o/ and the second one with /öo/ enabled the unit selection algorithm to
differentiate between these two phones.

3.1. Turkish pronunciation lexicon

A Turkish lexicon has been built containing about 3500 root words and their pronunciations. The lexicon
is used to determine the pronunciations of the words and to expand the abbreviations and acronyms. The
small size of the lexicon is because of the relatively simple pronunciation schema of Turkish compared to
English. Turkish is a phonetic language in the sense that a simple grapheme-to-phoneme conversion (i.e.

one-to-one mapping of letters to phonemes) is possible for most of the words due to the close relationship
between orthography and phonology. Most of the words in the lexicon are those for which such a direct
mapping cannot yield the correct pronunciation due to vowel lengthening, palatalization, etc., and most of
them are loanwords originated from languages like Arabic and Persian [16]. For instance, the word fedakarlık

(sacrifice) is pronounced as /f e d aa k ea r ll ı kk/, where the phonemes /aa/ and /ea/ are used for the

fourth and sixth letters, respectively, instead of the standard phoneme /a/.

3.2. Text-to-phoneme conversion

The input text is first parsed into sentences and words by making use of space characters and punctuation
marks. It is then stored in an internal data structure which is a linked list of sentence nodes, each of which
is a linked list of word nodes. The sentence node structure was designed to hold sentence level information
such as sentence type and the word node structure was designed to hold word level information such as POS
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tagging and word pronunciation. At this stage, text normalization was also performed. The nonorthographic
symbols are converted into orthographic ones in the sense that abbreviations and acronyms are expanded into
full forms and digit sequences are converted into written forms. The characters that cannot be represented
in speech are discarded. The punctuation marks are preserved.

Table 1. Turkish phoneme set.

Phoneme Example word SAMPA Phoneme Example word SAMPA
a aşk a r renk r
b bugün b s ses s
c cuma dZ ş şans S
ç çamur tS t tat t
d dünya d u uyku u
e evet e ü ülke y
f futbol f v veda v
g gece gj y yeni j
ğ doğa G z zaman z
h hayat h aa alim a:
ı ışık 1 öo alkol N/A
i insan i üu sükunet N/A
j jüri Z uu kanunen u:
k kedi c ii milli i:
l lider l ea kamil N/A
m mavi m ee memur e:
n nisan n gg gaga g
o oyun o kk akıl k
ö özgürlük 2 ll alkış 5
p para p

Turkish is an agglutinative language, that is, given a word in its root form, we can derive a new word
by adding an affix (usually a suffix) to this root form, then derive another word by adding another affix to this
new word, and so on. This iteration process may continue several levels. A single word in an agglutinative
language may correspond to a phrase made up of several words in a non-agglutinative language. Thus, the
text should be analyzed morphologically in order to determine the root forms and the suffixes of the words
before further analysis [16, 17]. We used a morphological analyzer based on Augmented Transition Network

(ATN) formalism [18]. The root word pronunciations are then looked up in the lexicon. If a root word
cannot be found in the lexicon, the pronunciation is formed by a direct mapping of letters to phonemes in
the phoneme set. This is also the case for suffixes: the pronunciations of all suffixes are formed in a direct
manner. In this study, no linguistic analysis on syntax and semantics was done.

3.3. Prosodic analysis

Although the system was designed to use a prosodic analysis component, currently it does not include such a
component. Prosody module can provide pitch, duration, and energy information which can be used in the
unit selection process to synthesize the text. We plan to add pitch contour synthesis and duration modeling
in future research. However, to evaluate the effect of using prosodic analysis, we tailored the system in such
a way that it can optionally use transplanted prosody from the original speech utterances. Transplanted
prosody means that the duration and intonation values from recorded speech are used in the unit selection
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process [19]. This approach was used in the experiments to see the effect of real prosody on the output
speech quality.

4. Unit Selection Using Viterbi Algorithm

The output of the analysis module is a sequence of phonemes corresponding to the input text, each having
energy, pitch, and duration values. We refer to this sequence as the target sequence. The phones are used
as the basic units in this research. The speech corpus had already been processed to build a unit inventory
storing the phonemes with the same prosodic features (energy, pitch, duration) and the context information.
Since we use a large speech database, there is more than one instance for each phoneme, each possibly having
different phonetic context, and prosodic and acoustic realizations. Therefore, for each phoneme in the target
sequence, there exist a large number of choices from the unit inventory. In concatenative speech synthesis,
choosing the right units is very important for the quality of the synthesized voice. An appropriate selection
of units may also allow to get rid of prosodic modifications of the selected units, which generally degrade
the output speech quality. The unit selection module tries to choose the optimal set of units from the unit
inventory that best match the target sequence.

Optimal unit selection from the unit inventory resembles the best-path decoding algorithm commonly
used in HMM-based speech recognizers [13]. The speech unit inventory is analogous to the grammar network
in HMM-based recognizers and can be considered as a state transition network. The best-path decoding of
the words in the grammar is very similar to determining optimal unit sequence in the network of units, where
the units form a trellis structure. The transition cost and the state observation cost in speech recognizers
correspond, respectively, to the concatenation cost and the target cost in unit selection. This analogy
guides us to the use of dynamic programming to find the optimal unit sequence. The pruned Viterbi search
algorithm commonly used in HMM-based speech recognizers can be easily adapted to the problem of unit
selection. The algorithm we used is a Viterbi best-path decoding algorithm that is very similar to the one
used in CHATR speech synthesis system and is described below [13].

4.1. Measuring the similarity between a target sequence and a unit sequence

Given a target sequence tn1 = (t1, ..., tn) of phones with target duration, pitch and energy values, the problem

is finding the unit sequence un1 = (u1, ..., un) that optimizes a cost function of the distance between the two
sequences. As stated above, there are two kinds of cost function in unit selection, namely target cost and
concatenation cost. Target cost (unit cost) is an estimate of the cost of using a selected unit in place of the
target unit. This cost is a measure of how well the unit from the unit inventory suits the corresponding
target unit in the target sequence. This cost can be calculated as a weighted sum of the target sub-costs,
where each target sub-cost corresponds to a single feature of the units such as duration, pitch, energy, etc.
and measures the cost (with respect to that feature) of using a selected basic unit in place of the target basic
unit as follows:

Ct(ti, ui) =
P∑
j=1

wtjC
t
j(ti, ui)

where P is the number of target sub-costs and wtj are the corresponding weights. We used the following

form of this equation where P=4:
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Ct(ti, ui) =
20

ContextMatchScore
+
∣∣∣∣f(ti)− f(ui)30

∣∣∣∣+ ∣∣∣∣D(ti)−D(ui)
20

∣∣∣∣+ 10 ∗ |E(ti)− E(ui)|,

where ContextMatchScore is the length of the matching context between the target unit and the selected
unit, f is the pitch frequency of a unit, D is the duration of a unit and E is the energy of a unit. The weights
of the target sub-costs (i.e. coefficients in the equation above) were determined empirically by subjective
listening tests.

The concatenation cost (join cost) is an estimate of the cost of concatenating two consecutive units.
This cost is a measure of how well two units join together in terms of spectral and prosodic characteristics.
The concatenation cost for two units that are adjacent in the unit inventory is zero. Therefore, choosing
adjacent units in unit selection is promoted resulting in better speech quality. This cost can be calculated as
a weighted sum of the concatenation sub-costs, where each concatenation sub-cost corresponds to a single
feature of the units such as pitch, energy, etc. and measures the cost (with respect to that feature) of joining
two units as follows:

Cc(ui, ui+1) =
Q∑
j=1

wcjC
c
j (ui, ui+1),

where Q is the number of concatenation sub-costs and wcj are the corresponding weights. We used the

following form of this equation where Q=3:

Cc(ui, ui+1) = 10 ∗ |c(ui)− c(ui+1)|+
∣∣∣∣f(ui) − f(ui+1)

30

∣∣∣∣+ 10 ∗ |E(ui)−E(ui+1)|,

where c is the cepstrum of a unit, f is the pitch frequency of a unit and E is the energy of a unit. The
weights of the concatenation sub-costs (i.e. coefficients in the equation above) were determined empirically
by subjective listening tests.

The total cost of selecting a unit sequence un1 given the target sequence tn1 is the sum of the target
and concatenation costs:

C(tn1 , u
n
1 ) =

n∑
i=1

Ct(ti, ui) +
n−1∑
i=1

Cc(ui, ui+1).

The unit selection algorithm tries to find the unit sequence un1 from the unit inventory that minimizes
the total cost.

In calculating the target sub-costs Ctj(ti, ui), we use the context match length, energy, duration and

pitch difference between the target and the selected units, and the location of the unit within the syllable,
word and sentence. In calculating the cost for the context match, we also take into account the syllable
boundaries in order to promote the selection of units having the same syllable structure. This is achieved
by assuming the existence of a special character between two consecutive syllables and then determining
the length of the match. For instance, for the words elma (apple) and elim (my hand), although the first
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phonemes following e seem to match, when we consider these words as el&ma and e&lim (where & denotes

syllable boundary), the first phonemes do not match. For the concatenation sub-costs Ccj (ui, ui+1), we

use the cepstral distance and the energy and pitch difference between the consecutive units. The cepstral
distance at the concatenation points of two consecutive units is an objective measure of the spectral mismatch
between these joining units. We use Mel-Frequency Cepstrum Coefficients (MFCCs) for this purpose. We
extract the MFCC of the last frame of the first unit and the first frame of the second unit and use the
distance between two MFCC vectors as the cepstral distance. For MFCC feature extraction, we used frames
of 20 milliseconds.

4.2. Determining the optimal unit sequence

We implemented a Viterbi decoding algorithm to find the optimal unit sequence in the network of the nodes.
A state transition network formed of the units in the speech inventory is shown in Figure 2, where the thick
arrows indicate the connections between the selected units. The Viterbi algorithm tries to find the optimal
path through the network [1, 13]. Since the number of units in unit inventory is very large, we employed
some pruning methods to limit the number of units considered. By making use of a window size of three, for
a target unit, we select only those units whose left and right three units are identical to those of the target
unit. If there exist no such units, the search is repeated with a window size of two and finally with a window
size of one.

 i ti+1 ti+2

ui(1)

ui(2)

ui(3)

ui+1(1)

ui+1(2)

ui+1(3)

ui+2(1)

ui+2(2)

ui+2(3)

Figure 2. Unit selection using Viterbi algorithm.

5. Unit Concatenation and Waveform Generation

The unit selection module outputs a sequence of units from the speech inventory to be used for the generation
of waveform for the input text. The waveform generation module concatenates the speech waveforms of
the selected units. We used a speech representation and waveform generation method based on harmonic
sinusoidal coding of speech [10, 11]. Analysis-by-synthesis technique was used for sinusoidal modeling.

The sinusoidal coding encodes the signal with a sum of sinusoids whose frequency, amplitude, and
phase are adequate to describe each sinusoid. The harmonic coding is a special case of the sinusoidal coding
where the frequencies of the sinusoids are constrained to be multiples of the fundamental frequency. The
harmonic coding takes the advantage of the periodic structure of the speech and is very effective in coding
voiced and unvoiced signals.

The harmonic coding is a parametric coding method. Unlike waveform coders which try to construct
the original waveform, parametric coders (vocoders) try to encode the speech into a parametric representation
that captures its perceptually important characteristics. Harmonic coders represent the speech signal using
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the magnitudes and phases of its spectrum at multiples of the fundamental frequency. Low bit rate harmonic
coders even use the synthetic phase rather than original phase to lower the bit rate. However, a high quality
speech synthesis requires that the speech representation should be transparent to the listener. Therefore,
we used the original phase in the harmonic coding of speech. The coded speech quality heavily depends
on the correct parameter estimation. For robust parameter estimation, we used an analysis-by-synthesis
methodology.

A perfectly periodic signal can be represented as a sum of sinusoids:

x[n] =
T0−1∑
k=0

Ak cos(nkω0 + φk),

where T0 is the fundamental frequency of the signal,ω0 = 2π/T0 , φk is the phase of the kth harmonics, and
Ak is the amplitude of the kth harmonics. For the quasiperiodic speech signals, the same equation can be
used to approximate the signal. This approximation can even be used to model the unvoiced sounds. In this
case, the fundamental frequency is set to 100 Hz. The error in representing the speech by a harmonic model
is estimated as:

ε =
T0∑

k=−T0

ω2[k] (x[k]− x̃[k])2
,

where ω is a Hamming window, x is the real speech signal and x̃ is the harmonic model for the speech
signal. For parameter estimation of the harmonic coding, we use this function for error minimization criterion.
Finding model parameters is a least squares problem. The values for Ak and φk that minimize the error
are calculated by solving the linear set of equations obtained by differentiating the error function. The
derivation of the linear equations is given in [11]. We used QR factorization method for solving the set of
linear equations to obtain the model parameters.

The correct pitch period estimation is an important part of harmonic coding. The algorithm that we
used for pitch estimation is based on the normalized autocorrelation method. The normalized autocorrelation
is calculated as:

Rn(k) =
∑N−1

n=0 x[n]x[n+ k]√∑N−1
n=0 x

2[n]
∑N−1

n=0 x
2[n + k]

.

The search for the pitch was constrained to a region between 50Hz and 500Hz. We also performed
some post-processing to smooth the pitch track, since the normalized autocorrelation method is error-prone.
The smoothing process takes into consideration the factor that the pitch does not change drastically from
frame to frame. We applied median smoothing that keeps a history of the pitch values, sorts it, and takes
the one in the middle.

The model parameters are calculated in a pitch-synchronous manner using overlapping windows of
two pitch periods. The scalar quantization of model parameters is performed. The unit speech inventory
was compressed about three times using quantized model parameters.

The waveform generation using the model parameters for speech waveforms of units is done by taking
the inverse FFT of the parameters and then overlap-and-add mechanism is used for smooth concatenation
of the units.
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6. Experiments and Results

To evaluate the quality of the synthetic voice produced by the developed system, we carried out formal
listening tests. The tests were of two type. The first one requires the listeners to rank the voice quality using
a Mean Opinion Score (MOS) like scoring. The other test is a diagnostic rhyme test.

MOS tests are commonly used for both evaluating the effectiveness of speech coding algorithms and
assessing the quality of synthesized speech. The MOS scores for speech synthesis are generally given in three
categories: intelligibility, naturalness, and pleasantness.

The MOS test was carried out by synthesizing a set of 50 sentences that were selected from the speech
corpus randomly and did not participate in the training set. The reason of choosing the sentences for which
we have also available the original speech waveforms is that the original recordings are also used in the
tests to ensure the reliability of the test results. 10 subjects (2 females) were used and they listened the
sentences using headphones. The sentences were at 16kHz and 16 bits. The subjects were instructed to rate
the sentences on a scale of 1-5 where 1 is very poor and 5 is excellent. Some speech samples of speech coders
having different MOS scores were presented to the subjects to ensure consistency in evaluating the speech
quality. The subjects were also familiarized with the speech synthesis by listening some example utterances
of varying quality.

We built five different systems and evaluated their quality. The first system uses the original recordings
from the test speech corpus that were coded by our harmonic coder and reconstructed. The second system
uses the unit selection synthesizer with a speech unit inventory containing about 19 hours of speech recording.
The third system uses a speech inventory containing about 3 hours of recording. The latter two systems
do not use prosody information and no prosody targets are specified for the target units in unit selection.
The last two systems are the same as the previous two, except that the original prosody from the original
recordings is used in the unit selection process [19].

Each of the 50 test sentences were synthesized by each of the five systems.1 Then five test sets were
constructed in the following way: 10 sentences from each system were gathered to form a test set. Each
set contained all of the 50 test sentences, i.e. repeating of the same sentence from different systems was
not allowed. The subjects were also divided into five groups with two subjects in each. Then each test
set was listened by a different group. The subjects gave ratings in terms of intelligibility, naturalness, and
pleasantness to each sentence. The average MOS scores are shown in descending success rates in Table 2.
Figures 3 and 4 show the scores for each system and category. The differences in system ratings were found
to be significant using ANOVA analysis. The analysis yielded an F-value of about 21 whereas the critical
F-values are about 3.3 and 5.0 for P=0.01 and P=0.001, respectively.

It is quite interesting that while system C is better than system E both of which use 3 hours of speech,
this is not the case for systems D and B which use 19 hours of speech. In other words, for 3 hours of speech
corpus, using original prosody improves the naturalness of generated speech, whereas for 19 hours of speech
corpus, it degrades the generated speech quality. It can be argued that for systems that use relatively less
amount of speech corpus, using prosody information in unit selection helps to select better units in terms of
prosody, hence increasing the overall naturalness of synthetic speech. On the other hand, for larger corpus,
we have more units in the corpus and the unit selection is more probable to find a better acoustic and
prosodic match. In these systems, using prosody information may cause the unit selection to favor prosody
over acoustic appropriateness which is probably more important than prosody for naturalness.

1The test sentences and their synthesized forms for each system can be found in
http://www.cmpe.boun.edu.tr/∼gungort/publications/turkishttssamples.htm.
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Figure 3. MOS scores with respect to system type.
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Figure 4. MOS scores with respect to test category.

Table 2. Systems and average scores for the MOS test.

System Description MOS
A The original recordings with harmonic coding 4.91
B Speech synthesis using 19 hours of speech 4.20
C Speech synthesis using 3 hours of speech with original prosody 4.11
D Speech synthesis using 19 hours of speech with original prosody 4.01
E Speech synthesis using 3 hours of speech 4.00

We also conducted an intelligibility test. Diagnostic Rhyme Test (DRT) uses monosyllabic words that
have consonant-vowel-consonant pattern. This test measures the capability of discrimination of the initial
consonants for the system evaluated. The DRT word list of ANSI standard for English contains 192 words
arranged in 96 rhyming pairs which differ only in their initial consonant sounds. The list has been divided
into six categories depending on the distinctive features of speech. The categories have been constructed in
terms of voicing, nasality, sustenation, sibilation, graveness, and compactness characteristics of the sounds.
For assessing the intelligibility of the synthesized speech in Turkish, we constructed a DRT word list for
Turkish based on the categories of the DRT word list of English as shown in Table 3. The DRT list was
designed to exploit the distinctive features of Turkish speech at maximum.

Using the DRT word list for Turkish, we carried out an intelligibility test for our system. The randomly
selected words from each pair of the DRT word list were synthesized using the system. The output speech
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waveforms were played to 10 native Turkish listeners who were then asked to choose which one of the
words given in pairs from the DRT list they heard. The listeners were assured to have a good hearing and
discrimination of sounds. The test results are shown in Table 4 as the percentage of the number of correct
selections for the two systems evaluated.

Table 3. DRT word list for Turkish.

Voicing Nasality Sustenation Sibilation Graveness Compactness
var far mal bal van ban çent kent biz diz türk kürk
ben ten mat bat ve be saç taç pas tas fan han
gez kez naz daz var bar sez tez boz doz ver yer
bul pul mil bil şap çap jön yön pek tek faz haz
din tin mit bit vur bur jel gel pers ters dün gün
diz tiz mor bor şam çam sin tin fon ton tap kap
zor sor mut but şan çan zan tan post tost tuş kuş
zevk sevk mir bir fes pes say tay put tut toz koz
zar sar muz buz şark çark zam tam pak tak tas kas
zen sen nam dam fil pil zat tat poz toz taş kaş
zil sil nar dar şal çal zerk terk pür tür tat kat
bay pay nem dem şık çık çal kal bağ dağ tel kel
ders ters nur dur şok çok sak tak bul dul düz güz
gör kör nal dal fas pas çil kil bel del tül kül
vay fay nil dil fark park çim kim but dut ton kon
göl çöl men ben fiş piş san tan fer ter tork kork

Table 4. Systems and average scores for the DRT test.

System Description DRT
B Speech synthesis using 19 hours of speech 0.95
E Speech synthesis using 3 hours of speech 0.94

By analysing the MOS and DRT tests conducted, we have also identified the main problems and
limitations of the developed system. The major sources of errors degrading synthesized speech quality are
as follows: Misalignment of phones in the speech database, prosody related problems such as pitch contour
discontinuities, timing errors for phones, energy differences between phones, and errors caused by acoustic
variations of phones in different contexts. The latter one shows itself in the concatenation of phones from
different contexts due to the lack of phones with similar contexts.

7. Conclusions and Future Work

In this paper, a corpus-based concatenative speech synthesis system architecture for Turkish has been
proposed and implemented. A new Turkish phoneme set that is suitable and adequate for representing all
the sounds in Turkish was given. A pronunciation lexicon for the root words in Turkish has been prepared. A
text normalization module and a grapheme-to-phoneme conversion module based on morphological analysis
of Turkish have been implemented. Speech corpus has been compressed by a factor of three with slight
degradation on the voice quality using the harmonic coding based speech model. As the final system,
a unit selection based concatenative speech synthesis system capable of generating highly intelligible and
natural synthetic speech for Turkish has been developed. Subjective tests have been carried out to assess
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the speech quality generated by the system. A DRT word list for Turkish has been constructed to carry out
the intelligibility tests. The final system got 4.2 MOS like score and 0.95 DRT correct word discrimination
percentage.

As future work, the developed system for Turkish can be enhanced by adding prosody generation
module, which should address intonation and duration modeling of the language. Duration analysis and
modeling of Turkish has been studied in [20]. Intonation and stress characteristics in Turkish sentences have

also been investigated [21]. We may also use the methods in these studies to form some rules, which can be
used in order to improve the prosody of synthetic speech in the absence of a prosody module for Turkish.
The unit selection algorithm can be further improved by automatically training the target and transition
cost weights using the objective cost measures. Furthermore, to reduce the runtime complexity of the unit
selection process, some methods based on pre-selection of units can be implemented, which can also reduce
the size of the speech unit database.
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[20] Ö. Şaylı, L.M. Arslan and A.S. Özsoy, “Duration Properties of the Turkish Phonemes”, International Conference

on Turkish Linguistics, KKTC, 2002.

[21] E. Abdullahbeşe, Fundamental Frequency Contour Synthesis for Turkish Text-to-Speech, M.S. Thesis, Boğaziçi
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