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Adaptive 3D Visual Servo Control of Robot

Manipulators via Composite Camera Inputs∗
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Abstract

This paper considers the problem of position control of robot manipulators via visual servoing in the

presence of uncertainty associated with the robot dynamics and the vision system. Specifically, an adaptive

controller is designed to compensate for the uncertainties associated with the mechanical parameters

of the robot manipulator and the intrinsic parameters of the cameras. The 3D visual information is

obtained from the composite inputs of two separate cameras placed in the robot work space. Despite

the uncertainties associated with the camera system and robot dynamics the proposed adaptive controller

achieves asymptotic end effector position tracking. A Lyapunov based approach is presented to prove the

stability and boundedness of the signals in the closed loop system. Simulation results are presented to

illustrate the performance of the proposed controller.

1. Introduction

Sensor based control is imperative for efficient control and operation of robotic manipulators. In most
robot control systems, feedforward and feedback terms in the control algorithm are computed via the use of
position and velocity information obtained by sensors located at each robot link (e.g., encoders, resolvers,

tachometers, etc.). However, when the robot is operating in an unstructured environment, such sensor
information is not always satisfactory. In unstructured environments vision based systems allowing non-
contact measurement of the surroundings, similar to human sense of sight, can be utilized for obtaining the
position information required by the controller. Taken to the extreme, the visual sensor data can be applied
for on-line trajectory planning and even for the feedforward/feedback control referred as visual servoing.

An overview of the state-of-the-art in robot visual servoing can be found in [1, 2, 3]. In this work we will
concentrate on a sub-class of visual servoing systems, referred as ”direct visual servoing” where the visual
data is used to compute the input to the dynamic model (actuator torques or forces) of the manipulator,
as opposed to the indirect visual servoing where the output of the system is a control reference law that is
then, fed into a low-level controller of the dynamical system model [1, 3].

Vision systems, used for robotic applications are mostly classified as a function of the number of vision
sensors they use. That is: i) monocular visual servoing that uses one camera, either attached to a fixed place
∗This work is supported by the Turkish State Planning Organization Grant DPT-2003K120530.
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pointing towards the robotic work-space (fixed camera configuration) or mounted at the end effector of the

robot (eye-in-hand configuration). ii) multi camera vision systems where, as the name indicates, multiple
cameras placed in the work-space are used to collect the task specific information. While the monocular visual
servoing offers a cheaper solution, as the cost of hardware and the associated software development process is
highly reduced compared to multiple camera visual servoing, nearly in all applications the depth information
of the work-space is lost. On the other hand even by the use of multiple cameras it is not always possible
to extract all of the 6-DOF information (position and orientation of the end effector). Another drawback
of using a camera system is to relate the image space measurements to the actual task-space variables also
known as the camera calibration problem. Due to the presence of uncertainties in the camera calibration
parameters, it is usually difficult to obtain intrinsic camera parameters (i.e. the image center , magnification

factors, and camera scaling factor), and the extrinsic camera parameters (position and orientation of the

camera within the work-space) exactly. Motivated by these, researchers presented quite a lot of solutions
to camera calibration problem, unfortunately most solutions did not take the robot dynamics into account
[4, 5, 6] thus are limited to the kinematic level. To achieve high performance it is imperative for a controller
to incorporate the system dynamics into the control loop. This fact motivated the researchers to corporate
the manipulator dynamics in to the control system design. For the monocular case, adaptive and robust
controllers have been proposed [7, 8, 9]. Especially in [8] and [9], the proposed adaptive and robust controllers

can compensate for the uncertainties associated with the camera system (intrinsic and extrinsic) and the
dynamics of the manipulator. Unfortunately the monocular visual servoing constrains the problem to the
2D case and ignores depth information by concentrating on the planar robot manipulators where the out
of plane motion is not possible. Recently, the focus in visual servoing has shifted towards 3D problems
[3, 10, 11]. In [10], an asymptotically stable position based visual feedback controller has been presented,
which can compensate the uncertainties of the homogeneous transformation matrix between the task-space
and the camera space; however the controller assumes that the intrinsic camera parameters are perfectly
calibrated. Another solution is [11], which is a PI-controller based 3D pose servoing scheme. This system
gives accurate position and orientation control for stationary target applications , but was unable to avoid
noticeable error fluctuations for tracking problems.

The visual system designed in this paper1 belongs to the class of multi-camera visual servoing systems.
Specifically, the result given in [8] have been extended to 3D position servoing case via the use outputs from
2 cameras. The outputs of the cameras are composed to represent the 3D Cartesian space information in the
camera space. Then the composite camera calibration matrix is premultiplied by a transformation matrix,
(similar to [8]) so that the resultant matrix is positive-definite and symmetric, which enabled us to incorporate

the camera parameters into the robot equation using a backstepping technique [13]. The proposed visual
control system only requires the knowledge of position of the cameras with respect to the base of the robotics
manipulator and achieves asymptotic end effector position tracking despite the uncertainties in the camera
calibration parameters and the robot dynamics.

The rest of the paper is organized as follows. In Section 2 the manipulator and the camera model used
are presented. In Section 3 the control objective, controller development and stability analysis is presented,
while the simulation results are presented in Section 4. Concluding remarks are summarized in Section 5.

1A preliminary version of this work has appeared at [12]
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Figure 1. Placement of the Camera System with respect to Robot Coordinates

2. Robot-Camera Model

A schematic representation of the robot-camera system configuration considered in this work is given in
Figure 1. We assume that the cameras are located at fixed points outside, but pointing towards the robot
work-space such that: i) the image planes of camera 1 and camera 2 are parallel to Xr−Yr and Xr−Zr planes

of motion of the robot respectively; and ii) both cameras can capture images throughout the entire robot
work-space.

2.1. Robot Dynamics

The joint-space model for a three link, revolute, direct-drive, robot manipulator is assumed to be of the form
[14]

M(q)q̈ + Vm(q, q̇)q̇ + G(q) + F (q̇) = τ, (1)

where q(t), q̇(t), q̈(t) ∈ R3 denote the link position, velocity and acceleration vectors, respectively;

M(q) ∈ R3×3 represents the link inertia matrix, Vm(q, q̇) ∈ R3×3 represents centripetal-Coriolis matrix,

G(q) ∈ R3 represents the gravity effects, F (q̇) ∈ R3 represents the friction effects, and τ (t) ∈ R3 represents
the torque input vector.

The robot dynamics given in (1) have the following useful properties [15]:

Property 1: The inertia matrix M(q) is symmetric and positive-definite, and satisfies the inequalities

m1 ‖ξ‖2 ≤ ξTM(q)ξ ≤ m2 ‖ξ‖2 ∀ξ ∈ R3, (2)

where m1, m2 ∈ R are positive bounding constants, and ‖·‖ denotes the standard Euclidean norm.

Property 2: The inertia and centripetal-Coriolis matrices satisfy the following skew symmetric relationship

ξT
(

1
2

·
M(q) − Vm(q, q̇)

)
ξ = 0 ∀ξ ∈ R3, (3)

where
·
M(q) denotes the time derivative of the inertia matrix.
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Property 3: The dynamic model in (1) can be linearly parameterized (as shown below) as

M(q)
..
q + Vm(q, q̇)q̇ +G(q) + F (q̇) = W

(
q, q̇,

..
q
)
ϕ, (4)

where ϕ ∈ Rm contains the constant system parameters, and the regression matrix W (·) ∈ R3×m

contains known functions dependent on the signals q(t), q̇(t), and q̈(t) (it is assumed that if the

arguments of W (·) are bounded then W (·) is bounded).

Remark 1 For simplicity, the above model has been developed for a non-redundant robot manipulator (i.e.,

we assume n = 3); and the formulation is based on only end effector position tracking problem. However,

the results delineated in this paper, with minor modifications, can be extended to the redundant case (see

[8] for details) and might serve as a stepping stone for the full order, end effector position plus orientation

tracking in cartesian space (see [16] for details).

2.2. Composite Camera Model Development

Using the standard pin-hole model for a camera system, a point Xr =
[
xr yr zr

]T in a 3-D world frame

can be represented in terms of camera space coordinate frame as [17][
xc
yc

]
=

f

zr

[
β1 0
0 β2

]
R(θ)

{[
xr
yr

]
−
[
o1

o2

]}
+
[
c1
c2

]
, (5)

where Y =
[
xc yc

]T denotes the corresponding position vector in camera space, f is the focal length of

the lens used, β1, β2 are the magnification factors of the camera, R(θ) ∈ R2×2 is the rotation matrix defined
as

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
(6)

with θ being the rotation angle of the camera, O =
[
o1 o2

]T is the position of the optical center of the

camera with respect to the world coordinate frame and C =
[
c1 c2

]T denotes the image center which is

defined as the frame buffer coordinates of the intersection of the optical axis with the image plane. Using the
camera transformation given in (5) the camera space variables of camera 1 in the system shown in Figure 1
are obtained as [

xc1
yc1

]
=

1
zr + λ1

H1R(θ1)
[
xr − o11

yr − o12

]
+
[
p11

p12

]
, (7)

where H1 ∈ R2×2 is defined as

H1 =
[
f1β11 0
0 f1β12

]
. (8)

Similarly, camera 2 variables are[
xc2
zc2

]
=

1
yr + λ2

H2R(θ2)
[
xr − o21

zr − o22

]
+
[
p21

p22

]
, (9)
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where H1, H2, R(θ1), R(θ2) ∈ R2×2 and p1 =
[
p11 p12

]T
, p21 =

[
p21 p22

]T ∈ R2×1 are constant

but unknown camera parameters, and λ1 ,λ2 , o11 , o12 , o21 , o22 are positive constants representing the
placement of the camera with respect to the origin of the robot world coordinate frame and are assumed
to be known. Our first goal is to obtain a composite camera input from the two camera inputs placed in
the work space that can lead us to obtain 3 dimensional position information (xr , yr, zr) about the object
in the work space as opposed to the normal 2-D projection using a standard camera. To this extent, using
the properties of the rotation matrix and the fact that H2 is a diagonal matrix, zc2 defined in (9) can be
written in the form

zc2 = γ1
zr − o22

yr + λ2
+ γ2xc2 + γ3 , (10)

where the constant parameters γ1 , γ2 , γ3 ∈ R are explicitly defined as

γ1 =
f2β22

cos θ2
, γ2 =

β22 sin θ2

β21 cos θ2
, and γ3 = p22 − p21

β22 sin θ2

β21 cos θ2
. (11)

Based on (7) and (11), we find the composite camera input representation as

 xc1
yc1
zc2

 =

,H·R︷ ︸︸ ︷[
H1R(θ1) 02×1

01×2 γ1

] xr−o11
zr+λ1
yr−o12
zr+λ1
zr−o22
yr+λ2

+

 p11

p12

γ2xc2 + γ3

 . (12)

For simplicity, we defined the composite camera input vector Xc =
[
xc1 yc1 zc2

]T and the off-setted

cartesian vector XR ∈ R3 as

XR ,

 xr
yr
zr

 =

 xr − o11

yr − o12

zr − o22

 . (13)

Note that XR can be calculated using the forward kinematics of the robot and the camera positioning values

o11, o12, o22 . Taking the time derivative of (12), we obtain the following differential relationship between
Xc and XR :

Ẋc = HRJcẊR +

 0
0

γ2ẋc2

 , (14)

where the composite camera image Jacobian, Jc ∈ R3×3 is defined explicitly as

Jc =


1

(zr+λ1+o22) 0 − xr
(zr+λ1+o22)2

0 1
(zr+λ1+o22) − yr

(zr+λ1+o22)2

0 − zr
(yr+λ2+o12)2

1
(yr+λ2+o12)

 . (15)

For our analysis to hold, the composite image Jacobian matrix Jc has to be invertible (in other words,

det(Jc) have to be non-zero). For this reason the denominators of the entries in equation (15) have to
be non-zero. Accordingly λ2 + o12 , and λ1 + o22 are both selected to be positive and the motion of the
manipulator is restricted to one quadrant to provide also positive values for yr , and zr .
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3. Control Formulation and Design

We will assume that a smooth, time varying, desired end effector trajectory generated in the camera space,

denoted by Xd(t) =
[
xd(t) yd(t) zd(t)

]T is constructed so that Xd(t) ∈ C2 . To provide a means of

quantifying the position tracking control objective, we defined the position tracking error signal in camera

space e(t) ∈ R3 as

e = Xd −Xc. (16)

Taking time derivative of (16) and multiplying the resultant equation by

A ,

 A1 A2 0
A3 A4 0
0 0 A5

 = (HR)−1 =


cos θ1
f1β11

sin θ1
f1β12

0
− sin θ1
f1β11

cos θ1
f1β12

0
0 0 1

γ1

 , (17)

we obtain

Aė = A

Ẋd −
 0

0
γ2ẋc2

− Jc J q̇. (18)

Note that the forward kinematic relationship ẊR = Jq̇ is utilized. Motivated by the subsequent stability

analysis, we pre-multiply both sides of (18) by the transformation matrix

T =

 1
A1A4−A3A2

A3
A4
− A2

A4(A1A4−A3A2)
0

0 1 0
0 0 1

 (19)

and obtain the open loop dynamics for ė(t) as

Zė = Z

Ẋd −
 0

0
γ2ẋc2

− TJc J q̇, (20)

where the constant matrix Z ∈ R3×3 is defined in the form

Z =

 1+A2
3

A4
A3 0

A3 A4 0
0 0 A5

 . (21)

Notice that Z ∈ R3×3 is positive definite and symmetric, when the rotation angles of the cameras satisfy
−π/2 < θ1, θ2 < π/2. Following a backstepping-like design procedure [13], we can rewrite (20) to have the
form

Zė = Z

Ẋd −
 0

0
γ2ẋc2

− Tv + TJI η. (22)

In (22) the term JI , Jc J is the image Jacobian and the auxiliary tracking-like signal η(t) ∈ R3 is defined
as

η = u− q̇ (23)
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with u = J−1
I v . Using the definitions of (19) and (21) the open loop dynamics of (22) can be written in the

following advantageous form:

Zė =

 φ−1
4 (W1φ1 − v1)
W2φ2 − v2

W3φ3 − v3

+ TJI η, (24)

where W1(.), W2(.), W3(.) are known regression matrices defined explicitly as

W1 =
[
ẋd ẏd −v2

]
, W2 =

[
ẋd ẏd

]
, W3 =

[
żd ẋc2

]
, (25)

and φ1 , φ2 , φ3 , φ4 represents unknown constant parameter vectors with proper dimensions that are defined
as

φ1 =
[

1+A2
3

A4
φ4 A3φ4

A3φ4−A2
A4

]T
, φ2 =

[
A3 A4

]T
,

φ3 =
[ 1
γ1
−γ2
γ1

]T
, φ4 = A1A4 −A2A3.

(26)

Based on the open-loop dynamics and the subsequent stability analysis the auxiliary internal control
inputs are designed as

v1 = W1φ̂1 + k1e1, v2 = W2φ̂2 + k2e2, (27)

and v3 = W3φ̂3 + k3e3,

where ei(t), i = 1, 2, 3 denote the elements of e(t), k1 , k2 , k3 are positive, scalar control gains and

φ̂1(t) ∈ R3 , φ̂2(t) ∈ R2 , φ̂3(t) ∈ R2 are dynamic parameter estimates that are updated according to

·
φ̂1 = Γ1W

T
1 e1,

·
φ̂2 = Γ2W

T
2 e2 ,

·
φ̂3 = Γ3W

T
3 e3, (28)

where Γ1 ∈ R3×3 , Γ2 ∈ R2×2 and Γ3 ∈ R2×2 are diagonal, positive-definite, gain matrices. After substituting
(27) into (24) we obtain the closed loop dynamics for e(t) as

Zė =

 φ−1
4 (W1φ̃1 − k1e1)
W2φ̃2 − k2e2

W3φ̃3 − k3e3

+ TJI η. (29)

The backstepping type control design also requires the dynamics for the auxiliary signal η(t); to

obtain this, we take the time derivative of (23) and pre-multiply the resultant equation by the inertia matrix
to obtain

Mη̇ = −Vmη − JTI TT e− τ + Y θ, (30)

where Y (.) is a regression matrix containing the known/measurable terms and θ is the vector containing
unknown but constant system parameters with proper dimensions such that Y θ is expressed as

Y θ = Mu̇+ Vmu+ F (q̇) + G+ JTI T
T e (31)

Note that the term JTI T
T e is injected to the dynamics to cancel the corresponding term in stability analysis.
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Remark 2 Based on the structure of (31) and standard adaptive controller design procedures, it is fairly easy

to see that when the control torque input vector τ (t) with the parameter estimation vector θ̂(t) is designed
to have the form

τ = Y θ̂ +Kηη (32)

·
θ̂ = Γθ Y T η,

where Kη ∈ Rn×n is a constant, diagonal, positive definite, gain matrix and Γθ is a constant, diagonal,
positive definite matrix with proper dimension, the tracking error can be driven to zero. However, as can
be observed from (31) and (32), this approach requires the calculation of the time derivative of the auxiliary

control input u (t) , which in turns necessitates the calculations of the derivatives of the input v (t) and the
image Jacobian JI on line. Thus, the implementation would require massive computations and hinders the
analysis making the result unnecessarily complicated for practical purposes. In this work, instead of using the
aforementioned standard adaptive controller approach, we will utilize a high gain controller that would treat
the regression matrix multiplied by the uncertain parameter vector formulation as if it were a disturbance
term and utilize a nonlinear damping argument to compensate for the unwanted effects of it. This method
not only eases the implementation but also preserves the asymptotic stability result, as will be presented in
the subsequent analysis.

Utilizing the fact that the system dynamics Y θ is bounded by a function of the form

‖Y θ‖ ≤ ρ(‖x‖) ‖x‖ , (33)

with x =
[
eT ηT

]
, the control torque input vector is designed to be

τ = knρ(‖x‖)2η + Kηη, (34)

where Kη ∈ Rn×n is a constant, diagonal, positive definite, gain matrix. After substituting (34) in (30) with

the dynamics bounded according to equation (33), we obtain the closed loop dynamics for η(t) as

Mη̇ = −Vmη − JTI TT e−Kηη − knρ(‖x‖)2η + Y θ. (35)

We now state the following Theorem.

Theorem 1 The adaptive control law proposed by (27) with the update laws (28) and the control law of (34)
ensure the global asymptotic end effector tracking in the sense that

lim
t→∞

e(t) = 0, (36)

provided that the damping gain obeys the inequality

kn ≥
1

4 min(λmin {Kη} ,min(φ−1
4 k1, k2, k3))

(37)

and the camera orientations satisfy the condition

−π/2 < θi < π/2, i = 1, 2 . (38)
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Proof 1 We begin our proof by introducing the following non-negative scalar function:

V =
1
2
eTZe+

1
2
ηTMη +

1
2
φ−1

4 φ̃T1 Γ−1
1 φ̃1 +

1
2
φ̃T2 Γ−1

2 φ̃2 +
1
2
φ̃T3 Γ−1

3 φ̃3. (39)

Taking the time derivative of this expression, then inserting the closed loop dynamics from (29) and (35),

and applying the parameter update terms in (28), we obtain the relationship

V̇ = e1φ
−1
4 W1φ̃1 − k1e

2
1 + e2W2φ̃2 − k2e

2
2 + e3W3φ̃3 − k3e

2
3 + eTTJIη

+
1
2
ηT

.

Mη + ηT (−Vmη − JTI TT e−Kηη − knρ(‖x‖)2η + Y θ) (40)

−φ−1
4 φ̃T1 W

T
1 e1 − φ̃T2 WT

2 e2 − φ̃T3 WT
3 e3,

to which when we apply the skew symmetric relationship between the inertia and centripetal-Coriolis matrices
in (3) and eliminate the corresponding parameter error and image Jacobian JI terms, followed by substitution

of (33) for the system dynamics, we obtain:

·
V ≤ −φ−1

4 k1e
2
1 − k2e

2
2 − k3e

2
3 − ηTKηη (41)

−[ηTknρ(‖x‖)2η) − ηT ρ(‖x‖) ‖x‖].

By adding and subtracting ‖x‖2
4kn

terms to the right hand side of this equation, we can complete the squares

of the nonlinear damping gain and the system dynamics bounding functions in the second line of (41), thus
can further upperbound this result to have the following form:

·
V ≤ −φ−1

4 k1e
2
1 − k2e

2
2 − k3e

2
3 − ηTKηη (42)

−
[√

knρ(‖x‖) ‖η‖ −
‖x‖

2
√
kn

]2

+
‖x‖2
4kn

.

As the completed squares term in (42) has a negative value for all times, its presence has no effect on

the validity of this inequality, hence the rest of the term in (42) can be expressed to have the form

V̇ ≤ −β ‖x‖2 , (43)

where β = min
{
λmin {Kη} , min(φ−1

4 k1, k2, k3)
}
− 1

4kn
and the definition (33) has been applied for x . From

(39) and (43), provided that (37) is satisfied, we can conclude that V (t) ∈ L∞ ; hence, all the elements of

V (t), that is e(t) , η(t) , φ̃1(t) , φ̃2(t) , and φ̃3(t) ∈ L∞ . Furthermore, using the boundedness of the tracking

error signal e(t) and the estimation error terms φ̃i(t), i = 1, 2, 3 , the auxiliary control terms vi(t), i = 1, 2, 3

from (27) are also bounded. Due to the boundedness of η(t) and ρ(‖x‖) , from equation (34), the control

torque input τ (t) is also bounded. Similarly from (28), the boundedness of
·
φ̂i(t), i = 1, 2, 3 are achieved.

So we have proven that all the signals remain bounded during the closed loop operation. At this stage, using
the boundedness of vi(t) and η(t) terms in equation (29) of closed loop error dynamics, we can also show

that ė(t) is bounded. Due to the boundedness of ė(t) , we can conclude that e(t) is uniformly continuous. In

addition, it is straightforward to use (43) to illustrate that e(t) ∈ L2. At this point from direct application

of Barbalat’s Lemma [18] we conclude (36) �.
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Figure 2. The block diagram of the designed visual servo system

4. Simulation Results

A block diagram of the applied visual servoing configuration is given in Figure 2. The functions of the
main blocks in this figure can be summarized as follows. The actual robot trajectories, XR̄, from the robot

forward kinematics block are observed by cameras 1 and 2 to form the 3-D composite camera output, Xc(t).

This camera output is compared with the desired trajectory, Xr(t), the difference of which is fed to the

camera controller as the error signal e(t). The output from the camera controller, namely the auxiliary
signals, u and v are applied with the Image Jacobian JI to the robot controller. This controller updates
the robot dynamics by applying the control torque signal τ , and the output of dynamics block is applied to
the forward kinematics block for the cartesian space vector XR̄ . This vector is again fed to the composite
camera setup, and the system keeps functioning on in this manner.

The applied dynamical model is a 3-dof robot manipulator with the following inertia, centripetal-
Coriolis and gravity matrices:

M =

 M11 0 0
0 M22 M23

0 M32 M33

 , (44)

Vm =

 V11 0 0
0 V22 V23

0 V32 0

 , G =

 0
G2

G3

 .
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Here, the entries are formulated as

M11 = m3(l2 cos(q2) + lc3 cos(q2 + q3))2 + m2l
2
c2 cos2(q2)

+A2 sin2(q2) +A3 sin2(q2 + q3) + E1

+E3 cos2(q2) + E3 cos2(q2 + q3)
(45)

M22 = m2l
2
c2 sin2(q2) + l2 + l3 + m3(l22 + l2c3 + 2l2lc3 cos(q3))

M23 = M32 = m3(l2c3 + l2lc3 cos(q3)) + l3

M33 = m3lc3 + l3

V11 = −m3l2lc3(
·
q2 +

·
q3) sin(q2 + q3) cos(q2)

−m3l2lc3
·
q2 sin(q2) cos(q2 + q3)

−(m2l
2
c2 +m3l

2
2 + E3)

·
q2 sin(q2) cos(q2)

−(m3l
2
c3 +E3)(

·
q2 +

·
q3) sin(q2 + q3) cos(q2 + q3)

+A2
·
q2 sin(q2) cos(q2) +A3(

·
q2 +

·
q3) sin(q2 + q3) cos(q2 + q3)

(46)

V22 = −m3l2lc3
·
q3 sin(q3) +m2l

2
c2
·
q2 sin(q2) cos(q2)

V23 = V32 = −0.5m3l2lc3
·
q3 sin(q3)

G2 = 9.8(m2lc2 +m3l2) cos(q2) + 9.8m3lc3 cos(q2 + q3) (47)

G3 = 9.8m3lc3 cos(q2 + q3).

In these matrices the applied coefficients are the lengths of the manipulator links l1 = 0.5, l2 = 0.4, l3 = 0.4
in meters, the masses of the links m1 = 4, m2 = 3 and m2 = 3 in kg, distances of the link joints lc2 = 0.2,
lc3 = 0.2 in meters, and the cylindrical link radius R = 0.05. The torque limits are τi = ±50 and the

cylindrical link inertial parameters are obtained by E1 = m1R
2/2, Ei = miR

2/12, Ai = miR
2/2 and

li = miR
2/12, where i = 2, 3 for the robot links.

The controller parameters are tuned to the below values for the efficient operation of the designed
visual servo system. Accordingly the internal (camera) controller gain matrix is

K , diag
{
k1 k2 k3

}
= diag

{
3 1.5 2

}
(48)

and the applied adaptation term parameters are:

Γ1 = diag
{

0.5 0.0001 0.01
}

(49)

Γ2 = diag
{

0.001 0.005
}

Γ3 = diag
{

0.00005 0.00001
}
.

Similarly, the outer loop (robot) control has the control gain matrix and the damping gain coefficient selected
as

Kη = diag
{

50 75 25
}
, kn = 25. (50)

For simulation results a sample desired position trajectory in the composite camera space is selected as

Xd(t) =

 465 + 20 sin(π6 t+ π
12)

490 + 25 sin(π6 t+ 5π
12 )

480 + 20 sin(π6 t+ 5π
12 )

 , (51)
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with all components in pixels. Trajectories in similar ranges should be preferred as these do not force the
singularities of the employed manipulator model.

The composite camera output for this trajectory is in Figure 3, from which the initial system transients
can be observed to decay quickly. Similarly, the Figure 4 depicts the quick convergence of the error terms to
zero, verifying the asymptotically stable nature of the proposed system. The applied controller torque outputs
are in Figure 5, while Figure 6 shows the parameter estimates for the inner loop, which also converge in short
time periods. As an overall result, these figures depict the stable and efficient operation of the presented
visual servo configuration and hence should verify the validity of the controller system developed in this
paper.
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Figure 3. The End Effector Trajectory as seen from the Composite Camera during simulation.
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Figure 4. The Tracking Error Terms.
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Figure 5. Input Control Torques.
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Figure 6. Estimates for the Uncertain Parameters of the Cameras.

5. Conclusion

We have presented a nonlinear, adaptive, 3-D end effector position tracking controller for a vision based
system composed of 2 fixed cameras. The proposed controller achieves asymptotic end effector tracking
despite the presence of uncertainties in some of the intrinsic camera parameters of both vision sensors and
the robot dynamics. This result was obtained by applying a novel approach to compose the camera inputs
to form the 3 dimensional end effector position information in camera space and using a backstepping
design scheme. Considering the similarities between the controller design procedures our controller might
be considered as the 3-D extension of [8] with the use of multiple cameras.
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