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Abstract

In this paper, mathematical analysis and numerical calculations of main parameters of finline struc-

tures with finite metallization thickness and substrate mounting grooves are developed based on the Method

of Lines (MoL). The results obtained provide confirmation of the validity of the technique used and prove

its simplicity and adequacy for treating different types of planar structures mainly finline based structures.

Unilateral and bilateral finlines including practical parameters, such as metallization thickness and

grooves’ depths, have been investigated. The effect of these two parameters have been discussed based

on realistic configurations and the results show that, at higher frequencies, the grooves supporting the

substrate cannot be neglected and, in addition, their influence is more significant than the effect of finite

thickness metallic strips. The isolated finline with more complex configuration with a particular interest

in applications involving active components was also analyzed. The obtained results confirm the previous

published predictions for these types of structures.

1. Introduction

The preferred transmission line for millimeter wave integrated circuits is known as the one which avoids
miniaturization and yet offers potential for low-cost production through different batch processing techniques.
Many practical transmission lines are proposed to overcome the common transmission lines liability and
associated problems that appear at higher frequencies. In this regard, Shneider has proposed what is known
as suspended substrate microstrip lines [1] and Meier, the finlines [2].

With growing interest of components and systems designs, there has been increasing activity con-
cerning theoretical foundations of these structures. During the past several years, divers papers have been
published [3-4,6-11] using various numerical techniques to determine the propagation characteristics of finline
structures. However, most of the works published did not take into account the real effect of finite thickness
of metallization strips and supporting grooves.

The metallization thickness has been taken into account by Beyer [8] and Vahldieck [9] using the

mode-matching method and by Kitazawa [10] using the network analytical method and also by R. Mansour
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et. al. employing the conservation of complex power technique [11]. The effects of side wall grooves, which
have been employed in a real realization of finlines or generally used in E-plane circuits that support the
substrate mechanically, has been considered as well in references [9-11]. The effect of metal strip thickness
on propagation characteristics of multiconductor planar transmission line structures has been taken into
consideration by Saad and Schunemann [5], in which the approximation involved is only valid for structures

with large slot widths. A more accurate analysis has been presented in [12-15].

In the present analysis, hybrid-mode approach is used to determine the effective dielectric constant for
dominant and higher modes as well as the characteristic impedance for special unilateral finline structure.
The analysis can also be applied to a wide variety of planar and quasi-planar transmission line structures
with multiconductors and multilayer isotropic/anisotropic substrates.

Besides the versatility and the flexibility of the approach presented in this paper in treating compli-
cated structures such as the one in [19-20], it is numerically efficient and includes practical considerations
such as metallization thickness and substrate mounting grooves. In addition to this, another important
parameter disregarded by overall published analysis has to be taken into consideration. This is particularly
important for quasi-planar E-printed transmission line structures which do not support TEM-wave propa-
gation, as in the case of the finline structures which have to be either isolated from the metallic housing at
dc, or directly connected to the waveguide housing.

2. Formulation of the Problem

To present the analysis adopted, a realistic finline structure of interest, which has been used by Meier [2]
as shown in Figure 1 has been considered. The cross section of this practical structure is represented in
Figure 2. This integrated finline structure was developed to operate at millimeter wavelengths where its
cross section is suitable for mounting semiconductor devices.

Nylon screw

Substrate
Insulating gasket

Printed finc

a
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d t
b

Figure 1. Real unilateral finline structure and illustration of its fixation.

In this structure of Figure 1, the upper fin is insulated from the housing at dc by a dielectric gasket,
where, according to Meier [2], it is grounded at RF by choosing the thickness of the broad walls to be a
quarter wavelength in the dielectric medium. However, the lower fin is grounded directly by a metal gasket
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to provide a dc return in case of solid-state applications. It is important to note that the typical realistic
structure presented in Figure 1 may have symmetrical as well as unsymmetrical fins.
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Figure 2. Unilateral finline structure with mounting grooves and with a gasket insulator.

For the analysis of the structure shown in Figure 2, it is worth noting that the regions I, II, III and
V are homogeneous isotropic or anisotropic dielectric layers, where in each region the wave equations have
to be solved. The tangential field relationships needed for the matching need to be satisfied and have been
presented elsewhere [21]. However, the treatment of inhomogeneous layers, such as region IV, has not yet
been addressed before and therefore, is presented in the following sections.

2.1. Description of discretization scheme for inhomogeneous dielectric

The homogeneous layer consists of an abrupt transition of two or more dielectric regions aligned in the
same layer. In order to analyze microwave structures formed by homogeneous and inhomogeneous dielectric
layers, the problem of inhomogeneous layer should be solved first, and the resulted analysis must be mixed
with that of homogeneous layers. For this purpose, an inhomogeneous layer which consists of two dielectric
abrupt transitions as illustrated in Figure 3 has been considered. It can be noted that the dielectric constant
of each region is function of x. In this way, the problem of more than two transitions can be generalized
without difficulty.

discretization for ψh

y

h
x

xt2xt1
discretization for ψe

Figure 3. Uniform discretization of homogeneous dielectric layer.

Following Collin [16-18] the wave field in this inhomogeneous layer can be determined from two vector
potentials and, which have only one component in the dielectric of transition, namely the x- direction. The
electromagnetic field is related to these potentials as per the following expressions:

E = εr(x)−1∇×∇× πe − jko∇× πh (1a)

ηoH = jko∇× πe +∇×∇× πh (1b)

with ko = ω
√
εoµo and ηo =

√
µo/εo . The vectors of potentials πe and πh , which are x-directed (unit âx )

and propagating over a cross-section of waveguiding structure along the z-direction, may be written as

πe(x, y) = ψ e(x, y)e−jkzzk−2
o âx (2a)
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πh(x, y) = ψ h(x, y)e−jkzzk−2
o âx (2b)

The potential functions ψe and ψh must fulfil the Helmotz equation (3a) and the Sturm-Liouville differential

equation (3b) respectively:

∂ 2ψ h

∂x2
+
∂ 2ψ h

∂x2
+

(
εr(x)k2

o − k2
z

)
ψ h = 0 (3a)

εr(x)
∂

∂x

(
1

εr(x)
∂ψ e

∂x

)
+
∂ 2ψ e

∂x2
+

(
εr(x)k2

o − k2
z

)
ψ e = 0 (3b)

This is in association with the following boundary conditions on electric and magnetic walls.

Electric walls:

ψ h = 0 ;
∂ψ e

∂x
= 0 (4a)

Magnetic walls:

ψ e = 0 ;
∂ψ h

∂x
= 0 (4b)

In order to solve the partial differential equations (PDE) (3) using the well known Method of Lines [18], both
the potentials and dielectric constant need to be discretized with respect to the x-variable. Two line systems
are used for the full-wave analysis so that the lateral boundary conditions of the potentials are satisfied,
as shown in Figure 3 for a uniform discretization scheme. Two different discretized dielectric constants are
then obtained for each potential function as,

for ψ e : εr(x) −→ diag(εr(xe) = εe (5a)

for ψ h : εr(x) −→ diag(εr(xh) = εh (5b)

In general, the values of εh at the discretization lines xt (transition) positioned at the interfaces

where the dielectric constant changes abruptly, one must take into account, as indicated in [17,18], special

considerations such as εr(xt) =
(
εr(x+

t ) − εr(x−t )
)/
2. Therefore, the first and second differential operators

with respect to x-direction can be approximated by finite difference approximation, and may be written as
follows

h
∂ψ h

∂x
−→ Dψh (6a)

h
∂ψ e

∂x
−→ −Dtψe (6b)

h2∂
2ψ h

∂x2
−→ −DtDψ h = −P ε

hψ
h (6c)

h2εr(x)
∂

∂x

(
1

εr(x)
∂ψ e

∂x

)
−→ −εeDε−1

h Dtψ h = −P ε
eψ

e (6d)
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where ψe and ψh are column vectors of the discretized potentials, and D is the difference operator which
depends on the lateral boundaries. The two PDEs (3) can now be written in a unified form as:{

−h−2P ε + k2
oε+

(
d2

dy2
− k2

z

)}
Ψ = 0 (7)

Where to the matrix quantitiesP ε , ε and the vector potential functionΨ, have to be added either a subscript
e or h .

In order to decouple the system (7), it is necessary to perform a suitable transformation as:

Ψ = RΨ̃ (8)

where Ψ̃ is the transformed column vector of the discretized potential functions, and S the transformation
matrix, (with R = T.S as pointed out in 11-a and 11-b below), that is obtained from the following eigenvalue
problem: (

h−2k−2
o P ε − ε

)
R = Rλ (9)

where λ is a diagonal matrix of distinct eigenvalues. To solve eq. (9), it is necessary to replace P ε by its
corresponding values P ε

e and P ε
h . This leads to λe , λh and Se , Sh . The eigenvalue problem becomes

(
h−2k−2

o εeDε
−1
h Dt − εe

)
Re = Reλe (10a)

(
h−2k−2

o DtD − εh
)
Rh = Rhλh (10b)

However, it is possible to split each of the transformations Se and Sh into two independent transformations.
Indeed, let

Re = TeSe (11a)

Rh = ThRh (11b)

Then eq. (10) becomes

QeSe = Seλ̃ (12a)

QhSh = Shλ̃h (12b)

and

Qe = ε̄e δ̄ ε−1
h δ̄ t − ε̄e (13a)

Qh = λ̄2
h − ε̄h (13b)

where δ̄ = (koh)
−1
δ ; δ = T t

eDTe ; λ̄2
h = δ̄ tδ̄ ; ε̄e = T t

eεeTe ; ε̄h = T t
hεhTh .

The transformation matrices Te and Th are the matrices used for homogeneous layers and Se

and Sh are supplementary matrices to account for the inhomogeneous dielectric slab layers. Solving the

21



Turk J Elec Engin, VOL.15, NO.1, 2007

eigenvalue problems of eq. (12), the diagonal matrices λ̃e and λ̃h of real and distinct eigenvalues, and the
transformations matrices Se and Sh are also derived numerically.

The yielded system of uncoupled ODEs for Ψ̃e and Ψ̃h then becomes,(
I
1
k2

o

d2

dy2
− k2

z

)
Ψ̃e,h = 0 (14)

where kye,h(y) = diag (kyie, h/ko) , with kyie,h =
(
λ̃ie,h + εre

)
k2

o .

The general solution of eq. (14) for the i-th component of Ψ̃e,h is given by

Ψ̃i(y) = Aie,h cos (kyie,h y) +Bie,h sin (kyie,h y) (15)

The elimination of the constants Aie,h and Bie,h leads to the following solution for an arbitrary layer with
thickness d , where A and B are its bottom and top interfaces where[

d
dy
Ψ̃A

d
dy Ψ̃B

]
= kok

2
yv

[
γ α
α γ

] [
−Ψ̃A

Ψ̃B

]
(16)

α = diag
(
kyi

ko
sinh (kyi d)

)−1

, γ = diag
(
kyi

ko
tanh (kyi d)

)−1

, kyv = diag
(

kyv
i

ko

)
(17)

Note that in eq. (16), the superscript γ needs to to be substituted by either e or h to denote the
corresponding potential vector.

2.2. Calculations for the field components

The electromagnetic field components are calculated from the potentials ψe and ψh according to eqs. (1)

and (2). After discretization and transformation of the fields Te and Th , and approximating the derivatives
with respect to x variable by a differential operator, one can get the transformed field components necessary
for the matching on the interfaces as

Ēx = −ε̄−1
e QeSeΨ̃e (18)

ηoH̄x = −QhShΨ̃h (19)

jĒz = − 1
ko
Sh
d

dy
Ψ̃h − ε−1

h δ̃tSeΨ̃e (20)

jηoH̄z = − 1
ko
Se
d

dy
Ψ̃e + δ̃ Sh Ψ̃h (21)

with δ̃ =
√
εreδ̄

Whereas for y- field component, necessary for power computation, is given by the following expressions

Ēy = −ε̄−1
h δ̄ t Se

(
1
ko

d

dy
Ψ̃e

)
−√

εre Sh Ψ̃h (22)
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ηoH̄y = δ̄ Sh

(
1
ko

d

dy
Ψ̃e

)
+

√
εre Se Ψ̃e (23)

The corresponding transformation of the fields are performed by the following equalities:

Ey = Th Ēy ; Ez = Th Ēz ; Hx = Th H̄x

Ex = Te Ēx ; Hy = Te H̄y ; Hz = Te H̄z (24)

The set of equations (15)-(21) have to be used for both interfaces A and B and when substituting 1
ko

d
dy Ψ̃

by means of (16), one can get:[
ĒxA

ĒxB

]
= −ε̄−1

e QeSe

[
Ψ̃eA

Ψ̃eA

]
= −

(
δ̄ ε̄−1

h δ̄ t − Ie
)
Se

[
Ψ̃eA

Ψ̃eA

]
(25)

ηo

[
H̄xA

H̄xB

]
= −QhSh

[
Ψ̃hA

Ψ̃hA

]
= −

(
λ̄h − ε̄ h

)
Sh

[
Ψ̃hA

Ψ̃hA

]
(26)

[
jĒzA

jĒzB

]
= −Shky

2
h

[
−γh αh

−αh γh

] [
Ψ̃hA

Ψ̃hA

]
− ε̄−1

h δ̃ tSe

[
Ψ̃eA

Ψ̃eA

]
(27)

ηo

[
jH̄zA

jH̄zB

]
= −Seky

2
e

[
c−γe αe

−αe γe

] [
Ψ̃eA

Ψ̃eA

]
+ δ̃ Sh

[
Ψ̃hA

Ψ̃hA

]
(28)

Whereas the field components in the y-direction are given by:[
ĒyA

ĒyB

]
= − ε̄−1

h δ̄ tSeky
c
e2

[
c−γe αe

−αe γe

] [
Ψ̃eA

Ψ̃eA

]
+

√
εre Sh

[
Ψ̃hA

Ψ̃hA

]
(29)

ηo

[
H̄yA

H̄yB

]
= − δ̄ Shky

c
h2

[
c−γh αh

−αh γh

][
Ψ̃hA

Ψ̃hA

]
+

√
εre Se

[
Ψ̃eA

Ψ̃eA

]
(30)

After discarding the potentials Ψ̃e and Ψ̃h by means of (25) and (26) respectively, one can finally get a
relation between tangential components at interfaces A and B as[

jĒzA

jĒzB

]
= −ηo Shky

c
h2

[
c−γh αh

−αh γh

]
S−1

h Qc−1
h

[
H̄xA

H̄xB

]
c+ ε̄−1

h δ̃ tQc−1
e ε̄e

[
ĒxA

ĒxB

]
(31)

ηo

[
jH̄zA

jH̄zB

]
= −Seky

c
e2

[
c−γe αe

−αe γe

]
S−1

e Qc−1
e ε̄e

[
ĒxA

ĒxB

]
+ ηo δ̃ Q

c−1
h

[
H̄xA

H̄xB

]
(32)

The field components in y-direction are given by[
ĒyA

ĒyB

]
= − ε̄−1

h δ̄ tSeky
c
e2

[
c−γe αe

−αe γe

]
S−1

e Qc−1
e ε̄e

[
ĒxA

ĒxB

]
+ ηo

√
εre Q

c−1
h

[
H̄xA

H̄xB

]
(33)

ηo

[
H̄yA

H̄yB

]
= −ηoδ̄ Shky

c
h2

[
c−γh αh

−αh γh

]
S−1

h Qc−1
h

[
H̄xA

H̄xB

]
c− √

εre Q
c−1
e ε̄e

[
ĒxA

ĒxB

]
(34)
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Using eq. (12), the two systems (31) and (32) are converted to the forms below

ηo

[
H̄xA

H̄xB

]
= Bhλ̃h

[
γh αh

αh γh

]
B−1

h

[
−jĒzA

jĒzB

]
+ Bh

[
γh αh

αh γh

]
λ̃hB

−1
h ε̄−1

h δ̃tQc−1
e ε̄e

[
ĒxA

−ĒxB

]
(35)

ηo

[
−jH̄xA

−jH̄xB

]
= Shλ̃h

[
γh αh

αh γh

]
S−1

h

[
−jĒzA

jĒzB

]
−(

Seky
c
e2

[
γe αe

αe γe

]
λ̃eS

−1
e Qc−1

e ε̄e − δ̃ Sh

[
γh αh

αh γh

]
S−1

h ε̄−1
h δ̃ tQc−1

e ε̄e

) [
ĒxA

−ĒxB

]
(36)

Using S−1Q−1 = λ−1S−1 derived from (12), one finally obtains for the y-field components as

[
ĒyA

ĒyB

]
= ε̄−1

h δ̄ tSeky
c
e2

[
γe αe

αe γe

]
λ̃−1

e S−1
e ε̄e

[
ĒxA

−ĒxB

]
c− ηo

√
εre Q

c−1
h

[
H̄xA

H̄xB

]
(37)

ηo

[
H̄yA

H̄yB

]
= ηoδ̄ Shky

c
h2

[
γh αh

αh γh

]
λ̃−1

h S−1
h

[
H̄xA

−H̄xB

]
c− √

εre Q
c−1
e ε̄e

[
ĒxA

ĒxB

]
(38)

(35) and (36) can be collated using the definition of the field vector as

HA,B = ηo

[
−jHzA,B

HxA,B

]
; EA,B =

[
ExA,B

−jEzA,B

]
and ȳ1 =

[
γ̃Hρe δ̃ γ̃h

γ̃h ρ γ̃E

]
; ȳ2 =

[
α̃Hρe δ̃ α̃h

α̃h ρ α̃E

]
(39)

in the form [
HA

HB

]
=

[
y1 y2

y2 y1

] [
EA

−EB

]
(40a)

Where the following abbreviations must hold:

γ̃h = ShγhS
−1
h ;

α̃h = ShαhS
−1
h

γ̃E = Shλ̃hγhS
−1
h ; α̃E = Shλ̃hαhS

−1
h

γ̃e = Seky
c
e2γeS

−1
e ; α̃e = Seky

c
e2αeS

−1
e

ρe = Q−1
e ε̄e =

(
δ̄ ε̄−1

h δ̄tc−Ie
)−1

; ρh = Q−1
h ε̄−1

h = λ̄hε̄
−1
h − Ih

ρe = ρe δ̃
tρe (40b)

It worth noting that y1 , y2 are not diagonal matrices.
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2.3. Matching Equations

The wave equations are solved separately in each region of the considered structure, using appropri-
ate potential functions or directly utilizing the electromagnetic field components, according to homoge-
neous/inhomogeneous regions as well as isotropic/anisotropic dielectric substrates. It is worth also to note
that for all chosen related potential functions, the electromagnetic field components should coincide with
each other; This means that each electric field component, say Ex, has to be aligned with the same electric
field component of its neighborhood regions. Hence a special care needs to be taken during derivation if
the boundary conditions change from one region to another. The detailed derivation of the matching field
expressions is given in appendix A.

Using the results obtained in appendix A, one can see that in order to represent the tangential
electromagnetic field in spatial domain, (A5)–(A9) have to be expressed back into the original domain.
The inverse transformations must be performed according to the field subvectors of interest represented by
(A10)–(A13).

Collating the subvectors of the field components of the same kind and the same interface i according
to

Ei =
[

Exi

−jEzi

]
; Hi = ηco

[
−jHzi

Hxi

]
(41)

The tangential electromagnetic field components of the layers I and III in the original domain, after
performing the inverse transformation, are given by

HI
A = yI

1E
I
A (42)

and

HV
D = −yV

1 E
V
D (43)

However for layers II and IV, the subvector fields relation-ship that are necessary for field matching are
given in the spatial domain by [

HI
A

HIII
B

]
=

[
M II

11 M II
12

M II
21 M II

22

] [
EI

A

−EIII
B

]
(44)

for layer II, and for layer IV they are given by:[
HIII

C

HV
D

]
=

[
M IV

11 M IV
12

M IV
21 M IV

22

][
EIII

C

−EV
D

]
(45)

In equations (44) and (48) M II,IV
ij { i, j = 1, 2} are the reduced matrices obtained by inverse transformation,

which are of appropriate size following the corresponding dimensions of the tangential field components of
the field vectors E and H at each metallization interface.

From (41)–(48) the following matching field equations might be elaborated

yI
1E

I
A =M II

11E
I
A −M II

12E
III
B (46a)

c−yV
1 E

V
D =M IV

21 E
III
C −M IV

22 E
V
D (46b)
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yIII
1 EIII

B − yIII
2 EIII

C =M II
21E

I
A −M II

22E
III
B (46c)

yIII
2 EIII

B − yIII
1 EIII

C =M IV
11 E

III
C −M IV

12 E
V
D (46d)

Form (??), the field Ec can be expressed in terms of EIII
B and EI

A as

EIII
C = −MCAE

I
A +MCBE

III
B (47)

where

MCAc=
(
yIII
2

)−1
M II

21 MCB =
(
yIII
2

)−1 (
yIII
1 +M II

22

)
It is important to note that the inversion of yIII

2 can be performed analytically.

Substituting EIII
C given by (47) into (46a)–(46c), the following eigenvalue system (εeff as eigenvalue)

is achieved. Thus
 M II

11 c−yI
1 M II

12 0
M IV

21 MCA M IV
21 MCB M IV

22 c−yV
1(

yIII
1 +M IV

11

)
MCA

(
yIII
1 +M IV

11

)
MCB − yIII

2 M IV
12





 EI

A

−EIII
B

EV
D


 = 0 (48)

or in a simpler form as

[Mred(εeff )]


 EI

A

−EIII
B

EV
D


 = 0 (49)

This system (49) possesses a non trivial solution if its determinant vanishes

det {[Mred(εeff )]} = 0 (50)

3. Results and Discussion

To demonstrate the computational efficiency of the technique used, a performance analysis has been done
for a unilateral finline structure as it is the targeted structure. The results are embodied in Appendix B
below.

The influence of substrate mounting groove depth wg on the normalized propagation constant and
characteristic impedance is demonstrated for both unilateral and bilateral finline structures centered in the
waveguide housing. Figure 4 shows the normalized propagation constant εeff of the dominant and First

higher order odd mode for the groove depths of wg/d = 0 and wg/d �= 0 (Figure 4-a and Figure 4-b) with

a metallization thickness of t/d = 0.045. The trend of our results show consistency with those published in

[11] employing the conservation of complex power technique.

In these figures, it is observed that when the mounting groove depth is taken into account, the
propagation constant increases while the cut-off frequency is decreases with respect. These changes are
mainly due to the presence of a part of dielectric slab within the mounting groove depth wg. It can be
clearly noticed that, when the first higher mode starts to propagate, the dominant mode is considerably
affected. Moreover, the cut-off frequency of the first higher order mode, which limits the most interesting
monomode range in practical situations, is largely reduced, unlike the one of the dominant mode indicated
in [11]. Note also the reduction of the bandwidth that results from consideration of the mounting grooves.
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Figure 4. Hybrid-mode and higher order mode versus normalized frequency in unilateral finline structure with a/d

= 7.5, b/d = 15, s/d = 2.72, t/d = 0.045, (a): wg/d = 1.82; (b): wg/d = 2.27.

The effect of mounting groove depth wg on the characteristic impedance Zc for the unilateral finline
is illustrated in Figure 5. As it has been pointed out earlier, the trend of the computed results are consistent
with those published in [11] even though these last ones are plotted as a function of frequency. It can be
observed from Figure 5 that the deviations of the characteristic impedance from the ideal case where wg =
0 become more significant as the first higher order mode starts propagating.
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Figure 5. Characteristic impedance versus normalized frequency in unilateral finline structure with a/d = 7.5,b/d

= 15, s/d = 2.72, t/d = 0.045; for different grooves’ depths: wg/d = 0; wg/d = 1.82; wg/d = 2.27.

Figures 6 a), b) and c) show the effect of the groove depth wg on the propagation constant εeff versus

normalized frequency d/λo for a bilateral finline structure with fixed finite metallization thickness t = 0.04.

In this case the different grooves’ depths have values wg/d = 1.6 (Figure 6-a), wg/d = 4.8 (Figure
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6-b) and wg/d = 8 (Figure 6-c). Note that both the hybrid mode and the first higher mode are not seriously
affected when the mounting grooves are taken into account.
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Figure 6. Hybrid-mode and higher modes dispersion characteristics versus normalized frequency of bilateral finline

structure for various groove depths with: a/d = 56.9, b/d = 28.45, s/d = 2.72, t/d = 0.04, εr = 3; and different

groove depths: (a) - wg/d = 1.6; (b), - wg/d = 4.8; (c) - wg/d = 8.

Also shown in Figure 7, is the characteristic impedance versus normalized frequency d/λo for different
values of groove depths. Note the slight change of the characteristic impedance when the groove depths are
considered.
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For practical applications, when the unilateral finline structure is used along with active components,
one or both fins are insulated by a gasket which allows a dc voltage to be developed across them.

The dispersion curves of the propagation constant for the so called “isolated finline” are presented in
Figure 8. It This figure shows the effect of various gasket heights gh/d on frequency dependent dominant

mode of isolated unilateral finline structure for different mounting groove depths wg/d and fixed metallization

thickness t/d (assuming εr = 1 for the gasket insulation dielectric layer) e. It is also observed that, dispersion
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Figure 8. Effect of gasket insulator on the dispersion dielectric constant εeff for fixed metallization thickness and

various goove depths of unilateral finline structure with a/d = 6.82, b/d = 14.1, s/d = 1.82 t/d = 0.023, εr =

3.75,(a): wg/d = 2.72, - (b): wg/d = 3.64.
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characteristics εeff versus normalized frequency d/λo is greatly affected when the insulation gasket is
used. This effect becomes more pronounced as the insulation gasket height increases. Moreover, the
effective dielectric constant has no cut-off frequency when insulation gasket is used since the dominant
mode propagating at low frequencies is Quasi-TEM.

However, the dispersion characteristics of the effective dielectric constant εeff versus normalized

frequency d/λo is greatly affected when dielectric gasket is used.

Figure 9 illustrates the effect of using an insulating gasket in a finline structure on the characteristic
impedance Zc . The impedance follows the same behavior as of the effective dielectric constant which is
characterized by low values at low frequencies because the dominant propagating mode is a quasi-TEM.
For higher frequencies, however, the impedance becomes higher and closer to that of an ideal structure.
This can be explained by the fact that beyond a certain range of frequencies, the strip conductor becomes
short-circuited to the metallic housing and, hence, behaves as an ideal finline structure.
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Figure 9. Effect of gasket insulator on the characteristic impedance Zc with fixed metallization thickness and various

groove depths of unilateral finline structure with a/d = 6.82, b/d = 14.1, s/d = 1.82, t/d = 0.023, εr = 3.75, - (a):

wg/d = 2.72, - (b): wg/d = 3.64.

4. Conclusion

Mathematical derivations and numerical computations based on the method of Lines presented in this paper
provide a further confirmation of the validity of the technique used and show its simplicity for treating
different types of planar structures. The characterization of finline structures with complex configurations
corresponding to real situations are of particular interest and their analysis can easily be extended to
characterize other E-plane transmission structures of similar architectures.
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The unilateral and bilateral finline structures including most of their practical parameters, such
as metallization thickness and grooves’ depths, have been also investigated. The effect of these realistic
parameters have been discussed and the results show that, at higher frequencies, the grooves supporting
the substrate cannot be neglected and, in addition, their influence is more significant than the effect of
finite metallization thickness. Other unilateral finline structure, known as the “isolated finline” with more
complex configuration required in practical applications with active components, was also analyzed. This
real structure supports TEM mode and does not have a cut-off frequency as the ideal finline structure. The
derived results confirm some of the practical outcomes predicted in the literature.

Appendix A: Derivation of Field matching equations

Note that for a region having a certain thickness, a relationship between the transformed electromag-
netic field components, that are necessary for the matching on the interfaces, can be established. That is
for a region which has a top and bottom interfaces denoted respectively by (+) and (−), this relation can
be written in a shorter way as

[
H̄−
H̄+

]
=

[
yR
1 yR

2

yR
2 yR

1

] [
Ē−
Ē+

]
(A1)

Where yR
k {k = 1, 2} are summarized hereafter for each region properties. For an isotropic homogeneous

region, it is given by

yR
1 =

[
−εdγh γhδ̃

δ̃tγh γE

]
R

; yR
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[
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(A2− a)

with

δ̃ =
√
εreδ ;

{
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}
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{
αe

γe

}
(A2− b)

On the other hand, for the uniaxial anisotropic substrate with homogeneous region, this relation becomes

y1 =
[

−γ̃H δ̃ γ̄e + γ̃hδ̃

γ̄eδ̃
t + δ̃tγ̃h γ̃E

]
; y2 =

[
−α̃H δ̃ ᾱe + ᾱhδ̃

ᾱeδ̃
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]
(A3− a)

with

ᾱe = ε⊥(λe + εreI)−1αe; α̃E = δ
t
ᾱhδ − εreᾱe
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For an isotropic inhomogeneous layer, it is given by

ȳ1 =
[
γ̃Hρe δ̃ γ̃h

γ̃h ρ γ̃E

]
; ȳ2 =

[
α̃Hρe δ̃ α̃h

α̃h ρ α̃E

]
(A4)
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Generally, the matricesλ , ky , α , γ , δ and T are inherent to each region and depend upon the number of
discretization lines in each region and the associated boundaries.

The relationship between the transformed tangential field components at the interfaces A is given by

[
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H
I

zA

]
= −

[
yI
11 yI

12

yI
21 yI

22

] [
E

I
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−jEI
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]
(A5− a)

or in a shorter form as

H
I

A = −yI
1E

I

A (A5− b)

and for the region V at the interface D, the established relation can be written as
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Or can be expressed in a more compacted form as

H
V
D = yV

1 E
V
D (A6− b)

For the inhomogeneous region IV with two interfaces C and D, the connection of the tangential electromag-
netic field components at these interfaces are related with the following reduced expression:
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Note also that the regions II and III have also two interfaces each, which are B-C and A-B.

The relationship of the tangential field components for these two regions at their corresponding
interfaces are given by
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The field matching at interfaces A, B, C and D have to be done in spatial domain.

At the interfaces A and D, one can have
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Where M1 and M2 are subscripts used in the field components to describe the metallization component
parts lying along the groove depth. However for the interfaces B and C, the component of interest are given
by the following expression
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In the last two equations (A12) and (A13) the superscript in the current J indicates the 1st and 2nd

conductor at the metallization interface.

Appendix B: Performance of the computational approach

Among the well known advantages of the MoL, are its reduced discretization error, relatively simple to
formulate and has got an optimal edge positioning scheme which contribute to reduction in computing time.
In fact, discretization line positioning is very important for convergence of the solution, as it is the main
parameter in defining the rate of convergence. This is unlike other methods, such as the Mode Matching
Technique (MMT), where the solution may converge towards a wrong value. This happens for the MMT if
the edge condition of the metallic strips is violated.

On the contrary, the convergence using the Method of Lines is always assured. However, at the vicinity
of the strip edges, where field singularities occur, large discretization errors may arise. To minimize these
errors, an optimal edge positioning criteria at the metallic edges needs to be examined [18].

The draw back of the method of lines appears in very unfamiliar cases where there is extreme
difference in the width of metallic strip conductors or gaps between strips. In this case, the total number of
discretization needs to be considerably increased to maintain good accuracy. This affects mainly the memory
space and computing time requirements. However, the number of required lines can be reduced using a non
uniform discretization scheme as has been done in this work.

In the present work, the performance of the described method has been verified for unilateral finline
structure with finite metallization thickness. The numerical results for the dielectric constant εeff and the
characteristic impedance Zc are shown in Figure 10 These curves are represented as function of normalized
discretization width (a/d)/(n+1) = h/d (n is the total number of discretization lines), for d/λo = 0.0102

and d/λo = 0.0296. It appears from these figures that, if the discretization width decreases towards zero,
the calculated εeff and Zc always converge. As a result, an extrapolation to the exact value is possible.
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