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Abstract

In this paper, we present a simple and effective signature verification method that depends only on the

raw binary pixel intensities and avoids using complex sets of features. The method looks at the signature

verification problem as a graph matching problem.

The method is tested using genuine and forgery signatures produced by five subjects. An equal error

rate of 26.7% and 5.6% was achieved for skilled and random forgeries, respectively. A positive property

of our algorithm is that the false acceptance rate of random forgeries vanishes at the point of equal false

rejection and skilled forgery false acceptance rates. Keeping the normalization size at 32 × 64 pixels

makes the verification time in the two seconds range.
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1. Introduction

The need to ensure that only the right people have authorization to high-security accesses has led to the
development of systems for automatic personal verification. Signatures, fingerprints, palm prints, voice, and
handwriting have all been used to verify the declared identity of an individual. Among all, signature has a
fundamental advantage in that it is the customary way of identifying an individual in daily operations such
as automated banking transaction, electronic fund transfers, document analysis, and access control.

A signature verification system must be able to detect forgeries and at the same time reduce rejection
of genuine signatures. The signature verification problem can be classified into categories: offline and online.
Offline signature verification [1-49] does not use dynamic information that is used extensively in online

signature verification systems [20, 22, 50-54]. In this paper, we investigate the problem of offline signature
verification.

The problem of offline signature verification has been faced by taking into account three different types
of forgeries: random forgeries, produced without knowing either the name of the signer nor the shape of his
signature; simple forgeries, produced knowing the name of the signer but without having an example of his
signature; and skilled forgeries, produced by people who, looking at an original instance of the signature,
attempt to imitate it as closely as possible. It is obvious that the problem of signature verification becomes
more and more difficult when passing from random to simple and skilled forgeries, the latter being so difficult
a task that even human beings make errors in several cases. In fact, exercises in imitating a signature often
allow us to produce forgeries so similar to the originals that discrimination is practically impossible; in many
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cases, the distinction is complicated even more by the large variability introduced by some signers when
writing their own signatures.

Many research works on signature verification have been reported. Researchers have applied many
technologies, such as neural networks and parallel processing [1-8], to the problem of signature verification
and they are continually introducing new ideas, concepts, and algorithms. Other approaches have been
proposed and evaluated in the context of random forgeries, like 2D transforms [9], histograms of directional

data [1, 6, 10] or curvature [11], horizontal and vertical projections of the writing trace of the signature

[12], structural approaches [13], local measurements made on the writing trace of the signature [14] and the

position of feature points located on the skeleton of the signature [15]. Following Plamondon et al [16], a
handwritten signature is the result of a rapid movement. Hence, the shape of the signature remains relatively
the same over time when the signature is written down on a pre-established frame (context) like a bank check.
This physical constraint contributes to the relative time-invariance of the signatures, which supports using
only static shape information to verify signatures. Some other solutions in the case of random forgeries
are mainly based on the use of global shape descriptors as the shadow code, investigated by Sabourin et al
[17]. Other approaches using global shape descriptors such as shape envelope projections on the coordinate
axes, geometric moments, or even more general global features such as area, height and width, have been
widely investigated [3, 4, 15, 18, 19]. In [20], offline models of signature verification are compared based on

HMMs. The approach of [21] employs a three expert system that evaluates the signature three different ways

and judges it as genuine, forgery, or rejection by a majority vote of the three experts. In [22], a signature

verification system is presented that works with both static and dynamic features. In [23], the authors infer
that shape similarity and causality of signature’s generation are more important than matching the dynamics
of signing. This result indicates that this dynamics is not stable enough to be used for signature verification
since the subject is trying to reproduce a shape rather than a temporal pattern. This is why we use, in this
paper, only static images to verify signatures. A new formalism for signature representation based on visual
perception is proposed in [24]. Several learning strategies for signature verification were evaluated using a
high-dimensional feature space that captures both local geometric information as well as stroke information
in [25]. In [26], a serial three stage multi-expert system for facing the problem of signature verification is

proposed. Many other important works in offline signature verification can be found in [27-49].

It is worth pointing out that most of the systems proposed up to now, while performing reasonably
well on a single category of forgeries (random, simple or skilled), decrease in performance when working with
all the categories of forgeries simultaneously, and generally this decrement is bigger than one would expect.
The main reason for this behavior lies in the difficulty of defining a feature set that is adequate to work with
all the classes of forgery simultaneously. Also, in current verification systems, it is difficult to find clear and
strong justifications of why a specific set of features is used instead of others. Even if a justification is found,
extracting such features is difficult and not robust.

In this paper, we suggest a very simple signature verification method that depends only on the raw
binary pixel intensities. The method looks at the signature verification problem as a graph matching problem.
The rest of the paper is organized as follows. Section 2 is a survey of related work that is based on graph
matching. Signature preprocessing operations are described in Section 3. Signature verification is formulated
as a graph matching problem in Section 4. We report results in Section 5. Finally, the paper is concluded
in Section 6.
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2. Graph Matching-Based Related Work

A large number of applications of graph matching have been described in the literature. The following is a
survey of some related works. There has been many works in face recognition field. For example, in [59],
the authors present a face recognition method using graph matching with a multi-layer grammatical face
model. The method increases the robustness of recognition under varying lighting conditions. Furthermore,
with high-level semantic understanding of the face, the authors are able to perform an intelligent recognition
process driven by the status of the face, i.e. changes in expressions and poses. In [60], a system is proposed
to handle the illumination problem of face recognition systems by using ”Retinex and color constancy”
algorithm. The Retinex and color constancy approach has been plugged with elastic bunch graph matching.
The work in [61] presents a formalization of model-based facial feature recognition as an inexact graph
matching problem, one graph representing a model of a face and the other an image where recognition
has to be performed. A method for enhancing the performance of elastic graph matching in frontal face
authentication is proposed in [62].

Graph matching is used in other image similarity problems. In [63], the authors present a part-based
image similarity measure derived from stochastic matching of attributed relational graphs that represent
the compositional parts and part relations of image scenes. The advantage of this model is its ability to
accommodate spatial attributed relations and support supervised and unsupervised learning from training
data. In [64], the authors present a method for finding similarities in a pair of three-dimensional objects.
The method involves obtaining boundary cubes approximations to the two objects. Having obtained the
approximations, they apply exact and inexact graph-matching algorithms to quantify the similarity between
two objects. In [65], the problem of computing the similarity between two images is transformed to that of
approximating the distance between two extended region adjacency graphs, which are extracted from the
images. Invariance to translation, rotation, and scaling could be achieved using this method.

In [66], the authors propose an approach to solve problems such as image registration, pattern detection
and localization, and common pattern discovery under a unified framework based on graph matching.
Experimental results show that their approach can handle rotation, scaling and translation, as well as
distortion and occlusion. A method is proposed in [67] to retrieve images by content. The method is
based on matching of strong graphs defined by relational signatures computed between clusters of a fuzzy
partition. Such a representation combines color and spatial information between the regions and has nice
geometric properties with respect to scale factor, rotation and translation. In [68], the authors describe a
tracking algorithm to address the interactions among objects, and to track them individually and confidently
via a static camera. It is achieved by constructing an invariant bipartite graph to model the dynamics
of the tracking process, of which the nodes are classified into objects and profiles. The best match of
the graph corresponds to an optimal assignment for resolving the identities of the detected objects. In
[69], a new method is presented for segmentation and recognition of image objects based on structural
pattern recognition. The input image is decomposed into regions through a quadtree algorithm. The
decomposed image is represented by an attributed relational graph (ARG) named input graph. The objects
to be recognized are also stored in an ARG named model graph. Object segmentation and recognition are
accomplished by matching the input graph to the model graph.

Some other diverse applications of graph matching follow. In [70], a subcircuit recognition method
is developed using a nonlinear graph matching strategy. Subcircuit recognition is a problem of identifying
all instances of a small subcircuit in a larger circuit. In [71], the authors propose a generic graph matching
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based framework that resolves the phase-ordering and fixed-ordering problems associated with scheduling on
a clustered VLIW processor by simultaneously considering various scheduling alternatives of instructions. In
[72], the authors present a new agent teamwork coordination strategy, called Rolegraphs, which represents
and recognizes team intentions without requiring full knowledge of plans, or complete observations. The
strategy relies on the role relationships formed within hierarchical teamwork structures. A graph matching
approach is used to interpret these hierarchical structures, and to recognize team intentions at runtime. The
work in [73] presents a graph matching model for the software architecture recovery. Modeling the recovery
process as graph matching is an attempt to identify a sub-optimal transformation from a pattern graph,
representing the high-level view of the system, onto a subgraph of the software system graph. In [74], the

performance of an Attributed Relational Graph (ARG) matching algorithm, tailored for dealing with large
graphs, is evaluated in the context of a real application: the detection of component parts in CAD images of
mechanical drawings. The matching problem is a graph-subgraph isomorphism and the algorithm exploits
semantic information about nodes while does not require information about the topology of the graphs to
be matched.

3. Signarure Preprocessing

Before a signature can be compared to any other signature, it undergoes some preprocessing operations. A
signature is captured as a binary image, S . Then, pepper noise is removed, if there is any, to allow more
accurate calculation of center of area. The angle, θ , of least second moment of S is found. The angle is
measured counterclockwise from the y-axis. The signature is rotated about the center of area of S θ degrees
clockwise. This rotation eliminates skew angle of a signature which is necessary for signatures of the same
subject. After rotation, the image is smoothed which is a necessary step before thinning. To reduce data, the
image is thinned using Zhang-Suen algorithm [57, 58]. The thinned image undergoes a normalization step
that preserves the aspect ratio of the signature. The set of pixels that constitute the final thinned-normalized
image of S , denoted as the set of vertices X , represents the signature S . These steps are summarized as
follows, where after every image processing operation S is replaced by the resultant image.

1. Remove pepper noise from S .

2. Find the angle of least second moment, θ , of S .

3. Rotate S θ degrees clockwise.

4. Smooth S .

5. Thin S .

6. Normalize S . The set of pixels that constitute the final normalized image, S ; denoted as the set of
vertices X , represents the signature S .

We illustrate signature preprocessing by an example. Figure 1(a) shows a binary image of a genuine
signature. After removing pepper noise, finding the angle of least second moment, rotating the image,
smoothing, and thinning, the image of Figure 1(b) is obtained. Normalizing the thinned image produces

that of Figure 1(c). The set of pixels, X , of Figure 1(c) represents the genuine signature of Figure 1(a).
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(a)

(b)

(c)

Figure 1. Signature preprocessing: (a) original image, (b) image after pepper noise removal, skew elimination,

smoothing, and thinning, and (c) final 64 × 128 normalized image.

4. Comarison Of Two Signatures As A Graph Matching Problem

We introduce the following definitions from graph theory [55].

Definition 1. Let V be a finite nonempty set of vertices, and let E be a set of unordered pairs of elements
taken from V . The pair (V , E) is then called an undirected graph on V , where V is the set of vertices and

E is its set of edges. We write G = (V , E) to denote such a graph.

Definition 2. A graph G = (V , E) is called bipartite if V = X∪ Y with X ∩ Y = Ø, and every edge of

G is of the form {x , y} with x ∈ X and y ∈ Y . If every vertex in X is joined with every vertex in Y , we

have a complete bipartite graph. In this case, if |X| = m, and |Y | = n , the graph is denoted Km,n .

Definition 3. Let G = (V , E) be a bipartite graph as defined above. A matching in G is a subset of E

such that no two edges share a common vertex in X or Y . A complete matching of X into Y is a matching
in G such that every x ∈ X is the end point of an edge.

For a bipartite graph G = (V , E) with V partitioned as X ∪ Y , a complete matching of X into Y

requires |X| ≤ |Y | . If |X| is large, then the construction of such a matching cannot be accomplished just by

observation or trial and error. The following theorem, [55], provides a necessary and sufficient condition for
the existence of such a matching.

Theorem 1. Let G = (V , E) be a bipartite graph with V partitioned as X ∪ Y . A complete matching

of X into Y exists if and only if for every subset A of X , |A| ≤ |R(A)| , where R(A) is the subset of Y

consisting of vertices each of which is adjacent to at least one vertex in A .

Let S1 and S2 be two offline signature images to be compared. Let X and Y be the sets of vertices
(pixels) that represent S1 and S2 , respectively. Cleary, X and Y are disjoint sets. We construct a complete

bipartite graph G = (V , E) = Km,n , from X and Y where V = X ∪ Y , |X| = m , and |Y | = n . Since G

is complete and assuming that the signatures are ordered such that |X| ≤ |Y | , then according to Theorem
1, a complete matching of X into Y exists. Usually, there are too many such complete matchings. Our

93



Turk J Elec Engin, VOL.15, NO.1, 2007

goal is to find the minimum cost complete matching of X into Y . This is some form of the well known
Assignment Problem (AP) from graph theory. We use the algorithm of [56], referred to as the Hungarian
Method, to solve this assignment problem; i.e., find how much the signatures S1 and S2 match.

The key point in using the Hungarian method to solve our AP problem is to find the cost matrix C

which is m × n matrix whose rows correspond to the vertices of X and whose columns correspond to the
vertices of Y . Since the vertices X and Y are originally pixels extracted from signature images S1 and S2 ,
respectively, every vertex x ∈ X or y ∈ Y has its x and y coordinates (row and column numbers in the

raster image). These coordinates are used to find the distance between x and y after aligning the centers
of area of the sets X and Y . Then, an entry cxy of C , x ∈ X , y ∈ Y , equals the Euclidean distance

between x and y . This is the cost of matching point x from signature S1 to point y from signature S2 .
After calculating all entries of C , the formulated assignment problem is solved. The cost, cost min , of the
resultant solution equals the sum of all entries, cxy , that correspond to the minimum cost solution. This

cost is normalized by dividing it by |X| yielding the normalized minimum cost per pixel. Then, cost min is
further divided by a factor, f , which takes into account the columns of C , which could not be matched.
The factor f , measures the percentage of vertices sharing in any complete matching X into Y .

To verify that a test signature, S , belongs to a specific subject, it is compared against a predetermined
number, p , of prototype genuine signatures of the same subject as follows:

1. The p prototype signatures are preprocessed as described in Section 3 to produce the sets of vertices
Y1 , Y2 , . . . , Yp .

2. S is preprocessed as described in Section 3 to produce the set of vertices X .

3. Let d = ∞ , where d will measure the minimum distance between S and the prototype signatures of
the considered subject.

For every set of vertices Yi , i = 1, 2, . . . , p , do
{

Let f = min(|X| , |Yi|)/ max(|X| , |Yi|).
If f ≥ α , then
{

Find the cost matrix C between X and Yi as described earlier.
Rotate the matrix C so that there are at least as many rows as columns.
Let r = number of rows of C .
Compute the minimum cost matching, cost min , of rows into columns considering
the cost matrix C .
Let cost min = cost min /( f × r).
If cost min < d , then let d = cost min .

}
}

4. If d is less than or equal to some calculated threshold, D , then signature S is accepted, otherwise, it
is rejected.

In step 3, above, sometimes, rotating C is required by the Hungarian matching algorithm, since X

and Yi will correspond to rows and columns of the cost matrix, respectively, and the algorithm finds a
complete matching of rows into columns, which requires that the number of rows be less than or equal to
the number of columns. Again, the factor, f , measures the percentage of vertices sharing in any complete
matching of rows into columns. We continue to find a matching if f is not less than predetermined threshold,
α , since such signatures most probably don’t belong to the same subject. If f ≥ α , then a minimum cost
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matching is found. However, columns that could not be matched are punished by dividing the minimum
cost, cost min , by f . The cost is normalized by dividing by the number of rows, r . The distance threshold,
D , depends on the size of the normalization box, differs from subject to subject, and is calculated as follows:

D = B × Dmax (1)

where B is constant, and for a specific subject, Dmax is the maximum distance between any two of his p

prototype signatures, and is calculated as follows:

1. The p prototype signatures are preprocessed as described in Section 3 to produce the sets of vertices
Y1 , Y2 , . . . , Yp .

2. Let Dmax = 0.

3. For every set of vertices Yi , i = 1, 2, . . . , p - 1, do

For every set of vertices Yj , j = i + 1, i + 2, . . . , p , do
{

Let f = min(|Yi| , |Yj|)/ max(|Yi| , |Yj |).
If f ≥ α , then
{

Find the cost matrix C between Yi and Yj as described earlier.
Rotate the matrix C so that there are at least as many rows as columns.
Let r = number of rows of C .
Compute the minimum cost matching, cost min , of rows into columns considering
the cost matrix C .
Let cost min = cost min / (f × r).
If cost min > Dmax , then let Dmax = cost min .

}
}

5. Results

Datasets: A grid of 5 rows by 3 columns was prepared and printed on an A4 paper to collect signatures of
subjects. Each cell of the grid is 6.3 cm width and 4.5 cm height. This size is usually sufficient to handwrite
a signature freely. Subjects were asked to provide 15 of their genuine signatures on an A4 page with the
described grid. Subjects were also asked not to touch the borders of the grid cells to facilitate signature
segmentation. Although we explained to subjects that their signatures will be solely used in a scientific
research study and this was written clearly in Arabic on the top of the page, most of the subjects refused to
provide any signature. Only five subjects agreed and provided 15 genuine signatures each. Therefore, the
total number of collected genuine signatures is 15 × 5 = 75 signatures. Figure 2 shows one sample page
containing genuine signatures of subject No. 1.

The same grid was used to collect forgeries of signatures of the collected genuine signatures. Each of
the same five subjects was trained on signatures of the others. Then, he/she was asked to provide from 2
to 4 forgery signatures for each of the other genuine signatures. 15 forgeries were collected for each genuine
signature. So, the total number of forgery signatures is 15 × 5 = 75 signatures. Figure 3 shows one sample
page of 15 forgeries of the genuine signatures shown in Figure 2.
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Figure 2. Fifteen genuine signatures of subject No. 1.

Figure 3. Fifteen forgeries of signature of subject No. 1. These signatures were produced by the other four subjects.

After signature collection, they were scanned as binary images using an hp ScanJet 3400C scanner.
The resolution was set to 300 dpi. The algorithm was run on a Pentium III PC, 850 MHz with 384 MB
RAM. Three types of tests were conducted:
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1. Genuine test, where genuine signatures were verified by considering the first three genuine signatures
of every subject as prototype signatures, i.e., p = 3. The rest 12 signatures of every subject are tested
against his three prototype signatures. Therefore, the total number of tested signatures equals 12 ×
5 = 60. This test is used to compute the false rejection rate, FRR.

2. Random forgery test, where for every subject, all genuine signatures of all other subjects are considered
random forgeries of signature of the subject under consideration. This gives 5 × (5–1) × 15 = 300
signatures to be tested. A false acceptance rate, FAR random, is calculated specifically for this test.

3. Skilled forgery test, where for every subject, 15 skilled forgeries are tested yielding a total of 15 × 5
= 75 skilled test forgeries. Another false acceptance rate, FAR skilled, is computed for this test.

The algorithm was run many times using the following sizes of normalization boxes: 8 × 16, 16 × 32,
24 × 48, 32 × 64, 40 × 80, 48 × 96, 56 × 112, and 64 × 128. For every specific normalization box, the
first three signatures of every subject were preprocessed just once and used in all tests. The ratio, α , of the
number of rows to number of columns of cost matrix, C , was set to 0.90. The factor, B , used to calculate
Dmax was allowed to vary from 0 to 3 in increments of 0.05.

Figure 4(a-h) displays how the false rejection rate, FRR, false acceptance rate for random forgeries,
FAR random, and false acceptance rate for skilled forgeries, FAR skilled, change against B , for different
sizes of normalization box. As B gets larger, FRR gets smaller and the two FARs get larger. It is natural to
notice that the FAR random curve is lower than the FAR skilled curve, since in random forgeries the signer
has no previous knowledge and/or training on the signature he is forging. He just provides any signature
that can be easily detected as the curve shows. However, in skilled forgeries, the forger does not sign until
he has known the model of the signature to be forged, and he has been trained on that signature. Curves
of equal error rate, EER, defined as the rate at which FRR = FAR, against size of normalization box are
displayed in Figure 5. Notice that as the size increases, EER decreases until it reaches 26.7% and 5.6%
for skilled and random forgeries, respectively, at size 32 × 64 pixels, B = 1.1655. After this size, EER
fluctuates. Returning to Figure 4, we notice, except for part (a), that FAR random vanishes at the point of
equal false rejection and skilled forgery false acceptance rates, which is a positive property of our algorithm.

Samples of rejected genuine signatures and accepted skilled forgeries are shown in Figure 6, for subject
No. 1, 32 × 64 normalization box, B = 1.1655, at the point of equal false rejection rate and false acceptance
rate of skilled forgeries. For this subject, 3 out of 12 genuine signatures were rejected and only one forgery
out of 15 was accepted. All random forgeries were rejected for this subject.

In [24], two types of classifiers, a nearest neighbor and a threshold classifier, are used for offline

signature verification. These classifiers show a total error rate below 2% and 1%, respectively, in the context
of random forgeries. These rates are better that ours which is 5.6%. For skilled forgeries, the false acceptance
rate of our algorithm is near those of other researchers. However, the main advantage or our approach is its
simplicity compared to that of [24] and other approaches.

Figure 7 shows the average processing time required to verify one signature. It is noticed that the
time increases exponentially as the size of the normalization box increases, which is a well known behavior
of the Hungarian method for complete graph matching. Keeping the size at 32 × 64 pixels makes the time
in the two seconds range. Also, using more powerful computers should decrease processing time.
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Figure 4. False rejection and acceptance rates against B: with different sizes of normalization box: (a) 8 × 16, (b)

16 × 32, (c) 24 × 48, (d) 32 × 64, (e) 40 × 80, (f) 48 × 96, (g) 56 × 112 and (h) 64 × 128.
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Figure 6. Examples of false rejection and false accep-
tance for subject No. 1: (a), (b), and (c) rejected genuine
signatures, and (d) accepted forgery.

Figure 7. Average verification time versus size of nor-
malization box.

6. Conclusion

In this paper, we investigated the problem of offline signature verification. From the results, it is obvious that
the problem of signature verification becomes more difficult when passing from random to skilled forgeries,
the latter being so difficult a task that even human beings make errors in several cases.

We presented a simple and effective signature verification method that depends only on the raw binary
pixel intensities and avoids using complex sets of features that are usually used in the literature. Our method
looks at the signature verification problem as a graph matching problem, for which we used the Hungarian
method to solve.

The method was tested using genuine and forgery signatures produced by five subjects. Three types of
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tests were conducted: (1) genuine test, where genuine signatures were verified, (2) random forgery test, where
for every subject, all genuine signatures of all other subjects are considered random forgeries of signature
of the subject under consideration, and (3) skilled forgery test, where for every subject, skilled forgeries are

tested. An equal error rate of 26.7% and 5.6% for skilled and random forgeries, respectively, was achieved
at size 32 × 64 pixels. A positive property of our algorithm is that the false acceptance rate of random
forgeries vanishes at the point of equal false rejection and skilled forgery false acceptance rates.

Concerning processing time, It is noticed that it increases exponentially as the size of the normalization
box increases. Keeping the size at 32×64 pixels makes the time in the two seconds range. Also, using more
powerful computers should decrease processing time.
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14-16, Montréal, Canada, pp. 191-196, 1995.

[30] F. Nouboud, R. Plamondon, “Global Parameters and Curves for Off-Line Signature Verification,” Proc. Int’l

Workshop on Frontiers in Handwriting Recognition, Taiwan, pp. 145-155, 1994.

[31] J. Mathyer, “The Expert Examination of Signatures,” J. Criminal Law, Criminology, and Police Science, vol.

5, no. 3, May-June, pp. 122-133, 1961.

[32] R. Sabourin, R. Plamondon, G. Lorette, “Off-Line Identification with Handwritten Signature Images: Survey

and Perspectives,” Structured Document Image Analysis. New York: Springer-Verlag, pp. 219-234, 1992.

[33] R. Sabourin, G. Genest, “An Extended-Shadow-Code Based Approach for Off-Line Signature Verification: Part

2—Evaluation of Several Multi-Classifier Combination Strategies, ”Third IAPR Conf. Document Analysis and

Recognition, pp. 197-201, Montréal, Canada, Aug. 14-16, 1995.
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