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In engineering, the terminology of “swarms” has come to mean a set of agents whose behaviors are
intimately coupled and which perform some task. Examples include autonomous ground, air, or underwater
vehicles searching for an object. In biology, the terminology of swarms is reserved for certain species when
they are in certain behavioral modes (e.g., honey bees after hive fission occurs and the swarm of bees

is searching for, or flying to, a new home). It is sometimes useful to use biological swarms as examples of

behaviors that are achievable in multiagent systems technologies (e.g., via a “bio-inspired design” approach).
Moreover, multivehicle technologies have adjustable physical characteristics that can make them useful
hardware simulation testbeds to emulate animal groups and hence help understand the science of animal
group decision-making. These close connections between biology and engineering call for an integrated view
of swarms.

To develop a generic swarms perspective, first begin by defining agents (vehicles, animals, software

agents) to have sensory capabilities (e.g., position or velocity of other agents or environment characteristics),

processing ability (e.g., a brain or on-board computer), and the ability to take actions via actuators (e.g.,

move to a location at a velocity or pick up some object and fix it). Sensor and actuator limitations (e.g,

bandwidth) and errors (e.g., sensor noise), along with limited agent processing abilities (e.g., due to finite

memory and computational throughput) make any agent error-prone. Physical agent characteristics (e.g., of

a wheeled robot or flying vehicle) along with agent motion dynamics (e.g., a fast or slow agent) constrain how
the agent can move in its environment and the rates at which it can sense and act in spatially distributed
areas. To further develop a generic swarms perspective, note that there is some medium through which agents
influence each other and communicate. In biology this may be via chemical communication (e.g., in bacteria)

or signals (e.g., the waggle dance of the honey bee). In engineering it may be via an ad hoc wireless network.
Regardless, it is useful to think of the agents as nodes, and arcs between nodes as representing abilities
to sense or communicate with other agents. The existence of an arc may depend on the communication
or sensing range of agents, communication network and link imperfections (e.g., noise and random delays),

along with local agent abilities (e.g., an ability to only communicate with one other agent at a time) and

goals (e.g., a desire to communicate with only the agents that help it complete its task). A multiagent
system is a set of such communicating agents that work to solve a task.

There have been several multiagent system behaviors and task achievement goals that have been
studied. For instance, coordinated motion has received significant recent attention in cooperative robotics
(e.g., to make the agents stay in a tight group, achieve a spatial pattern, or track a moving object) and biology

(e.g., formation of fruiting bodies by bacteria, foraging behavior of ants, or cohesive flight of swarms of bees).

Such problems are closely related to a group reaching a consensus or agreement (since often preference can
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be likened to position). Coordinated motion is, however, only one multiagent system objective, and often
not the most important one. Three examples serve to illustrate this point. First, task allocation often arises
in multiagent system problems where the “tasks” arise via interactions with the environment and the tasks
must be allocated across the agents for efficient execution (e.g., via dynamic allocation of tasks to various

robots). In this context, methods from distributed scheduling, load balancing and assignment are integrated
into coordinated motion methods to achieve a multiobjective method that must balance tight group cohesion
with the pressing need to complete tasks (e.g., to search a large region). Second, there are problems where

agents must be distributed across regions to execute spatially distributed tasks (e.g., monitoring a large
region with a small number of sensor-limited robots, or in biology when animals distribute themselves across
spatially distributed food sources to maximize their feeding rates). Third, in some applications a group of
error-prone agents must work together to find and select, as fast as possible, the best task to perform. In
such group choice problems there is a complex interplay between the need to search for more/better tasks
and the need to come to agreement on which is the best of the discovered tasks. Generally, there is a
speed-accuracy trade-off where if a choice is made fast then it is error-prone, and if more time is allowed,
agents can profitably combine their erroneous task quality estimates and fully search the space to ensure
that a better task choice is made. In summary, in each of these three cases, significant attention must be
given to achieving tasks that are not quantifiable via standard inter-agent distance/velocity patterns as in
conventional studies of coordinated motion. Task achievement demands that agent motion characteristics
achieve the task and hence traditional inter-vechicle spacing and velocity objectives are not met, at least
part of the time.

Combining agent, sensing and communication characteristics results in a complex and multiscale
system with local spatio-temporal agent actions dynamically combining into an “emergent” global spatio-
temporal pattern of group behavior. For a given set of error-prone agents and task, there is a need to
predict what behavioral pattern will exist for the mulltiagent system to verify that the task will be achieved
(especially in safety-critical applications). Moreover, for a given desired objective or behavior for the

multiagent system, there is a need to know how to design local agent characteristics (or how evolution

adapted these) so that the desired objective reliably emerges. These form two key theoretical research
problems and progress on validation of correct behaviors of multiagent systems is progressing rapidly for
certain problems. For instance, methods from Lyapunov stability theory have been quite useful to establish
conditions on local agents so that appropriate coordinated motion and task allocation emerges. Statistical
and simulation-based methods have also met with some success in spite of the complexity of the systems.
On the other hand, there has been relatively little work on the establishment of an experimentally-validated
multiscale mathematical model of a biological swarm, one that can in some way also lead to analytical
tractability and the subsequent elucidation of principles of species-generic swarm behavior in nature (e.g.,
how mechanism actions at the local level dynamically combine in agent-to-agent and agent-to-environment
interactions for robust achievement of emergent behaviors in spite of error-prone agents). Indeed, considering
the range of technologies and species to consider the swarms research area is likely to be vibrant and growing
for some time to come. This special issue is welcomed as a step in advancing the field of swarms research in
several important ways.
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