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Abstract

In this paper, we consider using angle of arrival information (bearing) for localization in robot

networks. The essential property we require in this paper is that a node can infer heading information

from its neighbors. We address the uniqueness of network localization solutions by the theory of globally

rigid graphs. We show that while the parallel rigidity problem for formations with bearings is isomorphic

to the distance case, the global rigidity of the formation is simpler (in fact identical to the simpler rigidity

case) for a network with bearings, compared to formations with distances. We provide the conditions of

localization for networks in which the neighbor relationship is not necessarily symmetric.
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1. Introduction

Network localization is a basic service of many emerging computing/networking paradigms. It is typically

required for wireless sensors [1, 2] and robotic agents [3] for monitoring the environment or for surveillance,

or for routing packets using geometric-aware routing [4]. In pervasive computing [5], knowing the locations
of the computers and the printers in a building will allow a computer to send a printing job to the nearest
printer. The aim of localization is to assign geographic coordinates to each node in the sensor network. In
this paper, nodes are thought of as sensor nodes in sensor networks or robotic agents in robot formations. The
locations may be computed relatively with respect to one another, with unknown translation and rotation,
yielding a relative localization; or, the locations may be computed with respect to a global coordinate
system, producing an absolute localization. In wireless sensor networks, localization of sensors is a key
enabling technology, because the sensor nodes need to know their locations in order to detect and record
events so that their data is meaningful. Manual assignment of node coordinates is one possibility, but is
often impractical or impossible due to the number of nodes or method of deployment. Equipping each sensor
with a GPS receiver [6] is another solution, however it is often cost prohibitive in terms of both hardware
and power requirements. Furthermore, since GPS requires line-of-sight between the receiver and satellites,
it may not work well in buildings or in the presence of obstructions such as dense vegetation, buildings,
or mountains blocking the direct view to the GPS satellites. There is usually a sparse set of nodes, called
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anchor nodes, that have their world coordinates from either GPS or manual configuration.

There has been research in using mobile ad hoc networks for multi-robot systems. Such networks are
formed by robots establishing communication links whenever possible. Robots become nodes and can act
as routers in this type of network to pass information between robots which might not otherwise be able
to communicate, hence more information is provided to robots about the system. Sharing local information
with the rest of the system to improve performance in the deployment of robots as sensor networks, and
on facilitating multi-robot systems has been a motive behind the research that specifically investigates the
application of ad hoc networks to mobile robots. These multiple robot platforms are dynamic so that they
can split or merge with other networks over time.

Pure distance information is used extensively in studying sensor networks and formations of robotic
agents [7–11]. Rigidity of formations with distance information is well understood in 2-space and there
are partial results in 3-space. Bearings along with distances have been used for navigation, surveying, and
localization in single robot applications. The use of bearings in sonar and radar applications are decades old.
Although the bearing resolution of sonar systems is improving rapidly, computer vision technology tends to
have greater resolution than sonar in bearing angle. In multi-agent applications, bearings are used in robot
formations and in sensor networks [12]. There is a concept termed ‘parallel drawings’ [13] which can assist
analysis of the rigidity of formations where there is bearing data, and this paper draws on this tool, carrying
further preliminary results that were published in [14, 15].

For ad hoc sensor networks, localization has been addressed by many authors (see references in [7]

and [16]). Approaches vary in the sensor wavelength that is in use such as optical, radio frequency (RF),

ultrasound, or acoustic. Computation methods fall into three classes: centralized (only one node computes),

locally centralized (some nodes with unknown positions compute), fully distributed (each node with unknown

position computes). Approaches differ in the problem formulation (deterministic versus probabilistic),
propagation assumptions, and the assumed density of anchor nodes with known location.

Received signal strength (RSS) is available from the RF communications typically resident on a node;
however there are high variability of propagation losses in RSS. The RSS is usually quantized to a single
bit to indicate proximity. Ultrasonic and acoustic transducers have been used to measure time difference of
arrival (TDoA), exploiting the relatively slow propagation speeds, and to measure angle of arrival using an
array of microphones. Sub-meter accuracy is available from ultrasonic or acoustic measurements, however
these modalities require additional hardware and may compromise stealth.

The term bearing refers to an angle measurement with respect to another object. In our case, the
angle of arrival (AoA) capability provides for each node bearings to neighboring nodes with respect to a
nodes own axis. There are a couple of ways that sensors measure AoA. One is phase interferometry: the
angle is estimated by phase differences in the signal received by two or more individual sensors (microphones

for acoustic signals or antennas for RF signals). With directional antennas, AoA estimation uses the RSS

ratio between two (or more) directional antennas located on the sensor. Two directional antennas pointed
in different directions, such that their main beams overlap, can be used to estimate the AoA from the ratio
of their individual RSS values.

By providing information about the direction to neighboring sensors rather than the distance to
neighboring sensors, bearing is a technique for determining the direction of propagation of a radio-frequency
wave or an acoustic signal incident on an antenna array (microphones for acoustic signals) [12, 17]. Bearing
information is used in the geo-location of cell phones to comply with regulations that require cell systems
to report the location of a cell phone placing an emergency call. The AoA of the cell phone’s signal from
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multiple base stations would be combined to determine the phone’s location on the earth. In formations of
mobile robotic agents, bearings have been used extensively to maintain formations [18].

All the approaches for measuring bearings require multiple sensor array elements, which can contribute
to sensor device cost and size. However, acoustic sensor arrays may already be required in devices for
many environmental monitoring and security applications, in which the purpose of the sensor network is to
identify and locate acoustic sources. Locating the sensors themselves using acoustics in these applications
is a natural extension. RF antenna arrays imply large device size unless center frequencies are very high.
However, available bandwidth and decreasing manufacturing costs at millimeterwave frequencies may make
them desirable for sensor network applications.

A drawback of AoA is that highly coherent receiver is needed, i.e., all channels must have the same
effect on the received signal. Moreover, the cost of the receiver increases as the array size increases. The
size should be reduced as much as possible, but, the number of elements required to obtain a given accuracy
strongly depends on the radio environment.

Localization in robotic networks was studied in [18] using kinematics of linear mechanisms. Uniqueness
of network localization solutions can be addressed by using the theory of rigid graphs. The theory of rigid
graphs is also used in maintaining rigid formations of robotic agents [19, 20]. For distance measurements, a
key insight from the theory is that sufficiently high connectivity guarantees, with high probability, a unique
solution and computational complexity that scales only linearly with the number of nodes. Rigidity in
directed formations of autonomous agents was studied in [21–26]. Directions, bearings, angles in undirected

formations were studied in [14]. The graph rigidity problem for undirected formations with bearings is the
dual of the distance case. However, there exists no complete theory for point formations based solely on
angles. Yet, with sufficient connectivity and one fixed direction, the bearing results may be applied to the
abstract graph of links as vertices and angles as edges [14]. In this paper, we derive the conditions for unique
network localization by using rigidity and global rigidity of digraphs that represent the network topologies,
in which bearing information on directed links are used among nodes. We will restrict our attention to
networks in 2-space. A sequel paper will provide the results for 3-space.

The paper is organized as follows. In Section 2, we start with the problem statement of network
localization and defining point formations and rigidity, which will be used throughout the paper. We then
present parallel rigidity of formations using parallel drawings in Section 3. We investigate directed parallel
rigidity in Section 4. The conditions for localization are given in Section 5. Finally, concluding remarks are
given in Section 6.

2. Network Localization and Formations

2.1. Formulation of Network Localization

The interconnection structure of sensing/communication links between nodes is called network topology and
is denoted with N . Consider a network N in real 2-space consisting of a set of m > 0 nodes labelled 1
through m that represent special “anchor” nodes together with n−m > 0 additional nodes labelled m + 1

through n that represent ordinary nodes. Each node is located at a fixed position in IR2 . Anchor nodes
have GPS capabilities, thus they know their global coordinates. We will use the term heading with the
meaning of the angle between the y -axis of the global coordinate system and the x -axis of the node’s local
coordinate system. (A detailed explanation is given in the last paragraph of Section 2.2.) In this paper, we
assume that either all nodes have compass capabilities, or some nodes do have and others can infer heading
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information from their neighbors. (A sequel paper will deal with the case in which compasses are either not

available, or biased by local conditions.) An example of propagation of heading information between nodes

is given in [12]. Before going into detail, it is useful to formally state the network localization problem.

2.1.1. Problem Statement

The 2-dimensional network localization problem is the determination of n − m unknown node locations
p = {pm+1, p2, . . . , pn} given the known anchor locations {p1, p2, . . . , pm} , and measurements by nodes

related to any physical reading that indicates distance and/or bearing. A node i makes a measurement
with another node j by using a signal coming from node j . We do not assume full measurements, so we
define the set N (i) to be the set of sensors with which sensor i makes measurements. Clearly, i /∈ N (i),

and N (i) ⊂ {1, . . . , n} . Note that these measurements could be attained via different modalities, e.g., RF,

infrared (IR), acoustics, or a combination of these.

Neighbor relationship

Although a node’s “neighbors” are typically defined to be all other nodes within some specified range, other
definitions could also be used. Ideally, sensors are assumed to have sensing regions in circular shape. Let i

and j be two nodes in the network and d(i, j) be the Euclidean distance between them. Let also r(i) and r(j)
be the transmitting range of nodes i and j , assuming the ideal case where coverage zones are perfect disks. If
there exist two nodes i, j in the network such that min[r(i), r(j)] < d(i, j) and max[r(i), r(j)] > d(i, j), then
N has directed links. In practice, the sensing region of a sensor is not necessarily a circle. In most cases, it
is location-dependent and likely irregular. Thus, an inherent characteristic of wireless networks relies on the
directionality of the associated graph. Directed graphs are likely to occur in scenarios where nodes perform
independent transmitting range control or have heterogeneous terminals [27, 28]. Then implementing an

efficient distributed topology control is crucial. In practice, this depends on the underlying protocols [28].

In robot networks, localization with directed graphs was studied in [18].

If we assume a centralized computation, with a supervisor that has access to all the data, the directed
constraints just become constraints (linear equations without direction). The computation of the location is
then direct. As it will become clear later, the calculation with directions is solving linear equations, with a
one-parameter solution space, up to translation of the first node. This parameter can be scaled to make any
single edge the desired length. Now, if we want fully distributed computation of locations by the nodes, then
directed link matters a lot. The essential property we require in this paper is that the neighbor relationship
is not necessarily a symmetric relation on {1, 2, . . . , n} . In this paper, we use the following definition: Given
a node i , any node that is in the sensing region of i is called a neighbor of i . It is possible that while node
j is in the sensing region of node i , vice versa may not be true.

Under these conditions N ’s neighbor relationships can be conveniently described by a digraph GN =
(V, E) with vertex set V = {1, 2, . . . , n} where the elements of V denote the labels of nodes, and E is the

set of ordered pairs of vertices called directed edges defined so that (i, j) is one of the graph’s edges precisely
when node j is in the sensing region of node i . A graph in which each edge is replaced by a directed edge is
called a digraph. A digraph having no multiple edges or loops (corresponding to a binary adjacency matrix

with 0’s on the diagonal) is called a simple digraph. We assume throughout that GN is a connected digraph.

The network localization problem is to determine the locations pi of all nodes in IR2 given the graph of the

network GN , the positions of the anchor nodes pj, j ∈ {1, 2, . . . , m} in IR2 , and the measurements MN(i, j)
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in EN . The network localization problem is generically solvable at {p1, p2, . . . , pn} if it is solvable at each

point in an open neighborhood of {p1, p2, . . . , pn} . To be more precise, generic points are defined as follows.

A set A = (α1, . . . , αm) of distinct real numbers is said to be algebraically dependent if there is a non-zero

polynomial h(x1, . . . , xm) with integer coefficients such that h(α1, . . . , αm) = 0. If A is not algebraically

dependent, it is called generic [29]. We say that p = (p1, . . . , pn) is generic in 2-space, if its 2n coordinates

are generic. It can be shown that the set of generic p ’s form an open dense subset of IR2n .

To study the solvability of the network localization problem, we reformulate the problem in terms of
a “point formation.” The point formation relevant to the network localization problem has associated with

it the grounded graph of the network, ĜN , with the same vertices as GN but with a slightly larger edge set

which adds “links” or edges from every anchor node to every other [7]. It is a property of ĜN rather than
GN which proves to be central to the solvability of the localization problem under consideration.

2.2. Point Formations

We begin by reviewing the point formation concept. By a 2-dimensional point formation [7] at p �
[p1, p2, . . . , pn]T , written Fp , is meant a set of n points {p1, p2, . . . , pn} in IR2 together with a set E
of k links, labelled (i, j), where i and j are distinct integers in {1, 2, . . . , n} . In this context, the points

pi represent the positions of nodes (i.e., both anchor nodes and ordinary nodes), in IR2 and the ordered
pairs in E label those specific ordered node pairs between which there is a physical reading. Specifically, we
denote the set of links with distance measurements by L , the one with bearing measurements with B . For

the network N , E would consist of all edges in ĜN , since the distance between every pair of anchor nodes is
determined by their specified positions. We note that the intersection of L and B is not necessarily empty
set. In a network in which nodes have only distance and bearing measurements, E is the disjoint union of
L , B and the set of implicit links among anchor nodes.

A definition of global rigidity for networks with distance measurements was given in [7]. Here we
generalize this definition to include other types of physical measurements, e.g., direction, angle, bearing.

Each point formation Fp uniquely determines a graph GFp � {V, E} with vertex set V � {1, 2, . . . , n} and

edge set E , as well as a measurement function f : L �→ IR (for distances), h : B �→ [0, 2π) (for bearings)

whose value at (i, j) ∈ E is the measured quantity (distance, angle, etc.) between pi and pj . Let us note
that the measurement function of Fp is the same as the measurement function of any point formation Fq

with the same graph as Fp provided q is congruent to p in the sense that there is a distance preserving

map T : IR2 → IR2 such that T (qi) = pi, i ∈ {1, 2, . . . , n} . We say that two point formations Fp and Fq

are congruent if they have the same graph and if q and p are congruent. We say that two point formations
Fp and Fq are equivalent if they have the same set of measurements. Fp is globally rigid if every point
formation Fq which is equivalent to Fp , is congruent to Fp .

Now we focus on rigidity which is closely related to global rigidity. Rigidity has been used extensively
for mobile formations [8, 9, 14, 19, 20]. Let us imagine a point formation moving in real 2-space. A point
formation is called rigid if the distance between each pair of nodes does not change over time under ideal
conditions. Rigidity theory was historically developed for distance constraints (see for example [13] for a

thorough treatment of the subject) and there is a well-developed theory dating back to Cauchy. In reality,
nodes are entities with physical dimensions. For modelling purposes, nodes are represented by points called
point nodes. A point node with an attached coordinate system is called an oriented node. The underlying
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graph G = (V, E) of a point formation Fp is called generically rigid, if Fp is rigid for a generic p . The

property of generic rigidity does not depend on the precise distances between the points of F(p) but predicts
the rigidity of a formation from the graph of the vertices and links, in other words, by the underlying graph.

Distances between all node pairs can be held fixed by directly measuring distances between only some
nodes and keeping them at desired values. A ‘distance constraint’ is a requirement that a distance between
two nodes, depicted with d , be maintained through a sensing/communication link and some control strategy.

For example, a distance constraint between two nodes, depicted with dij , is shown in Figure 1(a). Distance
constraints are sometimes referred to as range or separation constraints. With enough distance constraints,
the whole formation will be rigid, even without there being a distance constraint between every pair of
nodes [19, 20].

Another form of constraint is a ‘bearing constraint’, and such constraints, generally in conjunction
with distance constraints, can contribute to establishing rigidity. A bearing is the angle between the x -axis
of the local coordinate system of node i and the line segment joining node i with node j with which the
node i has a sensing/communication link. The angle is measured in trigonometric direction from x -axis of
the local coordinate system. By “trigonometric direction” is meant the counterclockwise rotation direction
around a trigonometric circle. By a node’s local coordinate system is meant a coordinate system which is
chosen by each node based on some criteria, e.g., the coordinates are referenced to a known location in the
immediate area, or the longer side of a node is chosen to be the x -axis of the local coordinate system, and
so forth. Two local coordinate systems may not always line up on the same map. We assume that each node
has its own coordinate system as described in [12]. If two nodes i and j have a sensing/communication link

between each other as shown in Figure 1(a), then bearing constraints for i and j , denoted by θij and θji

respectively, are the angles between the x -axis of each node’s own coordinate system and the link (i, j). As
it will become clear later, bearing information can be used by both nodes in a formation with symmetric
neighbor relation, i.e., node i measures θij and node j measures θji concurrently. Alternatively, bearing

information can be used by only one of the nodes in a formation with directed links, i.e., either node i

measures θij or node j measures θji . Our aim is to obtain a relation between the coordinates of node
i and j given the bearing constraint between them. In real implementations of bearing information, the
information about a global coordinate system (xG, yG) is either known by all nodes or is transmitted from
anchor nodes to ordinary nodes. This is done by passing “heading” information from one node to another.
By heading is meant the angle between the x -axis of the node’s local coordinate system and the y -axis of the
global coordinate system measured in trigonometric direction from the x -axis of the node’s local coordinate
system. For example, φi is the heading of i in Figure 1(b). Once node i passes the information φi and θij

to node j , then node j can compute its heading by φj = π − (θij − φi) + θji . Once nodes know the global

coordinate system, they can transform the bearing information measured in their local coordinate systems
(θij and θji ) into bearing information in the global coordinate system (Θij and Θji ) as shown in Figure

1(c). We note that Θji = π + Θij (mod 2π ).

We note that, in the stage when bearing is the measurement obtained via signals, it is bearing
information. When this bearing information is treated as a constraint to be satisfied in the computation of
positions of nodes in the network in the network localization problem, it is called a bearing constraint.
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(a) (b) (c)

Figure 1. (a) Bearing constraints for i and j are denoted by θij and θji , respectively; (b) φi is the heading of i ;
(c) Once nodes know the global coordinate system, they can transform the bearing information measured in their
local coordinate systems (θij and θji ) into bearing information in the global coordinate system (Θij and Θji ).

3. Parallel Rigidity

Before proceeding further, we introduce “parallel drawings.” Parallel drawings have been studied in rigidity
and plane configurations in computer-aided design (CAD). They are particularly relevant when the con-
figurations being considered are constrained using bearing-only information, as will become clear later. A
plane configuration is a collection of geometric objects such as points, line segments, and circular arcs in the
plane, together with constraints on and between these objects. Two point formations on the same graph
are parallel drawings if corresponding edges are parallel. Parallel drawings, used by engineering draftsmen
in the nineteenth century, have reappeared in a number of branches of discrete geometry [30].

Given a point formation Fr with an underlying graph G = (V, E), we are interested in parallel

drawings Fs with the same underlying graph G = (V, E) in which si − sj is parallel to ri − rj for all

(i, j) ∈ E . Using the operator (.)⊥ , for turning a plane vector by π
2

counterclockwise, these constraints can

be written:

(ri − rj)⊥ · (si − sj) = 0. (1)

Each such constraint is called a direction constraint in CAD literature. This gives a system of |E| homoge-
neous linear equations, and a parallel drawing is a solution of this system.

We have the following proposition.

Proposition 3.1 A bearing constraint can be written as a direction constraint.

Proof A bearing constraint for node i along the trajectory q can be expressed as:

�[(qj(t) − qi(t)), ex] = Θij (2)

and similarly the bearing constraint for node j along the trajectory q can be expressed as:
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�[(qi(t) − qj(t)), ex] = Θji (3)

where ex is the unit vector along the x -axis of the global coordinate system, and �[.] stands for the function
that maps the two vectors in the argument to the angle between them, where the angle is measured in the
counterclockwise direction from the second vector to the first vector in the argument. By a trajectory of

Fp , we mean a continuously parameterized, one-parameter family of points {q(t) : t ≥ 0} in IRnd , which

contains p. Let us consider a particular fixed set of points, pd = (p1, p2, . . . , pn), along the trajectory q(t)
where the bearing constraints are satisfied. We can think of pd as a reference set of points that determines
the desired bearing constraints for the formation and the nodes can be thought of satisfying the bearing
constraints set by pd at all other points along the trajectory. For node i , we can write

�[(pj − pi), ex] = Θij (4)

and for node j , we get

�[(pi − pj), ex] = Θji. (5)

Next, let us consider the vector (pj − pi)⊥ which is obtained by rotating the vector (pj − pi)

counterclockwise by 90o and the vector (pi − pj)⊥ which is obtained by rotating the vector (pi − pj)
counterclockwise by 90o . For these two vectors we write,

�[(pj − pi)⊥, ex] =
π

2
+ Θij (mod 2π) (6)

and,

�[(pi − pj)⊥, ex] =
π

2
+ Θji (mod 2π) (7)

By (2) and (6), we can write

�[(pj − pi)⊥, (qj(t) − qi(t))] =
π

2
(8)

and by (3) and (7), we can write

�[(pi − pj)⊥, (qi(t) − qj(t))] =
π

2
. (9)

(10) and (9) imply

(pi − pj)⊥ · (qi(t) − qj(t)) = 0. (10)

For every link with a bearing constraint in the point formation, it is now straightforward to write
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(pi − pj)⊥ · (qi(t) − qj(t)) = 0, (i, j) ∈ B, t ≥ 0. (11)

This gives a system of |B| homogenous linear equations. A solution of this system with respect to Fp is
called a parallel point formation.

Central to the development in the rest of this section will be the use of parallel drawings of configura-
tions [31–33]. Given a point formation in 2-space with bearing constraints Fp , we are interested in parallel

point formations Fr in which ri−rj is parallel to pi−pj for all (i, j) ∈ B . Trivially parallel point formations
are translations and dilations of the original point formation, including the parallel point formation in which
all points are coincident. All others are non-trivial. In geometry, a transformation T of the plane or space
is a dilation at a point p if it takes p to itself, preserves angles, multiplies distances from p by a positive
real number r , and takes every ray through p onto itself. For example, Figure 2b shows a translation of the
point formation in Figure 2a; and Figure 2c and Figure 2d are dilations of the point formation in Figure 2a.
In particular Figure 2c is a contraction and Figure 2d is an expansion. Figure 2e shows a non-trivial parallel
point formation of Figure 2a because the point formation in Figure 2e cannot be obtained from the point
formation in Figure 2a by translation or dilation although all the corresponding links in these two point
formations are parallel to each other ((i, j) and (i′, j′) are corresponding links). A point formation Fp with

bearing constraints is called parallel rigid if all parallel point formations of Fp are trivially parallel to Fp .
Otherwise it is called flexible. For example, the point formation in Figure 2a is flexible. On the other hand,
the point formation in Figure 2f, which is obtained from the point formation in Figure 2a by inserting an
extra link (3′, 6′), is a parallel rigid point formation.

Taking the derivative of (11) (recall that p is a fixed point set and q(t) is time varying in (11)), we
obtain

(pi − pj)⊥ · (q̇i(t) − q̇j(t)) = 0, (i, j) ∈ B, t ≥ 0 (12)

These equations can be rewritten in matrix form as

RB(p)q̇ = 0 (13)

where q̇ = [q̇1, q̇2, . . . , q̇n]T and RB(p) is the rigidity matrix for formations with bearing information.

Consider a planar point formation Fp with bearing constraints shown in Figure 3(a). We assume
that at least one agent knows the global coordinate system and the information about this global coordinate
system is passed to the other agents in the formation. The same point formation drawn with bearing
constraints in the global coordinate system is shown in Figure 3(b).

It is shown in [34] that any statement for a point formation of distances can be given for the same
point formation of directions where distances are switched with directions. The isomorphism goes down
the pairs of columns for each vertex, turning all the vectors by 90o (in a direction of choice). This process

preserves the solution space (just turning the solutions by 90o as well), and turns each row for a distance

into a row for a direction. Because of this geometric switching, there is a generic switching theorem in [34]
that converts results in a direct fashion, so the generic type of rigidity is defined in the same manner as in
the case of distances. Thus the graph theoretic test is given with the following theorem:
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(a) The original point formation. (b) A translation of the point formation in (a).

(c) A dilation of the point formation in (a). In particular,
this is a contraction.

(d) A dilation of the point formation in (a). In particular,
this is an expansion.

(e) A non-trivial parallel point formation of (a) because
the point formation in (e) cannot be obtained from the
point formation in Figure (a) by translation or dilation
although all the corresponding links in these two point
formations are parallel to each other ((i, j) and (i′, j′)
are corresponding links).

(f) The point formation, which is obtained from the point
formation in (a) by inserting an extra link (3′, 6′) . This is
a parallel rigid point formation while the point formation
in (a) is flexible.

Figure 2. Parallel point formations.
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(a) (b)

Figure 3. Consider a planar point formation Fp with bearing constraints shown in (a). We assume that at least
one node knows the global coordinate system and the information about this global coordinate system is passed to
the other nodes in the formation. The same point formation drawn with bearing constraints in the global coordinate
system is shown in (b).

Theorem 3.1 A graph G = (V,B) , where B denotes the set of links with bearing measurements, is

generically parallel rigid in 2-space if and only if there is a subset B′ ⊆ B satisfying the following two
conditions: (1) |B′| = 2|V| − 3 , (2) For all B′′ ⊆ B′,B′′ �= ∅, |B′′| ≤ 2|V(B′′)| − 3 , where |V(B′′)| is the
number of vertices that are end-vertices of the edges in B′′ .

For networks using pure distance information, the conditions for global rigidity are stronger than those
for rigidity of formation with distance constraints [7]. For networks in 2-space with bearing information
between nodes, the situation is strikingly different. Because the key constraints are linear equations, if there
are two non-similar parallel formations with points p and q , then both formations are not rigid. Therefore,
for these formations, parallel rigidity implies global rigidity up to similarity. In 2-space, if we have the 2n−3
bearings of a parallel rigid formation, and add one length, we will have a globally rigid formation. We do
have a simple combinatorial characterization (counting) and fast algorithms for global rigidity.

Theorem 3.2 If Fp is a formation in 2-space, then Fp is parallel rigid if and only if Fp is globally rigid
under translation and dilation maps.

Proof Suppose that Fp is not globally rigid. Therefore, there is a parallel drawing Fq which is not similar
to Fp as a configuration. We will show that Fp is flexible with Fq as a non-trivial parallel drawing. For all

edges (i, j) ∈ B , (pi − pj) is parallel to (qi − qj). Therefore, (pi − pj)⊥ · (qi − qj) = 0 as required. Since Fp

is not similar to Fq , there is some pair (h, k) �∈ B such that ph − pk is not parallel to qh − qk . Therefore,

(ph − pk)⊥ · (qh − qk) �= 0. This confirms that Fq is a non-trivial parallel drawing of Fp .

Conversely, suppose that Fp is flexible with a non-trivial parallel drawing Fq . Then Fq itself is the
non-similar parallel drawing of Fp which shows it is not globally rigid.
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More generally, nodes are not confined to use their sensing and communication links for measuring
distances only. We can exploit such a possibility to generate point formation that is not only locally unique
but also globally unique with as few links as a minimally rigid formation.

For formations with combined distance-bearing constraints, there is the following combinatorial char-
acterization of parallel rigidity.

Theorem 3.3 With L for distances and B for bearings, a graph G = (V,L,B) is generically parallel rigid

in 2-space if and only if the following conditions hold: (i) |L| + |B| = 2|V| − 2 ; (ii) for all subsets V′ of

vertices: |L′| + |B′| ≤ 2|V′| − 2 ; (iii) for all subsets V′ of at least two vertices: |B′| ≤ 2|V′| − 3 (iv) for all

subsets V′ of at least two vertices: |L′| ≤ 2|V′| − 3 .

The proof for the characterization of parallel rigidity for distance-direction constraints is given in [35].
The conditions for distance-direction constraints are closely related to the conditions for parallel rigidity
for distance-bearing constraints since bearing constraints can be written as direction constraints as stated
in Proposition 3.1. A point formation using direction-distance constraints can be unique up to translation.
This will require 2|V|−2 independent constraints. For example, it is easy to see that: (i) an independent set

of 2|V|−3 distances plus any single direction is an appropriate set of 2|V|−2 constraints; (ii) an independent

set of 2|V|−3 directions plus any single distance is an appropriate set of 2|V|−2 constraints; (iii) a spanning

tree, used once for distances and a second time for directions, is an appropriate set of 2(|V| − 1) = 2|V| − 2

constraints. (A tree is a graph in which any two vertices are connected by exactly one path. Given a
connected, undirected graph, a spanning tree of that graph is a subgraph which is a tree and connects all
the vertices together.) Are these sufficient? Even for distances, we know that these conditions are not
sufficient for special positions of the points. However, by Laman’s Theorem, they are sufficient for distances
on ‘generic configurations’ (we refer the interested reader to [13] for the explanation of generic configurations

and Laman’s Theorem). The most we can expect is that these expanded conditions are also sufficient for
‘generic configurations’. We replace the entries for the points p , in the matrix by algebraically independent
values, and look at the solution space for these values. If all solutions are translations, then almost all

configurations (an open dense subset of configurations) p ∈ IR2|V| have only translations. Specifically, if
we use variables for the coordinates, the rank of this matrix is determined by maximal non-zero minors -
a finite set of polynomials in these variables. Such a polynomial is either always zero or is non-zero for
an open dense subset. The intersection of this finite collection of subsets for all maximal non-zero minors
forms the set of generic plane configurations for formations with distance-direction constraints. We refer the
interested reader to [35] for the full proof of characterization of rigidity for formations with direction-distance
constraints.

This characterization also covers the distance-bearing combinations that permit more than one dis-
tance. Note that this is the criterion for rigidity up to translation, not for global rigidity, if there are multiple
distance constraints. It is rigidity up to translation since rotations are not allowed because of bearing con-
straints. We suspect that it is probably the criterion for global rigidity, up to translation, if there are enough
bearing constraints. Under this assumption, and assuming that angle of arrival is measured in trigonometric
direction, we have a conjecture for global rigidity.

Conjecture 3.1 Provided that the underlying graph constructed with the links representing bearing con-
straints form at least a spanning tree, then for generic formations, rigidity up to translation is equivalent to
global rigidity of the formation.
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Figure 4. The underlying graph constructed with the solid links representing bearing constraints is a spanning tree
in (a) while it is not in (b).

For example, Figure 4a depicts a formation that satisfies the conditions of the conjecture, i.e., the
underlying graph constructed with the solid links representing bearing constraints is a spanning tree. Here,
the solid edges represent bearing constraints while the dashed edges represent distance constraints. On the
other hand, the formation in Figure 4b illustrates a formation for which the underlying graph constructed
with the solid edges representing bearing constraints is not a spanning tree.

4. Directed Parallel Rigidity

A directed edge is written with an ordered pair of end-vertices (i, j) representing an edge directed from j to i

and drawn with an arrow from j to i , that is from the source to the sink. The number of edges directed into

a given vertex i in a digraph G is called the in-degree of the vertex and is denoted by d−
G

(i). The number of

edges directed out from a given vertex i in a digraph G is called the out-degree of the vertex and is denoted

by d+
G

(i). The out-neighborhood N+
G

(i) of a vertex i is {j ∈ V : (j, i) ∈ E} , and the in-neighborhood

N−
G

(i) of a vertex i is {j ∈ V : (i, j) ∈ E} . The union of out-neighborhood and in-neighborhood is the

set of neighbors of i , i.e., the (open) neighborhood of i , NG(i). When i is also included, it is the closed

neighborhood of i , NG[i] . A directed path is a sequence {i, j, k, . . . , r, s} such that (i, j), (j, k), . . . , (r, s)
are directed edges of the graph. A cycle is a directed path such that the first vertex of the path equals the
last. A digraph is acyclic if it does not contain any cycle.

Since parallel rigidity problem for formations with bearings is isomorphic to the distance case, we can
make use of some of the techniques developed for formations with distance information. There are sequential
steps to create directed rigid formations developed in [22, 23]. Then, one operation for extending a parallel

rigid graph is directed vertex addition: given a minimally rigid graph G∗ = (V∗,B∗), we add a new vertex i

of out-degree 2 with two edges directed from i to two other vertices in V∗ . The second operation preserving
directed parallel rigidity is directed edge splitting : given directed parallel rigid graph G∗ = (V∗,B∗), we

remove a directed edge (j, k) (directed from j to k ) in B∗ and then we add a new vertex i of out-degree

2 and in-degree 1 with three edges by inserting two edges (j, i), (i, k), and one edge between i and one

other vertex (other than j, k ) in V∗ such that the edge (j, i) is directed from j to i and the other two edges
are directed from i to the other vertices. The third operation which will complete the constructions is edge

reversal : edge (a, b) is reversed to (b, a), if for the in-vertex b , N+
G

(b) < 2.
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A directed Henneberg sequence for the graph G , is a sequence of steps, starting from a single edge,
using the following steps, and ending with the graph G :

1. directed vertex addition;

2. directed edge split;

3. edge reversal.

From the isomorphism between distances and bearings, and from Theorem 3.6 in [23], all possible
directed parallel rigid graphs are generated by a directed Henneberg sequence. A digraph constructed by
using only directed vertex addition is called a simple graph.

2-directed digraphs

Any ordinary node in a network with directed bearing links needs to have at least two in-coming links to

localize itself, that is, d−
G

(i) ≥ 2. Of course, anchor nodes do not need any in-coming links to localize

themselves. However, we insert the implicit links among anchor nodes to obtain the grounded graph.
Furthermore, the existence of one anchor node rules out translation. If there is only one anchor node,
then scaling is still allowed. This means that one ordinary node can have one degree of freedom. We call
such a node a free node. Anchor node and free node together make up the set of guide nodes. The digraph

G = (V, E) is 2-directed if for all i ∈ V , d−
G

(i) ≤ 2.

A point formation with directed bearing constraints is called directed parallel rigid if all directed
parallel point formations are trivially parallel. There are a number of issues that must be addressed in the
localization of networks with directed links. We identify three key layers as follows: 1) parallel rigidity of

the underlying undirected formation; 2) directed parallel rigidity of the formation; 3) convergence and the
quality of initial position estimates in the network. If underlying undirected formation is non-rigid, then
directed formation cannot be rigid. Thus, undirected rigidity is a necessary condition for directed rigidity.
On the other hand, when we associate a direction to each link in a rigid undirected formation, directed
parallel rigidity is not necessarily guaranteed, because an in-degree of a node may be set to 1 while another
node has an in-degree of 3 resulting from a poor selection of directions. Consequently, undirected parallel
rigidity is not a sufficient condition for directed parallel rigidity. Even if there is subset of the grounded
graph that is 2-directed, the undirected graph may still be flexible. Thus, we can state the conditions for

global rigidity for a directed graph as follows: Given a grounded digraph Ĝ = (V, B̂) of the network N ,

there is a subset B′ ⊆ B̂ satisfying the following conditions:

1. |B′| = 2|V| − 3,

2. For all B′′ ⊆ B′,B′′ �= ∅, |B′′| ≤ 2|V(B′′)| − 3, where |V(B′′)| is the number of vertices that are

end-vertices of the edges in B′′ .

3. G′ = (V,B′) is 2-directed.

5. The Conditions for Localization

In a fully distributed computation, the propagation of position/bearing information works as follows: Nodes

immediately adjacent to an anchor node get their distance/bearings directly from the anchor node. Assuming
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that a node has some neighbors with distance/bearing information for an anchor node, it will be able to

compute its own distance/bearing with respect to that anchor node, and forward it further into the network.
Assuming that the conditions 1 through 3 above are met, convergence problems arise as the third layer,
because initial position estimates by each node, delays, errors in measurements, may cause non-convergent
solutions. Moreover, accumulation of errors in cycles arise in digraphs. ‘Simple graphs’ as described above
are inherently much easier to work with to avoid convergence problems.

If all nodes have only bearing measurements and the formation is directed parallel rigid, at least one
distance constraint is necessary to rule out scaling. Distance constraint can exist in the network in two
scenarios: (i) at least one node measures distance; (ii) there are at least two anchor nodes in the network.
The set of anchor nodes is denoted by A . Let us note that the distance and bearing between every pair of
anchor nodes are implicitly known.

Recall that there are absolute and relative localization. Let us consider absolute localization. If a
formation with bearings is globally rigid, translations are still possible in a parallel rigid formation. We need
at least one anchor node with world coordinates to pin down the whole network to exclude translations.
Thus |A| ≥ 1. Furthermore, we need at least one distance information to rule out scaling. If |A| ≥ 2 then

scaling is automatically excluded. If |A| = 1 then we need at least one ordinary node that has a distance
measurement from its neighbor. For relative localization, anchor nodes are not necessary, and parallel rigidity
and one distance constraint will be sufficient.

We summarize the conditions for network localization with bearings as follows: A network N is
localizable (in the absolute sense) if the following conditions hold:

1. its underlying directed graph is globally rigid;

2. |A| ≥ 1.

3. there exists at least one distance constraint - this condition holds if either

• |A| ≥ 2; or,

• there exists at least one ordinary node that has a distance measurement from its neighbor.

A network N is localizable (in the relative sense) if the following conditions hold:

1. its underlying directed graph is globally rigid;

2. there exists at least one distance constraint - this condition holds if either

• |A| ≥ 2; or,

• there exists at least one ordinary node that has a distance measurement from its neighbor.

6. Concluding Remarks

In this paper, we address the uniqueness of network localization solutions by using the theory of parallel rigid
formations. The theory of parallel rigid formations is also used in maintaining rigid formations of mobile
robotic agents [14]. The method we proposed infers position in a network where nodes can measure bearings

(angle of arrival) from communication with their immediate neighbors. The assumption is that all nodes
have angle of arrival capability and only a fraction have self positioning capability.
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The graph rigidity problem for undirected formations with bearings is the dual of the distance case.
For networks using pure distance information, the conditions for global rigidity are stronger than those for
rigidity [7]. For networks in 2-space with bearing information between nodes, the situation is strikingly
different. Because the key constraints are linear equations, if there are two non-similar parallel formations
with points p and q , then both formations are not rigid. Therefore, for these formations, rigidity implies
global rigidity up to similarity. In 2-space, if we have the 2n− 3 bearings of a parallel rigid formation, and
add one length, we will have a globally rigid formation. We do have a simple combinatorial characterization
(counting) and fast algorithms for global rigidity.

For a directed formation, if underlying undirected formation is non-rigid, then directed formation
cannot be rigid. Thus, undirected rigidity is a necessary condition for directed rigidity. On the other hand,
when we associate a direction to each link in a rigid undirected formation, directed parallel rigidity is not
necessarily guaranteed, because an in-degree of a node may be set to 1 while another node has an in-degree
of 3 resulting from a poor selection of directions. Consequently, undirected parallel rigidity is not a sufficient
condition for directed parallel rigidity. Even if there is subset of the grounded graph that is 2-directed, the
undirected graph may still be flexible. We provide the conditions for network localization with directed
bearing constraints in Section 5.

A realistic solution of the localization problem requires that the distance and bearing measurements
be noisy measurements of the underlying distance and bearing values subject to bounded errors. These
noise-corrupted measurements will not correspond to realizable values. In this case, the realization problem
becomes an approximation problem, namely, finding an assignment of coordinates for the graph vertices
so that the resulting disagreements with the noisy measurements are below a tolerance parameter. In a
sequel paper, we will provide an algorithm for localization based on bearing measurements, implement it on
a physical sensor network, empirically assess its accuracy and performance under noisy measurements, and
test its scalability to large networks through simulations.

Future work will provide the results for the following types of networks: (i) networks in both 2- and
3-space under the assumption that the information obtained by compasses is either not available, or biased
by local conditions; (ii) networks with mixed bearings-distances or angles-distances in both 2- and 3-space.
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