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Abstract

In this study, a vehicle routing problem-based approach is presented to construct non-intersecting

routes for the members of a mobile robot team. It is assumed that each robot starts from a central

location such as the charging point, completes its route and returns to the starting location. The proposed

method consists of three algorithms: a sweep algorithm determines the position of each node in clockwise

(or counter clockwise) manner with respect to the starting location; savings algorithm calculates the saving

obtained by adding a node to the route of a robot; Dijkstra’s shortest path algorithm is used to calculate the

shortest distance from any node to another one when the network is sparse. Simulations are performed

using some benchmark VRP problems and results are compared with the optimal solution of the same

problems. It is shown that our approach constructs routes significantly fast with near optimal energy

consumption.

1. Introduction

Many missions in autonomous mobile-robot systems depend on navigating in a known or an unknown environ-
ment and performing some tasks, like land-mine exploration, post-office automation, cleaning, transporting
load from one node to another, or assisting rescue after disasters. A multi-robot cooperative system appears
to be more effective and adaptive to accomplish various such kinds of complex tasks, relative to a single
robot approach, and most of these missions may be performed more efficiently by a collaboratively working
multi-robot team [1].

In many multi-robot applications, there exists a need to coordinate the actions of robots to achieve a
goal. When many robots operate in the same environment, a motion planning is required for the robots to
reach their goals while avoiding collisions among themselves. Besides, with the development of cooperative
robotics in the recent years, the problem of path planning for robot groups is receiving attention increasingly
[2]. Somhom et al., [3] introduced an algorithm in competition-based network to solve the min-max multiple

traveling salesmen problem (m-TSP) which needs the maximum distance among all salesmen to be minimum.

Yu et al. [2] described in their work how to apply a Genetic Algorithm in finding a globally sub-optimal path
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for the robot group working under certain tasks. In [4], path planning of cooperative multi-mobile robot
systems is discussed with the proposal of a novel Cooperative Co-evolutionary Adaptive Genetic Algorithm
(CCAGA). Guo and Parker [5] proposed a distributed and optimal motion-planning algorithm for multiple

robots. They decomposed the problem into two modules: path planning and velocity planning. Zu et al. [6]
proposed a path-planning algorithm for multi-robot system, which finds an optimal path that satisfies some
performance criteria, based on the depth-first search idea. In [7] a motion-planning framework is presented
that enables multiple mobile robots with limited ranges of sensing and communication to maneuver and
achieve goals safely in dynamic environments. In [8] a solution to the multi-robot motion-planning problem
based on a decoupled analysis in the space domain and in the time domain is described. It investigates the
practical use of the notion of motion plan quality and of the motion-plan robustness measures for computing
safe motions. An approach to fuel-optimal path planning of multiple vehicles using a combination of linear
and integer programming is presented in [9]. The approaches above and some others for motion coordination

and motion planning problems in multi robot systems are summarized in [10,11].

A mission in multi-robot applications could consist of a series of locations to be visited in any order
by any robot, or perhaps each robot should visit a series of locations before returning to its recharging area.
In the literature, this problem is known as m-traveling salesmen problem (m-TSP). The aim of the m-TSP
is to find tours for travelers such that the total distance traveled is minimized and all nodes are visited
exactly once. In real applications, there are some constraints for travelers such as all travelers have certain
capacities, all tasks should be performed in a specified time interval, each traveler should perform a certain
number of tasks, or tour distance for each traveler should be less than a certain value. If capacity contraints
exists, the problem is called vehicle routing problem (VRP). The aim of the VRP is to find a sequence of
visiting places for each traveler to minimize the total distance while the capacity of each traveler is not
exceeded.

Robot’s energy capacity is an important constraint in task planning for a mobile robot. Robot
consumes energy while it travels and/or performs the given tasks. Task planning algorithm should construct
a tour where the required energy does not exceed energy capacity of the robot. This problem resembles
the VRP problem, but it is slightly different because the robot consumes energy not only at the visited
places but also during the travel between the places. This problem is solved by extending VRP to include
the energy dissipated by the robot during the travel. In multi-robot applications, interaction between the
robots may also cause some problems. To overcome this problem, a sweep algorithm is used. Therefore, in
this paper, the extended VRP and the sweep algorithm are combined to construct nonintersecting tours for
multi-robot group with energy capacities.

Remaining of the paper is organized as follows. In section II, a brief explanation of the route finding
problem and algorithms used in the proposed method are given. Section III explains the proposed method
and gives computation load of the proposed method with respect to the number of nodes and the number
of robots. In section IV, simulations and experimental results are given. Finally, section V concludes the
paper.

2. Preliminaries

TSP and VRP are of the most widely studied combinatorial optimization problems [12]. It is believed that

the report by Menger (1932) is the first published work on TSP [13]. However, a breakthrough in this area
was done by Dantzig, Fulkerson and Johnson in 1954. To the best knowledge of the authors, the first study
about m-TSP was done by Svestka and Huckfield in 1973 [14], and a good survey for m-TSP formulations
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and solution procedures is studied by Bektas [15]. One of the first studies for VRP was done by Dantzig

and Ramser in 1959 [16]. The books edited by Lawler et al. [17] and edited by Gutin and Punnen [13]
provide detailed and comprehensive survey about TSP, its solution techniques, and applications. Another
book edited by Toth and Vigo [18] provides detailed survey about VRP and its variants. TSPLIB [19] is
also an important web site since it includes many test problems in this area.

There are many exact-solution methods and mathematical models for the TSP and the VRP. However,
finding the optimal solution is not easy due to the NP-Hard nature of these problems. Therefore, heuristics
are preferred instead of exact-solution methods. Although heuristics couldn’t find the optimal solution, they
find a near-optimal solution in a very short time. Developed heuristics for the TSP can be used for the VRP
by making some minor modifications. Some definitions and heuristic algorithms for the TSP and the VRP
are explained below.

A network can be represented as a graph G = (N, A) where N is a set of n nodes (vertices) and A is

a set of arcs (edges). Nodes describe to be visited places and arcs describe links between nodes. A network
can be classified as directed or undirected depending on the availability and direction of connections. If
none of the arcs have a direction, this network is called as an undirected network. The matrix of distances
between nodes is called the distance matrix and it can be symmetric (d ij =dji) or asymmetric (d ij �=dji).

Asymmetric matrix can occur if the network has at least one directed arc. Arcs may be bidirectional
(dij = dji > 0), unidirectional (dij > 0,dji = 0), or closed to traffic (dij = dji = 0). The distance matrix

can also be complete (each node is connected with the others) or sparse. In TSP, collection of nodes visited

by the salesman is called a tour where the salesman starts and finishes at the same node. There are (n-1)!/2
possible tours in an n-node complete network. Number of possible tours increases exponentially by n which
is the reason why solving the TSP or the VRP is difficult.

In our proposed method, three different algorithms are used. First, a sweep algorithm is used to
cluster the nodes, then a Savings algorithm constructs the tours, and finally Dijkstra’s [23] shortest path
algorithm finds the shortest path between any pair of nodes if the network is sparse.

The Sweep algorithm used in this study is proposed by Wren and Holliday in 1971 [18]. The Sweep
algorithm is simple and can be defined in 2 steps:

Step 1 - The polar coordinates of every node are calculated and sorted in increasing polar angle order.

Step 2 - Nodes are clustered such that the total capacity of each cluster does not exceed the capacity
of the traveler.

In the algorithm any point can be used as the starting point of the sweep. Starting from the node
having the smallest polar angle, nodes are assigned to the current traveler until the capacity of the traveler
is not exceeded. The Sweep algorithm may be combined with other heuristics, i.e., a Savings Algorithm, to
find the minimum total distance between the node clusters.

The Savings algorithm used in this paper is a typical tour construction algorithm and developed by
Clarke & Wright in 1963. The aim of the algorithm is to maximize the distance saved over a previous tour
at each step. Algorithm’s steps are as follows [21]:

Step 1 : Select any node as the origin and denote this as node 0.

Step 2 : Produce different tours such that (0, i, 0), as initial configuration for all i.

Step 3 : Calculate the savings s ij =d0i+dj0 -d ij ≥0 for all pairs of i and j.

Step 4 : Sort the savings in non-increasing order.

Step 5 : Find the first feasible arc (i, j) in the savings list where, i and j are on different routes and

both i and j are either the first or the last visited node on their respective routes. Add arc (i, j) to the
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current tour and delete arcs (0, i) and (j, 0). Delete arc (i, j) from the savings list.

Step 6 : Repeat step 5, until no (0, i, 0) routes remain.

An additional savings calculation method has been offered by Ballou [22]. This method permits the
nodes of i and j not to be the first or last stop. For example, if a point C is inserted between stops A and B
which are on the same route, then the savings can be calculated as s = d0C +dC0+dAB -dAC -dCB. In this
study, Ballou’s calculation method is used.

If the network is complete, the distance matrix is formed the distance values between each pair of
nodes of the network. However, if the network is sparse, there may be two or more path between two nodes.
In this case, a new distance matrix should be calculated using the shortest distance between each pair of
nodes in the network. In this study, Dijkstra’s shortest path algorithm is used for this purpose.

Dijkstra’s algorithm is commonly used to find the shortest paths from the starting node s to all other
nodes in the network. Dijkstra’s algorithm maintains a distance label d(i) for each node i, which is an upper
bound for the shortest path length to node i. At any intermediate step, algorithm divides the nodes into
two groups as permanent and temporary. The distance label to any permanent node represents the shortest
distance from the source to that node [23].

Parameter definitions and steps as pseudo code of the Dijkstra’s algorithm are given below.

N: Set of nodes
S: Set of permanent nodes

S: Set of temporary nodes

d(i): minimum distance from s to i.

Pred(j): predecessor indices

Algorithm Dijkstra:
begin

S : Φ; S = N;

d(i): = ∞ for each node i ∈ N;

d(s): = 0 and pred (s):=0;

while |S | < n do

begin

let i ∈S be a node for which d(i) = min{d(j): j ∈S};
S: = S ∪ {i};
S : = S – {i};
for each (i,j) ∈ A(i) do

if d(j) > d(i) + c ij then d(j):= d(i) + cij and pred(j):= i

end;

end;
Depending on the network structure, algorithms explained above are applied to tour construction

problem for a multi-robot team.

3. Proposed Method

The proposed method considers tour construction problem for m-robot team, which requires visit of each
node of an n−node network by at least one member of the team. Intersecting tours for the robots may
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produce undesirable effects on the performance of the team. Robots will consider each other as obstacles
and try to avoid each other resulting longer traveling distances, loosing their tracks, etc. Therefore, the main
objective of this study is constructing non-intersecting routes with near-minimum total energy consumption
while considering energy capacities.

It is assumed that the robots know global positions, relative distances, and connections of the nodes.
The task is completed when all the nodes are visited and the robots return to their home location (or charge

location). Assume that Eij denotes energy consumption during the travel from node i to node j , and

Ei, i = 1, . . . , n denotes required energy in performing its task at the node. Robots (Rk, k = 1, . . . , m) have

limited capacity of energy (Ek−cap, k = 1, . . . , m) and must return their home location before consuming

their full energy.

Proposed Algorithm:

Initialization Step:

i- Obtain all the information about the environment: Number of nodes (n), their coordinates(xi, yi), i =

1, . . . , n , required energy Ei, i = 1, . . . , n , status of the arcs (open-closed-unidirectional), distances between

nodes (dij values), and required energy Eij = f(dij) as a function of traveling distancesdij .

ii - Obtain all the information about the robots: Number of available robots m . Energy capacity
(Ek−cap, k = 1, . . . , m) of robots.

iii - If there exist any unidirectional or closed arcs between any pair of nodes, use Dijkstra’s algorithm
to find minimum paths between that pair of nodes. Using these minimum paths, update distance matrix D

such that all dij > 0.

iv- Set the consumed energy by each robot Ek−total load = 0 and overload flag of each robotRk−Notfull =

1, k = 1, . . . , m . Assign all n-1 nodes except the starting node to an array P .
v- Set robot index k = 1.
Main Step: 1- Use the sweep algorithm to find a node. Assign it to a temporary node tn . Using

this temporary node, construct a temporary tour for the robotRk by using Ballou’s Savings algorithm.
CalculateEk−total load = Ei + Eij . If Ek−cap ≥ Ek−total load include this node in theRk ’s tourRk tour , and
remove this node from the array P , otherwise set Rk−Notfull = 0 and k = k+1.

2- If
m∑

k=1

Rk−Notfull > 0 and there are some remaining nodes in P go to step 1, otherwise STOP.

3.1. Complexity of the proposed approach

At each iteration of the savings algorithm, savings values are calculated and one of the eligible nodes is
added to the route. Therefore, the required number of iterations is equal to number of the nodes. In
classical savings algorithms, eligible node is added as the first or the last node of the tour. Thus, at each
iteration, two savings calculations are required for each eligible node. However, the eligible node may be
added between any two nodes in Ballou’s savings algorithm. For that reason, savings calculations must be
performed for all eligible nodes for each possible position. This situation increases the computational load
of the algorithm. Since the Ballou’s Savings algorithm is used in this study, the computational load of the
algorithm for a single robot with unlimited capacity is calculated by the following equation:

fs(n) =
n−2∑

i=1

i +
n−3∑

i=1

i · (n − i) =
n−2∑

i=1

i + n ·
n−3∑

i=1

i−
n−3∑

i=1

i2.
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where n is the number of nodes. This equation can be re-written as follows:

fs(n) = (n−1)(n−2)
2

+ n(n−3)(n−2)
2

+ (n−3)(n−2)(2n−5)
6

= 0.8333n3 − 4.5n2 + 7.6667n− 4

As seen from the equation, complexity of the algorithm is O(n3). When the robot has limited capacity, the
proposed algorithm calculates savings obtained by the addition of each node to the route of the robot. If the
capacity of the robot is exceeded by the addition of a node, the algorithm stops. Assuming that the robot
has a capacity to visit all the nodes (worst case scenario for the calculation load), then the calculation load
of the algorithm becomes

fs capacity(n) = fs(1) + fs(2) + fs(3) + · · ·+ fs(n − 1) + fs(n)

= 0.8333
n∑

k=1

k3 − 4.5
n∑

k=1

k2 + 7.6667
n∑

k=1

k − 4n

= 0.2083n4 − 1.0833n3 + 1.7917n2 − 0.91667n

Therefore, the complexity of the algorithm for a single capacitated robot in an n-node network is O(n4).

Multi robot case:
Considering m equal-capacity robots, work load may be distributed equally among the robots, then the

calculations for the unconstrained case will be equal to m*fs(nm) where nm= n/m (the number of nodes each

robot visits). Similarly, for the limited-capacity robots, number of calculations becomes m*fs capacity(nm).
In both cases, number of calculations will be less than the corresponding number of calculations for the
single robot case.

4. Application

Proposed method is applied in laboratory environment and results were presented in [24]. However, in
this study, we rather concentrated on the analysis of the proposed method in terms of algorithm complexity,
relation between solution time and number of nodes and/or robots, and compared the results of the proposed
algorithm with the results of exact-solution methods. For this purpose, first, simulations are performed on
an Eil22 VRP test problem for different number of robots. Then, solution times and values of the proposed
approach are compared with the results of exact-solution methods using Eil22 and Eil33 VRP test problems.
In order to find the optimal solutions of these test problems, the method proposed by Kara et. al. [20] is
used.

4.1. Simulation Results of Eil22 VRP test problem

Eil22 VRP test problem is used in simulations for different number of robots (1-4). Nodes and required

energy to accomplish a task in a given node are taken from the VRP test problem as follows [NodeNo Ei ]

= [1 0; 2 1100;3 700; 4 800;5 1400; 6 2100; 7 400; 8 800; 9 100; 10 500; 11 600; 12 1200; 13 1300; 14 1300;

15 300; 16 900; 17 2100; 18 1000; 19 900; 20 2500; 21 1800; 22 700]; For the simulations, energy consumed

during the travel between the nodes is calculated as a function of traveled distance dij asf(dij) = 10dij

(note that for f(dij) = 0 problem turns to a classical VRP problem). To determine approximate required

energy for this problem, Ballou’s Savings algorithm is used for only one robot with infinite energy capacity.
The constructed tour for the single robot is shown in Figure 1. In this case, the total energy to complete
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the task is calculated as 25382 units. Note that 88.65 percent of this energy is consumed during performing
the tasks in the nodes and remaining 11.35 percent is consumed during the travel. In this simulation, the
robot travels a distance of 288.2088 units.
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Figure 1. Constructed tour for a single robot in Eil22 VRP test problem.

As the second simulation, 2 robots with selected energy capacities of Ek−cap = 13000 units for k = 1, 2

are used to construct tours for the Eil22 VRP problem. Note that these energy capacities are selected as
approximately half capacity of the single robot case. Figure 2 shows the constructed tours for these energy
capacities. The total consumed energy is 25576 units and the maximum distance traveled by one of the
robots is 171.3058 units.
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Figure 2. Constructed tours for 2 robots in Eil22 VRP problem.

As the third simulation, 3 robots with selected energy capacities of Ek−cap = 9000 units for k = 1, 2, 3

are used to construct tours for the Eil22 VRP problem. Figure 3 shows constructed tours. Total consumed
energy is 26116 units and the maximum distance traveled by one of the robots is 138.1717 units.
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Figure 3. Constructed tours for 3 robots in Eil22 VRP problem.

As the last simulation, 4 robots with selected energy capacities of Ek−cap = 7000 units for k = 1, ..., 4
are used to construct tours for the Eil22 VRP problem. Fig. 4 shows constructed tours for these energy
capacities. Total consumed energy is 26504 units and the maximum distance traveled by one of the robots
is 123.6591 units.
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Figure 4. Constructed tours for 4 robots in Eil22 VRP problem.

As seen from the figures 2-4, the constructed tours are non-intersecting for all multi-robot cases.
Therefore, the robots do not block each other during the tours. Total consumed energies change slightly
depending on the number of robots. As the number of robot increases, maximum traveling distance of
robots decreases. Therefore, if each robot is assumed to have constant speed, total time to complete the
tours decreases as the number of robots increases.

4.2. Comparisons of heuristic and exact-solution method results

Since the exact-solution methods for standard VRP consider the energy spent during the travel to be zero,
in order to compare results between the proposed method and the exact-solution method, the energy spent
during travel is assumed zero. In this study integer linear programming is used to solve capacitated VRP as
an exact-solution method. Models are solved by using Lingo 9.0 software in HP6000 workstation.
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To make a comparison between the classical VRP method and the proposed method, two different test
problems are chosen from TSPLIB: Eil22 and Eil33. The results are compared with respect to solution time
and optimum solution. Eil22 and Eil33 test problem results are shown in Table 1 and Table 2, respectively.
Both of the test problems are solved for different number of robots and different robot capacities.

Table 1. Results for Eil22 test problem.

Number of Robot Time Time Performance
robots Capacity z* (hh:mm:ss) z-savings savings difference

(seconds) (percent)
1 24000 278.437 00:00:23 288.20 0.92 -3.51 %
2 12000 289.8801 00:00:33 307.59 0.2 -6.11 %
3 8000 342.402 03:08:15 361.58 0.1 -5.6 %
4 6000 375.28 08:49:14 400.40 0.06 -6.7 %

In Table 1, different robot numbers and robot capacities are shown in the first and second columns.
z* denotes the optimal solution value by using integer linear programming. Time values show the solution
times for the optimal solution. In the fifth and sixth columns, the values obtained with proposed method
are given. The last column shows the difference between solution of the proposed method and the optimal
solution in percentage. It can be seen that, the performance of the proposed method is slightly worse than
the optimal solution. However, the difference of the solution times is too big to ignore, and the difference
between solution times increases as the number of robots increase. For instance, for four robots, it takes
approximately 9 hours to find the optimal solution whereas the proposed method reaches the near optimal
solution in only 0.06 seconds. Since the solution time is very important for real time tour constructing
problems, the proposed method is preferable even if it can not find the optimal solution.

Table 2. Results for Eil33 test problem.

Number of Robot Time Time Performance
robots Capacity z (hours) z-savings savings difference

(seconds) (percent)
1 30000 463.638 9 451.0785 4.48 2.71 %
2 15000 771.518 9 570.2888 1.122 26.08 %
3 12000 797.392 9 685.9633 0.39 13.97 %
4 8500 664.278 9 878.6755 0.31 11.40 %

Since the optimal solution cannot be obtained in 9 hours for the Eil33 test problem, instead of z*,
term z is used in column three. This value shows the best solution (not optimal) value of the problem after
9 hours. Of course, the proposed algorithm’s results are not optimal solution. However, the results of the
proposed algorithm are better than the exact-solution method. Furthermore, the solution times are too short
to compare with solution times of the exact-solution method. For instance, for two robots, it takes only
1.122 seconds to obtain a good solution, and the objective value is 26.08% better than the exact-solution
method.

Also, notice that there is a decrease in solution time of the proposed method when the number of robots
increases, as seen Table 1 and Table 2. This is an expected result of the proposed method. For example,
consider the Eil33 test problem. For a single robot, calculation load of the algorithm is fs capacity(33) =

210047. For 3 robots (assuming each robot visits equal number of nodes, 11) calculation load of the algorithm

is 3*fs capacity(11) = 5471.
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5. Conclusions and Future Work

In this paper, a tour-construction algorithm that considers capacity of the robots is proposed for a multi-
robot team. As shown by simulations, the proposed method determines non-intersecting routes for the
members of the team in a known and static environment.

Due to NP-hard nature of the VRP, solution produced by the exact-solution methods takes longer
time as the number of nodes increases. There is also an increase in the solution time when the number of
robots increases. Compared to exact-solution method, the algorithm reaches the solution in a very short
time with an acceptable solution value. Moreover, the solution time of the proposed algorithm decreases as
the number of robots increases.

In this paper, only the energy capacity of the robots is considered. However, other types of capacity
problems such as each traveler should perform a certain number of tasks or tour distance for each traveler
should be less than a certain value may be easily solved by the proposed method.

The heuristic used here has also been applied to single robot case in dynamic environment [25].
Therefore, the method of this paper may also be expanded to multi-robot problems in dynamically changing
environments.
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