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Abstract

This paper presents a novel method for load flow analysis in radially operated 3-phase distribution

networks without solving the well-known conventional load flow equations. The method can be applied for

distribution systems in which the loads are unbalanced. As the size of matrix used is very small compared

to those in conventional methods, the amount of memory used is very small, the speed is very high, and

the relative speed of calculation increases with the size of the system.

The method was applied to some practical networks and the results show the superiority of this method

over the conventional ones. As this method is significantly faster than any other method developed to

date, it has great potential for on-line operations.
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1. Introduction

Load flow analysis forms an essential prerequisite for power system studies. Considerable research has already
been carried out in the development of computer programs for load flow analysis of large power systems.
However, these general purpose programs may encounter convergence difficulties when a radial distribution
system with a large number of buses is to be solved and, hence, development of a special program for radial
distribution studies becomes necessary.

There are many solution techniques for load flow analysis. The solution procedures and formulations
can be precise or approximate, with values adjusted or unadjusted, intended for either on-line or off-line
application, and designed for either single-case or multiple-case applications. It is noted, however, that an
acceptable load flow analysis method should meet the following requirements [1]:

1. They should have high speed and low storage requirements, especially for real-time large system
applications, as well as multiple case and interactive applications.

2. They should be highly reliable, especially for ill-conditioned problems, outage studies, and real-time
applications.

3. They should have acceptable versatility and simplicity.
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In fact, conventional load flow analysis methods, which were essentially developed to solve problems posed at
the transmission network level, can encounter convergence problems when applied to distribution networks.
The reason is that the R/X ratio is usually high for radial distribution systems; therefore, much effort has
been made to develop modified versions of the conventional load flow methods to respond to the challenges
posed by peculiar distribution system characteristics [2-4]. The methods presented are modifications to

Newton-Raphson (N-R) and fast decoupled (FD) methods. They are simple in nature, having no mathe-
matical approximations, and require almost no additional storage, but they are mainly devoted to solving
transmission, not distribution networks, that have high R/X ratios and poorly initialized power systems.

In view of the topological specialty of distribution networks, and non-applicability of the simplifying
assumptions of a decoupled Jacobian matrix normally applicable to transmission networks, researchers
dealing with distribution systems have proposed several special load flow analysis techniques for distribution
networks.

Kersting and Mendive [5], and Kersting [6] developed techniques for solving the load flow problem
in radial distribution networks based on ladder-network theory in the iterative routine. This solution is
complicated and has many assumptions for a typical distribution system, which is rarely a pure ladder
network. In other words, the method is not designed to efficiently solve for meshed networks. Moreover,
Stevens et al. [7] demonstrated that the ladder-based technique is very fast, but does not guarantee
convergence.

Based on Kirchhoff’s voltage and current laws, a method for solving radial distribution networks
has been presented in [8]. In this method, a branch-numbering scheme was employed to enhance the
computations. The method was then extended to apply to weakly meshed networks. In this method, they
first break the interconnected grid at a number of points (breakpoints) in order to convert it into one simple
radial network. Each breakpoint will open one simple loop. The radial network is solved by direct application
of Kirchhoff’s laws. Then they account for the flows at the breakpoints by injecting currents at their 2 end
nodes. The numerical efficiency of this method, however, diminishes as the number of breakpoints required
to convert the meshed network to a radial configuration increases. This restricts the practical application of
the method to weakly meshed networks.

Baran and Wu [9,10] performed load flow analysis in a distribution system using an iterative solution
of 3 fundamental equations representing real and reactive power, and voltage magnitude. The 3 equations
are useful because they can be used in real systems rather than in other classically known forms. Here,
they computed the system Jacobian matrix using a chain rule. The mismatches and the Jacobian matrix
involve only evaluating simple algebraic expressions and no trigonometric functions. The formulation and
evaluation of Jacobians are time consuming and require large amounts of computer memory storage.

Goswami and Basu [11] presented a direct method for solving radial and meshed distribution networks.
Their method has the advantages of a no convergence problem, a guaranteed accurate solution for any realistic
distribution system, and the ease with which composite loads can be represented. The disadvantages are
difficulty numbering the nodes and branches, and that no node in the network is the junction of more than
3 branches.

Das et al. [12] presented a load flow method for radial distribution networks based on evaluating
the total real and reactive power fed through any node. They created a unique node, branch, and lateral
numbering scheme to enhance the evaluations of real and reactive loads fed through any node and receiving
end voltages. This method has the advantage that all data can be stored in vector forms, thus saving an
enormous amount of computer memory.

Ghosh and Das [13] presented a simple method for solving radial distribution networks by evaluating
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only a simple algebraic expression of receiving end voltages. In this method, the authors assumed an initial
flat voltage for all nodes. Then, by numbering the nodes beyond each branch, they calculated the loads and
charging currents, followed by the branch currents. The modified nodal voltages were recalculated, as were
the losses. Evaluating the difference between new and previous voltage values and then comparing it with
an accepted tolerance verified the convergence for this method. The method is simple and has good and fast
convergence, and can be used for composite load modeling, if the composition of the loads is known.

In this paper a novel technique, which is a developed form of the method described in [14] and is
suitable for unbalanced 3-phase radial distribution systems with minimum memory requirements and faster
convergence performance, is described.

2. The Load Flow Algorithm for Balanced Radial Distribution
Networks

The new method explained in [14] was developed for balanced radial distribution feeders with laterals.
Compared to conventional methods, the Ybus matrix method has 2 advantages: relative insensitivity to the
initial voltage estimate and programming simplicity. Its major weakness is a slow convergence rate, especially
in radial systems. The Newton-Raphson algorithm is known for excellent convergence characteristics. Its
major drawback is the requirement of the Jacobian matrix, which is approximately 4 times the size of the
Ybus matrix and needs to be recalculated for every iteration. In distribution studies, because of smaller X/R
ratios associated with smaller conductors, the Jacobian matrix cannot be simplified. This fact makes the
Newton-Raphson approach rather unattractive.

The new method does not use any large matrix and so the amount of computer memory used is much
less compared to conventional ones. As the formulation is very simple, the method is very fast.

In this formulation the branches are represented by their single-line diagram and the loads are assumed
to be balanced. In this method the analysis begins by assuming initial values for the bus voltages. The
currents taken by different buses are calculated starting from the end buses to the source. The source
bus current is updated and the branch currents are again calculated from the source to the end buses.
The calculations are repeated until the difference between the losses calculated in 2 consecutive iterations
becomes considerably low.

The method is completely different than conventional ones and has been applied to the study of some
practical distribution networks, and the results given in [14] demonstrate its priority.

3. Proposed Method

The novel technique developed is suitable for unbalanced 3-phase radial distribution systems. The analysis
proceeds from one branch to another in a systematic way until all the branches in the feeder have been
traced. First, the voltages at all the buses, except the source bus, are assumed to be 1 p.u., with zero
angle at phase a, +120◦ on phase b, and −120◦ on phase c. Based on these voltages and specified active
and reactive power, simultaneously, the branch currents, starting from the end buses to the source, are
calculated and saved. This, of course, requires a logical procedure to ensure that the branches of the system
are correctly traced; therefore, the branch incidence table as described in [14] is used. Then, branch currents,
including the return-conductor current, are computed in order to find the active and reactive power losses
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in the system. The current at the source end is now calculated as follows:
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∑
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QLoss are the total losses in phase

m, and V ∗
Sm is the conjugate of source voltage on phase m. The computation then proceeds from the source

to the end of the feeder to find the voltage drop, current, and loss in each branch in each phase of the
feeder, including the return conductor, in a systematic manner. The branch incidence table is again used
to facilitate proper retracting of the network branches. Once this process is completed, the total losses are
calculated and compared to the values initially obtained by assuming one per unit voltage at all the buses.
If the difference is outside the specified tolerance limits, the source current is re-computed using eq. (1), in
terms of the newly obtained values for losses, and the path retracting operation is repeated. The process is
repeated until the difference in losses between 2 successive values of the source current is within the specified
tolerance limits. The feeder is represented by its unbalanced 4-line representation [14] shown in the i-th
branch in Figure 1.
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Figure 1. Four-line representation of each branch in an unbalanced distribution feeder.
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and the losses in each branch are computed by




(SLOSS)a

(SLOSS)b

(SLOSS)c

(SLOSS)d


 =




Ia

Ib

Ic

Id




t 


Zaa

Zba

Zca

Zda

Zab

Zbb

Zcb

Zdb

Zac

Zbc

Zcc

Zdc

Zad

Zbd

Zcd

Zdd







Ia

Ib

Ic

Id




∗

(3)

The computer program flow-chart developed for the calculations is given in Figure 2.

No

Start

Read input data
Initialize the bus voltages

Calculate the bus currents

Calculate branch currents and total losses (equation .3)

Calculate the bus voltages from the source to the end buses

(equation. 2)

k=k+1
Check for

convergence

Calculate the source current (equation.1)

Stop

Yes

No

Stop

{i=2, 3, ... n}
Vi,m

(0)
= 1.p.u. {m=a, b, c}

Pi, m
- jQi, m

V i, m
*(k)

Ibus,i,m

(k)
=

TLOS(k)

TLOS(k) - TLOS(k-1)≤ε

V i, m
(k)

k ≥ k spec.

Figure 2. Flow-chart for the proposed 3-phase load flow method.

4. Case Study and Results

The iterative design procedure presented in this paper was applied to the elaborate numerical example shown
in Figure 3. Chosen was a realistic multi-grounded, 3-phase feeder with lateral branches and 5 wire sizes
(Table 1). This feeder had 3-phase, 2-phase, and single phase branches, and was almost 35 miles in overall
length.
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Figure 3. An unbalanced distribution feeder with unbalanced load (ground conductor is not shown).

Table 1. Physical characteristics of the phase conductors.

Branch Phases Spacing-type Phase Ground Length
Conductor Conductor (Mile)

1-2 A,B,C 1 300 Cu 1/0 Cu 3.01
2-3 A,B,C 4 336 Al 1/0 Cu 0.85
3-4 A,B,C 4 336 Al 1/0 Cu 0.86
4-5 A,B,C 4 2/0 Cu 4 Cu 1.51
5-6 A,B,C 4 2/0 Cu 4 Cu 0.70
6-7 A,B,C 2 2 Cu 4 Cu 1.29
7-8 A,B,C 2 2 Cu 4 Cu 1.06
8-9 A,B,C 2 2 Cu 4 Cu 1.13
9-10 A,B,C 3 4 Cu 6 Cu 1.13
10-11 A,B,C 3 4 Cu 6 Cu 1.13
11-12 A,B,C 3 4 Cu 6 Cu 3.21
12-13 C 3 4 Cu 6 Cu 1.48
13-14 C 3 4 Cu 6 Cu 0.60
14-15 C 2 4 Cu 6 Cu 1.24
9-16 A,C 3 4 Cu 6 Cu 0.56
16-17 A,C 3 4 Cu 6 Cu 0.54
17-18 A,C 2 2 Cu 4 Cu 0.98
7-19 B,C 2 2 Cu 4 Cu 0.63
19-20 B,C 2 2 Cu 4 Cu 2.14
20-21 B,C 2 2 Cu 4 Cu 1.66
7-22 A,B,C 2 2 Cu 4 Cu 0.61
4-23 A,B,C 4 2/0 Cu 1/0 Cu 1.27
23-24 A,B,C 4 2/0 Cu 4 Cu 0.77
24-25 B 2 2 Cu 4 Cu 0.68
25-26 B 2 2 Cu 4 Cu 1.68
26-27 B 2 2 Cu 4 Cu 1.30
27-28 B 3 4 Cu 6 Cu 1.31
2-29 C 4 336 Al 1/0 Cu 1.68
29-30 C 3 2/0 Cu 4 Cu 1.22
30-31 C 3 4 Cu 6 Cu 0.81

The self and mutual impedances were calculated for different spatial configurations (Table 2).
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Table 2. Physical configuration of the phase conductors (Deq is the equivalent equilateral spacing between phases).

Type 1 2 3 4
a : •
b : • b : • b : • • • •
c : •

a : • a : • bc

c : • c : •
w : •

w : • w : • w : •
Spacing

Dab 42 32 28 84
Dbc 42 32 28 42
Dca 84 36 36 42
Daw 142 60 43 62
Dbw 100 84 53 50
Dcw 58 60 43 62
Deq 53 33 30 52

The parameter calculation was performed as described in [15]. The loading at each bus of the feeder
is shown in Table 3.

Table 3. Phase loads in kW(blank spaces indicate that the corresponding buses do not physically exist).

Bus No. Phase A Phase B Phase C
3 155 0 58
5 0 0 104
6 63 0 0
7 13 0 0
10 0 11 21
12 29 12 34
13 73
14 37
15 81
16 53 53
17 61 61
18 53 53
19 48 48
20 58 0
21 55 55
22 58 46 23
23 109 29 58
24 0 0 213
26 124
27 61
28 88
29 98
30 98
31 98

The voltage profile obtained using the proposed method is presented in Table 4, which is the same as
the results given by conventional methods.
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Table 4. Voltage profile of the feeders.

Bus No. Phase A Phase B Phase C Phase N
(p.u.) (p.u.) (p.u.) (p.u.)

1 1.0000 1.0000 1.0000 0.000
2 0.9731 0.9759 0.9693 0.0083
3 0.9710 0.9738 0.9662 0.0106
4 0.9695 0.9717 0.9633 0.0129
5 0.9671 0.9696 0.9582 0.0191
6 0.9660 0.9686 0.9562 0.0213
7 0.9630 0.9665 0.9507 0.0256
8 0.9613 0.9665 0.9473 0.0297
9 0.9594 0.9665 0.9436 0.0327
10 0.9590 0.9663 0.9405 0.0364
11 0.9586 0.9663 0.9376 0.0399
12 0.9574 0.9661 0.9294 0.0503
13 0.9574 0.9661 0.9261 0.0547
14 0.9574 0.9661 0.9253 0.0559
15 0.9574 0.9661 0.9242 0.0574
16 0.9583 0.9665 0.9426 0.0341
17 0.9576 0.9665 0.9419 0.0351
18 0.9572 0.9665 0.9415 0.0355
19 0.9630 0.9658 0.9501 0.0254
20 0.9630 0.9639 0.9492 0.0248
21 0.9630 0.9633 0.9484 0.0252
22 0.9627 0.9663 0.9506 0.0254
23 0.9687 0.9697 0.9617 0.0134
24 0.9687 0.9686 0.9609 0.0136
25 0.9687 0.9671 0.9609 0.0122
26 0.9687 0.9635 0.9609 0.0114
27 0.9687 0.9619 0.9609 0.0122
28 0.9687 0.9607 0.9609 0.0126
29 0.9731 0.9659 0.9687 0.0094
30 0.9731 0.9659 0.9687 0.0094
31 0.96 0.9659 0.9687 0.0094

The above methods were used to study the 32-feeder on a cyber 180-855 CDC computer, and the
computing times, using the Gauss-Seidel, the Newton Raphson, and the new methods, were 70, 30, and 0.2
s, respectively.

Comparing the accuracy and the speed of the method presented with the conventional methods, the
same results with the same accuracy were calculated, but the speed was significantly increased and the
computational memory requirement was greatly reduced.

5. Conclusions

In this paper a novel technique was presented for the load flow analysis of unbalanced 3-phase radial
distribution feeders. The method does not use large matrices so that the computational memory requirement
is smaller compared to those in conventional approaches.

The method is completely different from conventional approaches. It was applied to the study of
similar practical networks, and the results demonstrated its computational superiority.
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This method is based on the formation of a constant matrix based on the network topology, which
is required to be formed only once. This method does not involve any complex mathematical routines, nor
does it require any matrix inversion. Additionally, the loads can be represented by any suitable model. It is
considered that other applications can be developed as a consequence of the proposed method, opening new
research possibilities in the field of distribution networks, which perhaps has not received much attention in
the past.

Implementation and results show that this development is simple, accurate, fast, reliable, and has low
storage requirements. It can also be used for on-line control applications.
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