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Abstract

We present a comparative evaluation of two novel and practical perfectly matched layer (PML)

implementations to the problem of mesh truncation in the finite element method (FEM): locally-conformal

PML, and multi-center PML techniques. The most distinguished feature of these methods is the simplicity

and flexibility to design conformal PMLs over challenging geometries, especially those with curvature

discontinuities, in a straightforward way without using artificial absorbers. These methods are based

on specially- and locally-defined complex coordinate transformations inside the PML region. They can

easily be implemented in a conventional FEM by just replacing the nodal coordinates inside the PML

region by their complex counterparts obtained via complex coordinate transformation. After overviewing

the theoretical bases of these methods, we present some numerical results in the context of two- and

three-dimensional electromagnetic radiation/scattering problems.
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1. Introduction

Perfectly matched layers (PMLs) have been popular in the finite element method (FEM) and the finite

difference time domain method (FDTD) for solving the domain truncation problem in electromagnetic
radiation and scattering problems. The PML approach is based on the truncation of computational domain
by a reflectionless artificial layer which absorbs outgoing waves regardless of their frequency and angle of
incidence. The main advantage of the PML is its close proximity and conformity to the surface of the
radiator or scatterer, implying that the white space can be minimized.

The PML concept has been introduced by Berenger [1] in the FDTD method by using a split-field

formulation in cartesian coordinates. Alternatively, Chew and Weedon [2] achieved a PML action in the
FDTD via the concept of complex coordinate stretching, which is basically the analytic continuation of
the electromagnetic fields to complex space. Both approaches yield non-Maxwellian fields within the PML
domain. A touchstone to initiate the implementation of the PML in the FEM is achieved by Sacks et al.
[3], who constructed a Maxwellian PML in cartesian coordinates as an ‘anisotropic layer’ with appropriately
defined permittivity and permeability tensors. The anisotropic PML has been extended to cylindrical and
spherical coordinates [4], and has been used in the design of conformal PMLs using a local curvilinear
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coordinate system [5]. Then, the anisotropic PML has been investigated extensively in literature [6–11].
The concept of coordinate stretching has also been used in the FEM, not directly, but through the mapping
of the non-Maxwellian fields obtained during the complex coordinate transformation to a set of Maxwellian
fields in an anisotropic medium representing the PML [12].

All of the above-mentioned PML approaches in the FEM history employ artificial absorbing materials
and a local/nonlocal coordinate system in order to design the PML as an ‘anisotropic medium’ having suitably
defined constitutive parameters. In addition, a majority of PML realizations in FEM simulations have been
implemented in a rectangular prism or spherical PML domain, which does not have arbitrary curvature
discontinuities. However, the locally-conformal PML [13–16] and multi-center PML [16, 17] methods are
non-Maxwellian PML implementations which do not use any artificial anisotropic materials and coordinate
system. These methods utilize a specially- and locally-defined complex coordinate stretching, and thus,
make possible the easy design of conformal PMLs having challenging geometries, especially having some
intersection regions or abrupt changes in curvature. Such conformal PML domains are very crucial especially
in radiation and scattering problems, because they decrease the computational demand (such as memory

and processing power) on account of a minimization of the white space. The locally-conformal PML and
multi-center PML methods are designed in complex space by just replacing the real coordinates with their
complex counterparts calculated in terms of the complex coordinate transformation. This is due to the fact
that the equations related to the FEM formulation in the PML region are expressed directly by the nodal
coordinates. In this formulation, Maxwell’s equations are modified accordingly inside the complex space,
and the elements in the real coordinate system are mapped to the complex elements (i.e., elements whose

nodal coordinates are complex) in complex space. Then, the weak variational form of the wave equation is
discretized using these complex elements which are determined by the complex coordinate transformation.

In this paper, we first overview the equations governing the parametric construction of the locally-
conformal PML and multi-center PML methods in Sections 2 and 3, respectively. Then, we demonstrate
some numerical applications involving electromagnetic radiation/scattering problems in Section 4.

2. Locally-Conformal PML Method

In both locally-conformal PML and multi-center PML methods, the initial step is the spatial construction
of the PML region (ΩPML) as conformal to an arbitrary source volume Ω containing sources and objects

(or scatterers). The source volume can be determined as the convex hull (i.e., the smallest convex set that

encloses the sources and objects) to minimize the computational domain. We illustrate the locally-conformal

PML method in Figure 1(a), which shows a partial cross-section of an arbitrary PML region ΩPML enclosed
within the boundaries ∂Ωa and ∂Ωb .

In the locally-conformal PML method, each point P in ΩPML is mapped to P̃ in complex PML

region Γ ⊂ C3 , through the complex coordinate transformation which is defined as (assuming a suppressed

time-dependence ejωt)

�̃r = �r +
1
jk
f (ξ) n̂(ξ) (1)

where �r ∈ �3 and �̃r ∈ C3 are the position vectors of the points P in real space and P̃ in complex space,
respectively; k represents the wave number; and ξ is the parameter defined by

ξ = ‖�r − �ra‖ , (2)
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Figure 1. (a) Locally-conformal PML, (b) Multi-center PML.

where �ra ∈ ∂Ωa is the position vector of the point Pa located on ∂Ωa , which is the solution of the
minimization problem

min
	ra ∈ ∂Ωa

‖�r − �ra‖ . (3)

Equation (3) yields a unique �ra because ∂Ωa is the boundary of the convex set, and which can be simply
performed by using some search techniques in the mesh coordinates of the conventional FEM program.
Furthermore, n̂(ξ) is the unit vector defined by

n̂(ξ) = (�r − �ra)/ξ (4)

and f (ξ) is a monotonically increasing function of ξ as follows

f (ξ) =
α ξm

m ‖�rb − �ra‖m−1 , (5)

where α is a positive parameter (practically, 5k ≤ α ≤ 15k for a PML thickness between λ/4 and λ/2 where

λ is the wavelength), m is a positive integer (typically 2 or 3) related to the decay rate of the magnitude
of the field inside ΩPML , and �rb is the position vector of the point Pb which is the intersection of the line
passing through �r and �rb (i.e., the dotted line in Figure 1(a)) and ∂Ωb . We note that ‖�rb − �ra‖ represents

the local PML thickness for the corresponding PML point. The transformation in (1) can be implemented
in a FEM program by replacing the real-valued node coordinates inside ΩPML by their complex-valued
counterparts calculated by (1).

It is worth mentioning that the transformation in (1) is local, meaning that each PML point has its
own parameters depending on its position inside the PML region. Therefore, the geometry of ∂Ωa is not
important, and the transformation yields analytic continuity even in the case of curvature discontinuities
on ∂Ωa . It is evident that if the curvature of ∂Ωa is continuous, the unit vector is normal to ∂Ωa . In
addition, the transformation in (1) meets the following three conditions which are essential for a successful
PML design:

(i) the outgoing wave in the neighborhood of Pa is transmitted into ΩPML without any reflection;
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(ii) the transmitted wave decays monotonically within ΩPML along the direction of the unit vector;

(iii) the magnitude of the transmitted wave is negligible on ∂Ωb .

Inside the complex PML space, the Maxwell’s equations are modified as follows

∇̃ × �Ec
(
�̃r
)

= −jωµ0
�Hc

(
�̃r
)

(6a)

∇̃ × �Hc
(
�̃r
)

= jωε0 �E
c
(
�̃r
)
, (6b)

where ε0 and µ0 are free-space permittivity and permeability values, respectively; �Ec
(
�̃r
)

and �Hc
(
�̃r
)

are

the analytic continuation of �E (�r) and �H (�r) to complex space, respectively; and ∇̃ is the nabla operator
in complex space and is given by

∇̃ = [¯̄J
−1

]T · ∇, (7)

where ¯̄J =∂ (x̃, ỹ, z̃)/∂ (x, y, z) is the Jacobian tensor. Then, the vector wave equation in complex space is
derived as

∇̃ × ∇̃ × �Ec
(
�̃r
)
− k2 �Ec

(
�̃r
)

= 0. (8)

Using the method of weighted residuals, the weak form of this wave equation is expressed as
∫

ΩP ML

[
∇̃ × �Ec

(
�̃r
)]

·
[
∇̃ × �W c

]
dΩ − k2

∫

ΩP ML

�Ec
(
�̃r
)
· �W cdΩ = 0, (9)

where �W c is a vector weight function in complex space. In the FEM, we solve (9) by discretizing the

computational domain using complex edge elements (such as tetrahedrons). It is obvious that the equations
governing the FEM formulation preserve their form inside the PML region, except that the coordinate
variables are complex. Similarly, in 2D, the Helmholtz equation preserves its form in complex space. Then,
the weak form of the Helmhotz equation in complex space is solved by discretizing the computational domain

using complex nodal elements (such as triangles). Although the fields �Ec
(
�̃r
)

and �Hc
(
�̃r
)

in the complex

PML region are non-Maxwellian in terms of the real coordinate variables, the FEM formulation can still be
carried out within the PML region which is a subset of the complex space (it is shown in [13, 14] in detail).
If a Maxwellian PML is desired, the locally-conformal PML may also be extended to obtain an anisotropic
PML by mapping the resulting non-Maxwellian fields to Maxwellian fields in an anisotropic medium, as
shown in [14]. However, this anisotropic PML implementation is much more complicated both analytically
and computationally.

3. Multi-Center PML Method

The multi-center PML method, which is illustrated in Figure 1(b), is basically a generalization of the locally-

conformal PML method. This method is based on a finite number of center points (such as P1 and P2 in

Figure 1(b)) inside the source volume (Ω). After choosing the centers appropriately, the unit vectors ( â1
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and â2) corresponding to each center point are calculated emanating from these centers in the direction of

the PML point, P. Then, the points on the boundaries ∂Ωa and ∂Ωb (i.e., Pa1 , Pb1 , Pa2 and Pb2) are

determined using these unit vectors, as shown in Figure 1(b). The unit vector ân , which is shown by the

dotted line, is equivalent to n̂(ξ) in (4). Moreover, θ1 and θ2 are the angles between ân and the unit vectors
â1 and â2 , respectively.

In the multi-center PML method, the complex coordinate transformation which maps each point P

in ΩPML to P̃ in complex PML region Γ ⊂ C3 , is defined as follows

�r′ = �r +
α

jk

N∑
i=1

wi
(dai)

m

m (dbi)
m−1 âi, (10)

where α and m are the same as before,N is the number of the centers, dai is the distance between P and
Pai for the i-th center (P i), dbi is the distance between Pbi and Pai for P i , and wi is the real weight value
assigned to P i . The sum of all weights should add up to 1, and each weight wi is inversely proportional
to the angle θi , whose value is less than or equal to 45◦ . The value “45◦” is the threshold value in the
assignment of the weights, and it has been determined empirically via some numerical experiments [17]. The
weight selection scheme assigns the highest priority to the center whose unit vector âi makes the smallest
angle with ân . In order to achieve smooth decay inside the PML region, the centers should be chosen in
such a way that each PML point should have at least one center, whose angle θi is less than or equal to
45◦ . In some smooth geometries (such as a spherical or cubical shell), a single center-of-mass point can
provide reliable results. The center selection scheme is a straightforward task depending on the geometrical
structure of the PML region. It is worth mentioning that the increase in the number of centers creates
negligible burden on the memory requirement and the processing power of the computer (compared to those

needed for the matrix construction and solution phases of the FEM), because the multi-center PML method
is implemented in the pre-processing phase.

Similar to the locally-conformal PML method, the effect of the complex coordinate stretching in (10)
can be easily incorporated into the FEM by interchanging the real coordinates with the complex coordinates,
because the local FEM matrix entries depend on the coordinate variations.

4. Numerical Examples

In this section, we demonstrate some numerical experiments by means of some two- and three-dimensional
(2D and 3D) electromagnetic radiation/scattering problems. In 3D, we consider the problem of scattering by

a perfectly-conducting object. In 2D, we consider two problems: (i) TMz electromagnetic scattering problem
involving a single infinitely-long cylindrical perfectly-conducting object with an arbitrary cross-section, and
(ii) radiation of a single line-source inside an infinitely-long cylindrical region of arbitrary shape.

While simulating the radiation problem, we take the position of the line-source as a ‘random variable’
uniformly distributed inside a region because the source position may affect the accuracy. For this purpose,
we resort to the “Monte Carlo” simulation technique in order to show that the PML methods achieve
reliable and robust results irrespective of the source position. We determine randomly ‘2000 different source
positions’, and we run the program 2000 times using them. For each run, we calculate a mean-square error
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criterion in Ω as

E =

∑
Ω

∣∣∣�E − �Eanalytic
∣∣∣2

∑
Ω

∣∣∣�Eanalytic
∣∣∣2

, (11)

where �E is the field calculated by either the locally-conformal PML method or the multi-center PML method,

and �Eanalytic is the field calculated analytically in Ω (free-space).

In scattering problems, the performances of the PML methods are tested in terms of the radar-cross-
section (RCS) calculations of the objects, and are validated with the results of a standard method-of-moments

(MoM) code or literature. The common parameters in all experiments are: k is 20π (i.e., the wavelength

λ is 0.1 meter), m is 3, and α is chosen in the range between 5k–10k . In addition, the PML thickness is

approximately set to λ/4.

Figure 2. Scattering from a hexagonal cylinder: (a) Mesh structure, (b) RCS profile, (c) Scattered field contour in

the locally-conformal PML, (d) Scattered field contour in the multi-center PML.
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4.1. 2D Simulations

The first example considers the problem of scattering from a hexagonal cylinder, whose mesh structure with
triangular elements is shown in Figure 2(a). Gray dots in this figure indicate the center positions chosen
in the multi-center PML implementation. Assuming that the angle of incidence of the plane wave is 180◦

with respect to the x -axis, we plot the bistatic RCS profiles in Figure 2(b). We also plot the contours of

the scattered field (magnitude) for the locally-conformal PML and the multi-center-PML implementations

in Figure 2(c) and (d), respectively.

The second example is the problem of radiation by a line-source inside the infinitely-long cylindrical
region of ‘ogive’ cross-section, as shown in Figure 3(a). Five centers are selected in the multi-center PML

Figure 3. Monte Carlo simulation of the radiation problem in ogive domain: (a) Mesh structure, (b) Error scatter

plot in the locally-conformal PML, (c) Error scatter plot in the multi-center PML, (d) Error histogram and statistics

in the locally-conformal PML, (e) Error histogram and statistics in the multi-center PML.
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implementation. In the Monte Carlo simulation, we choose 2000 different source positions inside the empty
(or white) region in Figure 3(a). After we calculate the error values for each run, we plot the error scatter

plot (it shows the error value at each source position) in Figure 3(b) and (c) for the locally-conformal PML

and multi-center PML methods, respectively. We also plot the error histogram in Figure 3(d) and (e) for the
locally-conformal PML and multi-center PML methods, respectively. We show some statistical error values
(i.e., mean, variance, etc.) on these plots.

4.2. 3D Simulations

The first problem considers the scattering from a perfectly-conducting cube whose edge length is 0.755λ .
The cross-sectional mesh structure using tetrahedral elements is shown in Figure 4(a). The incident plane
wave propagates along the positive z -direction, and the electric field is polarized along the y -direction. A
single center is chosen at the center-of-mass in the multi-center PML method. We plot the bistatic RCS
profiles in Figure 5, by comparing them with [18].

Figure 4. Mesh structure in 3D scattering problem: (a) Cube, (b) Prolate spheroid.

Figure 5. Bistatic RCS profile of cube: (a) φ = 90◦ plane, (b) φ = 0◦ plane.
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The second example deals with scattering from a prolate spheroid whose semi-major axis is 0.8λ and
axial ratio is 2. The incident plane wave propagates along the negative z -direction, and the electric field is
polarized along the y -direction. Three centers are chosen for the multi-center PML method, as illustrated
in Figure 4(b). We plot the bistatic RCS profiles in Figure 6, by comparing them with [19].

Figure 6. Bistatic RCS profile of prolate spheroid: (a) φ = 90◦ plane, (b) φ = 0◦ plane.

These examples demonstrate that the locally-conformal PML and the multi-center PML methods are
efficient absorbers for the FEM mesh truncation having arbitrary geometries.

5. Conclusion

In this paper, we have presented a comparative evaluation of the locally-conformal PML and multi-center
PML methods for finite element mesh truncation. We have shown that these methods are very simple and
practical, and they make easier the design of conformal PMLs enclosing arbitrarily-shaped convex sets. The
implementations of these methods are based on a single algorithm performing the task which replaces the real
coordinates inside the PML region with their complex counterparts calculated by the complex coordinate
transformation, without altering the original FEM formulation. We have investigated the accuracy of these
methods by means of some numerical comparisons.
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