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Abstract

The aim of this paper is to discuss rectangular and cylindrical representations of finite-difference

time-domain (FDTD) method over characteristic tests and comparisons. A ring resonator is chosen as

a canonical structure and modeled with both rectangular- and cylindrical-FDTD packages. Calibration

against analytical exact solution derived in terms of cylindrical Bessel functions is also performed. It

is shown that rectangular-FDTD with periodic boundary condition, where the computation domain is

reduced, can also be applied in modeling circular structures.

1. Introduction

A ring (circular) resonator with rectangular cross-section and perfectly electrical conductor (PEC) walls

(Figure 1) is a canonical structure for the comparisons of rectangular and cylindrical FDTD packages, since.

i. Analytical exact (reference) solution can be derived in terms of Green’s functions in cylindrical coor-
dinate system;

ii. The structure fits into the cylindrical FDTD space without any staircase discretization error;

iii. The structure may be represented in the rectangular FDTD space with staircase approximation (and

introduces discretization errors); and

iv. The structure may also be represented in the rectangular FDTD space if periodic boundary condition
(PBC) is applied at both terminations (without using staircase approach).

Any EM problem (structure) can be represented in a discrete environment within the FDTD computation
volume either in rectangular or in cylindrical coordinates as long as the problem specific boundary and initial
conditions are adequately modeled and stability/numerical dispersion conditions are satisfied. In this study,

discretization and numerical modeling of cylindrical structures such as groove resonators [1], microstrip ring

resonators [2], is considered via rectangular and cylindrical Finite Difference Time Domain (FDTD) methods,

of which preliminary results are discussed in [3].
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Figure 1. The rectangular ring resonator (top) and its cross-sectional view with illustration of the z-directed

excitation (bottom).

2. Ring Resonators and Green’s Function Representations

The ring resonator as pictured in Figure 1 is bounded between a and b radially (a < ρ < b), between 0

and h vertically(0 ≤ z ≤ h), and between 0 and 2π azimuthally (0 ≤ ϕ ≤ 2π), where the width w of the

cross-section of the ring resonator is w = b−a and the mean peripheral length is L = π(b+a). The Green’s

function problem for a z-directed short dipole source at (ρ′, ϕ′, z′) inside the resonator can be obtained via
the wave equation in the cylindrical coordinate system[
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G(ρ, ϕ, z; ρ′, ϕ′, z′) = − δ(ρ− ρ′)δ(ϕ − ϕ′)δ(z − z′)

ρ
(1)

together with the boundary conditions

∂G/∂z = 0at z = 0, hand G = 0 at ρ = a, b (1a)

and periodicity condition in ϕ-direction, where k is the free space wavenumber.

The wave equation (1) for the non-penetrable ring resonator can be reduced to three one-dimensional
wave equations using the separation of variables technique and can be solved separately. Following this
procedure yields the solution in terms of first and second kind Bessel functions as [4]
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where

Am =
{

1/h m = 0
2/h else

(2a)

R(λρ) = N [Jn(λρ) + C1Yn(λρ)] , C1 =
Jn(λa)

Y
(
nλa)

(2b)
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Jn(λb) +
Jn(λa)
Yn(λa)

Yn(λb) = 0 at λ = λmnl, (2c)

and the normalization constant is found as

N =
1[

b∫
a

[R(λmnlρ)] ρdρ

]1/2
. (2d)

Here, Jn(λρ) and Yn(λρ)are the first and second kind Bessel functions, respectively, and λmnl

correspond to the eigenvalues. Equation (2) can be used to calculate field distribution at any point inside
the ring resonator excited by the z-directed short dipole. The resonance frequencies can also be found via
the relation

fmnl =
c

2π
√
εr

√(mπ

h

)2

+ λ2
mnl, (3)

where εr is the relative dielectric permittivity inside homogeneously filled resonator; c denotes the velocity
of light. Unfortunately, this requires a triple series summation with infinite number of terms; therefore one
need to introduce simplifications in order to reduce the numerical burden. Also, a small loss should be
introduced to the medium inside the resonator (i.e., k is assumed complex) in order to avoid numerical

problems at frequencies close to the resonator’s resonances. A z-directed line source with amplitude I0 (see

Figure 1), i.e.

#Jz = #ezI0
δ(ρ− ρ′)δ(ϕ− ϕ′)

ρ
, (4)

further simplifies the solution (i.e., ∂/∂z ≡ 0), and triple summation reduces to a double summation. In
this case the resonance frequencies are obtained as

f0nl =
c

2π
√
εr

λ.
0nl (5)

3. Ring Resonators and FDTD Modeling

Three techniques are used for the FDTD-based numerical analysis of ring resonators together with tests
and comparisons among them, as well as against analytical exact solution. The modeling of any type of
ring resonators (i.e. groove, microstrip, etc.) via FDTD in both Cartesian and cylindrical coordinates is
straightforward. In general, it may be extremely time consuming to work with cylindrical FDTD simulations
in the vicinity of the origin (ρ → 0) since the cell size in ϕ-direction decreases with decreasingρ , and this
requires very small time steps in order to satisfy Courant stability criterion. This difficulty is removed if the
origin is excluded, as in the ring resonator, or if there is no variation in ϕ-direction, for example, as in body
of revolution (BOR) type radiation problems.

It is possible to model a ring resonator by applying PBC at the both ports of a regular waveguide
in Cartesian coordinates to simulate the angular periodicity (Figure 2). Here, the ring resonator given in
Figure 1 is also analyzed using rectangular cross section waveguide with the help of “wrap-around” approach
required to apply PBC [5].
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wrap-around

Periodic BC

Figure 2. Rectangular cross section waveguide with periodic boundary condition applied at input and output ports.

4. Numerical Applications

Three FDTD packages are prepared for the investigation of ring resonators: R-FDTD based on FDTD
in rectangular (Cartesian) coordinates, C-FDTD based on FDTD in cylindrical coordinates and P-FDTD
based on rectangular FDTD together with PBC in longitudinal direction. The rectangular system is usually
preferred because the spatial cell sizes are uniform over the whole R-FDTD space, while in C-FDTD one
side of the cell isρ∆ϕ , which varies radially. This should be taken into account when the FDTD parameters
are specified.

The validation of the FDTD packages and verification of numerical data are realized via comparisons
against analytical exact solution. A circular ring resonator with PEC walls is taken into consideration with
parameters a = 6 mm, b = 12 mm and h = 1 mm. The resonator is excited with a z-directed and sine-
modulated Gaussian short pulse line source at ρ′ = (a + b)/2andϕ′ = 0, of which center frequency is 25
GHz and bandwidth is 10 GHz. The cell sizes for C-FDTD and R-FDTD are taken as ∆z = ∆ρ = 0.2 mm,
∆ϕ = 1◦ and ∆x = ∆y = ∆z = 0.2 mm, respectively for the first test case. In R-FDTD, the number of
cells required to model cylindrical objects is greater, therefore computation time is longer compared to the
C-FDTD for the same number of time steps. Here 10,000 time steps is used for the first scenario and Ez

is accumulated at an observation point ofϕ = 120◦ , ρ = (a + b)/2 and z = h/2 for both packages. The

resonance frequencies are obtained via off-line discrete Fourier transform (DFT) applied to the recordedEz (t).
The numerical and analytical spectra are plotted in Figure 3. Here, solid and dashed lines, and the symbols
correspond to resonance frequencies obtained via R-FDTD, C-FDTD, and the analytic solution, respectively.
Since the specified bandwidth does not include resonances corresponding to higher order roots of (2c), only

l = 1, the first root of (2c), is taken into consideration for the analytical results. Besides, (5) is used to

calculate the resonance frequencies since m = 0 (i.e., line source in z-axis), therefore in Figure 3 the resonance
frequencies 24.85 GHz, 25.43 GHz, 27.11 GHz, 29.67 GHz, 32.89 GHZ, correspond to n = 0, 1, 2, 3, 4 with
l = 1 and m = 0, respectively. Although a good agreement between the numerical and analytical results is
observed in Figure 3, there is a slight discrepancy between R-FDTD and C-FDTD because of the staircase
approximation applied in R-FDTD. This deviation can be reduced if finer cell size (i.e. ∆x = ∆y = ∆z = 0.1

mm) is used in R-FDTD. The resonance frequencies obtained via R-FDTD with fine discretization is given
in Figure 4 together with C-FDTD and analytical results to emphasize the effect of staircase approach in
R-FDTD.

The resonance frequencies are also extracted from the P-FDTD package. In this case, the longitudinal
length of the waveguide is chosen to be equal to the mean peripheral of the circular ring resonatorL = π(a+b).
When PBC is applied at the input and output ports of the rectangular cross-section waveguide, the azimuthal
periodicity of the circular ring resonator is achieved. The width and height of the rectangular cross-section
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Figure 3. Resonance frequencies obtained via C-FDTD (dashed), R-FDTD with coarse grid (solid) and analytic

solution (symbol), where observation point is ϕ = 120◦ , ρ = (a + b)/2 and z = h/2.
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Figure 4. Resonance frequencies obtained via C-FDTD (dashed), R-FDTD with fine grid (solid) and analytic

solution (symbol), where observation point is ϕ = 120◦ , ρ = (a + b)/2 and z = h/2.

waveguide are taken as w = (b−a) andh , respectively. The cell sizes are taken as ∆x = ∆y = ∆z = 0.2 mm
and the number of cells inside the computation domain is less than the number of cells required in R-FDTD
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even for coarse grid case. The resonance frequencies obtained via P-FDTD and C-FDTD are plotted in
Figure 5 and Figure 6 for two different observation angles, ϕ = 120◦ and ϕ = 90◦ , respectively, where
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Figure 5. Resonance frequencies obtained via C-FDTD (dashed), P-FDTD (solid) and analytic solution (symbol),

where observation point is ϕ = 120◦ , ρ = (a + b)/2 and z = h/2.
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Figure 6. Resonance frequencies obtained via C-FDTD (dashed), P-FDTD (solid) and analytic solution (symbol)

where observation point is ϕ = 90◦ , ρ = (a + b)/2 and z = h/2.
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ρ = (a+ b)/2andz = h/2. The analytical exact solution is also included in the figures. It is clearly observed
that there is a good agreement between the three approaches in Figure 5, while the resonance frequencies
corresponding ton = 1 and n = 3, obtained via P-FDTD and C-FDTD, are invisible in Figure 6 compared
to the analytical results. This is caused by the fact that the chosen observation angleϕ = 90◦ is at the nulls
of the related modes since the source angle is at ϕ = 0◦ (i.e., the modes of these resonances are excited but

can not be observed when the observer stands on the modal null points).
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Figure 7. Time variation of normalized |Ez | obtained via C-FDTD (solid) and (a) R-FDTD with coarse mesh

(dashed), (b) R-FDTD with fine mesh (dashed) and (c) P-FDTD (dashed).
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The last example belongs to the time variation of normalized |Ez| calculated via R-FDTD, P-FDTD
and C-FDTD. The results are shown in Figure 7. R-FDTD results obtained with coarse mesh and fine
mesh are plotted in Figure 7(a) and 7(b), respectively, in order to show the reformative effect of using finer

mesh sizes. Nevertheless, a better agreement is observed in Figure 7(c) between the time domain signatures
obtained via P-FDTD and C-FDTD since there is no discretization error in the P-FDTD.

5. Conclusions

Rectangular and cylindrical representations of FDTD method are discussed and compared using a ring
(circular) resonator. In-house prepared FDTD codes in rectangular and cylindrical coordinates are used for
this purpose. Characteristic tests are performed in both time and frequency domains. The packages are
validated against analytical exact solutions derived in cylindrical coordinates. It has also been shown that,
the resonance frequencies of a ring resonator can also be obtained using PBC and wrap-around technique at
the input and output ports of a finite-length rectangular waveguide. It should be noted that the computation
domain is reduced if FDTD with PBC is used instead of R-FDTD in modeling of circular resonator type
structures.
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