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Abstract

A numerical method of moments (MoM) solution is applied to the electromagnetic scattering from a

periodic finite conducting strip array when the incident electromagnetic plane wave E and H polarizations

illuminate the grating. For such grating strip geometry, we deal with singular integral equations arising

from Neumann and Dirichlet boundary conditions. MoM is applied using band-limited sinc functions as

basis and testing functions. The Galerkin approach is followed in MoM formulation. The properties of the

sinc function, with the infinite integral, are exploited in the computations of the main matrix elements.

Also, the error in our approach goes to zero with increasing bandwidth or lower sampling rate. Results

of our formulation are given as surface current densities and far field scattered data. Our data is also

compared with previous results available in the literature.

1. Introduction

Electromagnetic scattering from strip geometries has been a great challenge for many years. Many researchers
focused on infinite number of strips, particularly in periodic structures. Various analytical and numerical
studies have been reported regarding this geometry for perfectly conducting and resistive type strips in
free space or on a grounded slab. The resistive strip grating [1] is usually solved by the Spectral-Galerkin

procedure. The Method of Moments (MoM) [2] is also used to solve for the Electric Field Integral Equation

(EFIE) describing the behavior of the strips. Perfectly conducting and resistive strips were used to model
the grounded dielectric slab geometry.

Recent advances in short pulse generation and processing have stimulated interest in wideband (WB)

and ultra-wideband phenomena. In [3], an efficient technique has been developed for the analysis and

numerical calculation of the ultra-wideband scattering from a finite array strips in free space. Later in [4],
the geometry of the resistive strips on the grounded dielectric slab was solved by improving the technique
presented in [3]. Also in [5], the absorption analysis of a strip grating placed on an absorber is studied

utilizing MoM. In [6], numerical results are provided based on a full-wave moment-method discretization of
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the relevant EFIE in the unit cell with an arbitrary phase shift between adjacent cells. This original MoM
technique is utilized in [6] for the analysis of linear phased arrays of microstrip leaky-wave antennas.

For double strips in [7] and [8], Wiener-Hopf’s technique is applied; but it is known that the asymptotic
solutions are effective at high frequencies. As for frequencies where strips are narrower than wavelength, a
quasi-static solution can be obtained as in [9]. An important alternative is to apply analytical technique in
addition to numerical techniques, where the singular integral equation is converted and reduced to Fredholm
second kind regular matrix [11]. For instance, various strip configurations in free space are analyzed by

Veliev [17]. Here, the accuracy is increased but due to the time forming the main matrix elements, the cpu
time of the overall solution is not reduced greatly.

In [10], a pure numerical solution is carried out at resonance, where the inverted matrix is too large,
making it difficult to apply three or more strips efficiently due to limited memory storage and CPU time.
The MoM procedure is applied in [15] using the closed form generalized Green’s functions, as well as the

generalized pencil-of-function method (GPOF), is applied to layered dielectric media. Free space results is

investigated in [16]. In our investigation, we choose sinc-type basis functions for the method of moments.

The sinc-type functons is widely used in a variety of cases, as shown in [12, 13]. For example, Recently,

Hallen integral equation [14] is solved via the sinc collocation method. We use here the sinc collocation
following the moment method procedure. Also the presented approach is applied to the singular EFIE as an
example and we immensely benefited from the properties of the sinc functions [18].

Sinc functions have the property that the convolution of two sinc functions, at different locations, is
a sinc function located at the point of the difference between the two. Therefore the convolution can be
computed from a simple substitution and scalar multiplication. The procedure is similar to the sampling
the surface current on the scatterer by using the sinc type interpolation. Then the integral of the Green’s
function, i.e. Hankel function, also with the sinc function appears in the same integrand is carried out at a
specified point. This integration produces the same Hankel function at this special point, i.e. the coordinate
difference of the sinc function’s peak. This property provides us not using the integral but a functional
expression with the specified error criteria and hence the running time of the code reduces appreciably. The
relative error in the computation of the main matrix elements reduces to zero as the bandwidth of the spatial
domain sinc function increases to infinity. Our computation revealed that acceptable accuracy is obtained
in reasonable bandwidth. The error is tabulated and presented in the numerical results section.

2. Formulation

Geometry with the general multi N strip case is illustrated in Figure 1(a). We use a finite set of parallel
conducting strips, infinitely long in the y-direction, located in the z = 0 plane. Coordinates of the initial

and final points of the strips are (xi1 , 0) and (xi2 , 0) for the ith strip, where i = 1,2,. . . ,N . This N strip

geometry is illuminated by the incident field with angle θinc with the z-axis. The time dependence ejwt will
be suppressed throughout.

The integral equation (IE) here can be derived by imposing the boundary conditions on the conducting
parts. The problem is formulated for both E and H polarities. Also, the scatterer surface is sampled uniformly
for the entire conducting part of the grating surface.

We thus separately examine the E-polarization and H-polarization cases.
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Figure 1. (a) Geometry of the problem for general N strip case (b) The sinc function given in the rectangular

coordinate system. The parameters of the sinc geometry can be written that n=10, W=500 and tx=0.001.

2.1. E-polarization case

The integral equation for the E-polarization can be given

Ein
y (x) = −(ωμ/4)

N∑
i=1

xi2∫
xi1

J i
y(x′)H

(2)
0 (k|x − x′|)dx′ (1)

where x is in the direction of the conducting parts of the strips. Equation (1) can be obtained by using the
auxiliary vector and scalar potentials. However, here there is no yvariation in the 2D geometry. Therefore
the derivatives with respect to y drop and the auxiliary vector potential simply produces equation (1). The

surface current density J i
y(x′)can be expanded into N dimensional orthogonal functional space consisting

of sinc type basis functions (see Appendix A). The surface current on the ith strip is given via the surface

current density with a sampling frequency 1/(2W ) (see Figure 1(b))

J i
y
∼=

ni2∑
p(i)=ni1

xp(i)sinc(2Wx′ − p(i)), (2)

where W is the bandwidth of the sinc function and xp(i) is the unknown coefficients of the current density

on the ith strip. Also, ni1 tx = xi1 and ni2 tx = xi2 , where tx = 1/(2W ). Hence numbers ni1 and ni2

correspond to the initial and final sampling points of the ith strip and p(i) defining the points on the ith

strip between ni1 and ni2 . The expanded current is substituted into the original integral equation in (1).
Then by testing it with the same type sinc functions gives the following equation.

∫ ∞
−∞ Ein

y (x)sinc(2Wx − m(j))dx = −ωμ
4

N∑
i=1

ni2∑
p(i)=ni1

xp(i)

∫ ∞
−∞ sinc(2Wx − m(j))dx

∫ ∞
−∞ sinc(2Wx′ − p(i))H(2)

0 (k|x− x′|)dx′ j = 1, 2, . . ., N

(3)

where m(j) define the points of the jth strip. As the bandwidth in the frequency domain W is assumed

to be large, then the integral limits of the sinc function in spatial domain (i.e beam width) reduces to small
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values. We only consider the peak values of the sinc functions in a given position (i.e. basis functions),
and by taking the integrals from minus to plus infinity with small error criteria like a generalized function.
Defining a new variable u as u = x − x′ , equation (3) can be modified and written as

∫ ∞
−∞ Ein

y (x)sinc(2Wx− m(j))dx = −ωμ
4

N∑
i=1

ni2∑
p(i)=ni1

xp(i)

∞∫
−∞

H
(2)
0 (k |u|)

(∫ ∞
−∞ sinc(2Wx − m(j)) sinc(2W (x − u) − p(i))dx

)
du

(4)

where the inner integral states the convolution of two sinc functions; and by using the property of the
convolution of two sinc function (see Appendix B), we can write the above equation as

Ein
y (m(j)tx) = −ωμ

4

N∑
i=1

ni2∑
p(i)=ni1

xp(i)

∫ ∞

−∞
sinc(2Wu + p(i) − m(j))H(2)

0 (k|u|)du (5)

j = 1, 2,. . . , N where m(j) and p(i) are the integer numbers on the ith and

jth strips, respectively, with the properties xj1 ≤ m(j) tx ≤ xj2 and xi1 ≤ p(i) tx ≤ xi2 . The left hand side

of equation (5) comes from the complete orthogonal expansion of the function Ein
y (x) and the orthogonal

property of the sinc function (see appendix A).

The above algebraic equation can be put into the following matrix equation by considering a specified
low error (see section 3)

[Aji
mp][xpi] = [Bj

m] (6)

where

Aji
mp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tx H
(2)
0 (k tx|m(j) − p(i)|) m(j) �= p(i)

∞∫
−∞

sinc(2Wu) H
(2)
0 (k|u|) du elsewhere

(7)

and
Bj

m = Einc
y (m(j)tx) (8)

The integral property of the sinc function is used in the derivation of equations (7). The details on this
property are given in the next section.

2.2. H polarization case

By the aids of auxiliary potentials, the integral equation for H polarization can be given as

Ein
x (x) =

ωμ

4

N∑
i=1

∫ xi2

xi1

J i
x(x′)H(2)

0 (k|x− x′|)dx′ +
1

4ωε

∂

∂x

N∑
i=1

∫ xi2

xi1

∂J i
x(x′)
∂x′ H

(2)
0 (k|x− x′|)dx′. (9)

Equation (9) is derived by using auxiliary vector and scalar potentials and in the auxiliary scalar potential
the unknown is the charge density function ρ . But it can be expressed by the divergence of the current

density function using the equation of the continuity i.e. ρ = ( 1
jω )∇ · �J . In this equation, derivative of

variable x in the second part of the integral equation can be applied directly to Green’s function, i.e. Hankel
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function. Then this derivative can be transformed onto the current function by integration by parts. The
integral equation can then be modified to

Ein
x (x) = ωμ

4

N∑
i=1

∫ xi2

xi1
J i

x(x′)H(2)
0 (k|x− x′|)dx′ − 1

4ωε

N∑
i=1

{
∂Ji

x(x′)
∂x′ H

(2)
0 (k|x− x′|)

}∣∣∣x′=xi2

x′=xi1

+ 1
4ωε

N∑
i=1

∫ xi2

xi1

∂2Ji
x(x′)

∂x′2 H
(2)
0 (k|x − x′|)dx′

(10)

The first order derivatives of the J i
x(x′)in the second term of (10) can be computed by the finite

difference approximation.

∂J i
x(x′)
∂x′

∣∣∣∣
x′=xi1

=
J i

x((ni1 + 1)tx) − J i
x(ni1tx)

tx
∼= J i

x((ni1 + 1)tx)/tx (11)

∂J i
x(x′)
∂x′

∣∣∣∣
x′=xi2

=
J i

x(ni2tx) − J i
x((ni2 − 1)tx)

tx
∼= −J i

x((ni2 − 1)tx)/tx (12)

Also, J i
x(ni2tx) and J i

x(ni1tx) are zero parameters, since no normal current flows at the edges. Then

Ein
x (x) = ωμ

4

N∑
i=1

∫ xi2

xi1
J i

x(x′)H(2)
0 (k|x− x′|)dx′

+ 1
4ωε

N∑
i=1

Ji
x((ni1+1)tx)

tx
H

(2)
0 (k|x − xi1|)

+ 1
4ωε

N∑
i=1

Ji
x((ni2−1)tx)

tx
H

(2)
0 (k|x− xi2|)

+ 1
4ωε

N∑
i=1

∫ xi2

xi1

∂2Ji
x(x′)

∂x′2 H
(2)
0 (k|x − x′|)dx′

(13)

The surface current density J i
x(x′)can be expanded as before into the sinc type orthogonal basis functions

(see Appendix A). The surface current density on the ith strip is specified as (see Figure 1(b))

J i
x(x′) =

ni2−1∑
p(i)=ni1+1

xp(i)sinc(2Wx′ − p(i)). (14)

Substituting equation (14) into the equation (13), and also considering the surface current as the combination

of the closely sampled points on the scatterer surface, the second derivative of the current density, i.e. ∂2Jy

∂x2 ,

can be taken as a second-order finite difference equation. We thus obtain the relation

Ein
x (x) ∼= ωμ

4 tx
N∑

i=1

ni2−1∑
p(i)=ni1+1

xp(i)

∫ ∞
−∞ sinc(2Wx′ − p(i))H(2)

0 (k|x− x′|)dx′

+ 1
4ωε

N∑
i=1

x(ni2−1)

tx
H

(2)
0 (k|x − xi2|)

+ 1
4ωε

N∑
i=1

x(ni1+1)

tx
H

(2)
0 (k|x− xi1|)

+ 1
4ωεtx

N∑
i=1

ni2−1∑
p(i)=ni1+1

[x(p(i)+1)−2xp(i)+x(p(i)−1) ]

t2x

∫ ∞
−∞ sinc(2Wx′ − p(i)) H

(2)
0 (k|x − x′|)dx′

(15)
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Residual error obtained from equation (15) will be minimized by testing it with the sinc-type testing
functions in the N dimensional orthogonal functional space. This is the original method of moments
procedure (referred as the Galerkin procedure). The following equation can then be obtained using the

procedure given in the E-polarization case (by considering the property that the convolution of two sinc

functions is also a sinc function, as given in Appendix B).

∫ ∞
−∞ Ein

x (x)sinc(2Wx − m(j))dx = ωμ
4 tx

N∑
i=1

ni2−1∑
p(i)=ni1+1

xp(i)

∫ ∞
−∞ sinc(2Wu− m(j) + p(i))H(2)

0 (k|u|)du

+ 1
4ωε

N∑
i=1

x(ni2−1)

tx

∫ ∞
−∞ sinc(2Wu − m(j))H(2)

0 (k|u − xi2|)du

+ 1
4ωε

N∑
i=1

x(ni1+1)

tx

∫ ∞
−∞ sinc(2Wu − m(j))H(2)

0 (k|u − xi1|)du

+ 1
4ωεtx

N∑
i=1

ni2−1∑
p(i)=ni1+1

[x(p(i)+1)−2xp(i)+x(p(i)−1) ]

t2x

∫ ∞
−∞ sinc(2Wu − m(j) + p(i))H(2)

0 (k|u|)du

(16)
j = 1, 2, . . ., N

Equation (16) can also be written as follows by defining the matrix elements

Bj
m = ωμ

4 tx
N∑

i=1

ni2−1∑
p(i)=ni1+1

xp(i) Aji
pm + 1

4ωεtx

N∑
i=1

xni2−1D
ji
m + 1

4ωεtx

N∑
i=1

xni1+1C
ji
m

+ 1
4ωεtx

N∑
i=1

ni2−1∑
p(i)=ni1+1

(
xp(i)+1 − 2xp(i) + xp(i)−1

)
Aji

pm

(17)

where Aji
pm , Cji

m and Dji
m and are given in the final equations of this section. In the above algebraic matrix

equation, the second and third terms constitute the column matrices but the last term can be modified by
shifting to left and right depending on the indices under the x parameter that are the unknown coefficients
of the current density. Then assuming p(i)+1=u and p(i)-1=v , and then by using a change of variable,

we constitutes the Fji and G ji matrices where the first and last columns are produced by Cji
m , Dji

m column

matrices, respectively. The middle part of the last term in the equation (17) is the similar to the first term
produced by Aji . After these modifications, the matrix equation can be given as

⎡
⎣ B1

Bj

BN

⎤
⎦ = ωμ

4
tx

⎡
⎣ A11 ..... A1N

Aji

AN1 ......... ANN

⎤
⎦

⎡
⎣ x1

xi

xN

⎤
⎦ − 2

4ωε
1
tx

⎡
⎣ A11 ..... A1N

Aji

AN1 ......... ANN

⎤
⎦

⎡
⎣ x1

xi

xN

⎤
⎦

+ 1
4ωε

1
tx

⎧⎨
⎩

⎡
⎣ F11 ..... F1N

Fji

FN1 ......... FNN

⎤
⎦

⎡
⎣ x1

xi

xN

⎤
⎦ +

⎡
⎣ G11 ..... G1N

Gji

GN1 ......... GNN

⎤
⎦

⎡
⎣ x1

xi

xN

⎤
⎦
⎫⎬
⎭

(18)

where i and j vary between 1 and N and each Aji has a rectangular matrix form in the matrix size of the
Q2 ×Q1 , Bj has the column matrix size Q2and xi has the matrix size Q1 . Also matrices Aji and Bj have
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the form

Aji =

⎡
⎢⎢⎣

Aji
11 Aji

12 .. Aji
1Q1

.

.

Aji
Q21

Aji
Q22

.. Aji
Q2Q1

⎤
⎥⎥⎦

Q2xQ1

and Bj = [B1 B2 ... BQ2 ], (19)

where Q2 and Q1can be given as Q2 = nj2 − nj1 -1 and Q1 = ni2 − ni1 -1. Matrices Fji and G ji can be
constructed by using C and D column matrices in the first and last columns of the Fji and G ji matrices,

respectively.

Fji =

⎡
⎢⎢⎢⎣

Cji
1
.

Cji
m
.

Cji
Q2

∣∣∣∣∣∣∣∣

Aji
11 .
.

Aji
(p−1)1 .

.

Aji
(Q1−1)1

.

Aji
1m .
.

Aji
(p−1)m .

.

Aji
(Q1−1)m

.

Aji
1Q2

. Aji
(p−1)Q2

. Aji
(Q1−1)Q2

⎤
⎥⎥⎥⎦

Q2xQ1

(20a)

Gji =

⎡
⎢⎢⎢⎣

Aji
21 .
.

Aji
(p+1)1 .

.

Aji
(Q1−1)1

.

Aji
2m .
.

Aji
(p+1)m .

.

Aji
(Q1−1)m

.

Aji
2Q2

. Aji
(p+1)Q2

. Aji
(Q1−1)Q2

∣∣∣∣∣∣∣∣

Dji
1
.

Dji
m
.

Dji
Q2

⎤
⎥⎥⎥⎦

Q2xQ1

(20b)

Here, column matrices C and D are defined as

Cji
m =

∫ ∞

−∞
sin c(2Wx − m(j))H(2)

0 (k|x − xi1|)dx (21a)

Dji
m =

∫ ∞

−∞
sin c(2Wx − m(j))H(2)

0 (k|x − xi2|)dx (21b)

The source column matrix B is the combination of the Bj matrices each having the size of Q2 matrix.

Elements of B matrix elements can be found by using simple sampling the points i.e. the points m(j) on
the strip j as such

Bj
m = txEin

x (txm(j)) . (22)

Also main matrices Aji are combinations of the different rectangular matrices with sizes of Q2 xQ 1 .

The main matrix and the other Cji
m and Dji

m matrices can be computed in a reasonable cpu times
through the properties of the sinc function. In this computation, the error criteria can be specified and
studied in the next section. The main matrix elements can be given as

Aji
mp =

∫ ∞

−∞
sinc(2Wu − m(j) + p(i))H(2)

0 (k|u|)du. (23)

The resultant convolution function of the given two sinc functions for observation and source points is
sinc(2Wu-m + p). Notice that the location of the new sinc function is defined as m − p . Time consuming
evaluation for a new analytical sub domain function is not required.

This new sinc function near the Hankel function can be computed as given in the next section in
the equation (24), with specified low error criteria. Therefore no extra integration cost is required but the
discretization level of the scatterer has to be large compared to the ordinary MoM.

101



Turk J Elec Engin, VOL.16, NO.2, 2008

3. Approximate Evaluation of the Sinc Integrals

For the matrix elements given above, we compute the integrals of the sinc function with a tuned error criteria.
The integral identity can be written as

∞∫
−∞

sinc(2Wu − m + p)H
(2)
0 (k|u|) du = tx H

(2)
0 (k |m− p| tx) + Error, (24)

where m , p and L(small) are integer numbers and |p − m| ≥ L . Also, if |p − m| < L , then the integrals
are numerically taken without any problem. Because the Hankel function has only logarithmic singularity.
This means that it is a kind of numerically integrable function. W is the bandwidth of the spatial domain
sinc function in the frequency domain counterpart. (Recall that tx =1/(2W )). Here, the sinc function is
integrated with the appearing the zero order and second kind Hankel function in the same integrand. The
aim is to approximate the sinc integral with the simple Hankel function written in the right hand side of
the equation (24). However this equation can be satisfied if the error function is very small compared to the

value of the original sinc integral in the equation (24).

To find an approximate function for our error criteria, one can apply Parseval’s relation to both sides
of the equation (24). Then in the frequency domain, the left hand side has a finite integral and the right
hand side has the infinite integral having the same integrand. The difference between two parts of the main
integrals in the frequency domain gives us the error function. This error function can be written as

Error = tx

∞∫
W

4√
k2 − 4π2f2

x

cos
πfx(p − m)

W
dfx, (25)

where fx is the spectral domain parameter which is the frequency domain counterpart of the spatial domain

range. Equation (25) can be converted (within the high frequency limit, i.e. 4π2 f2x >> k2) to the form

Error ∼= − i

πW

∞∫
π|(p−m)|

cos u

u
du, (26)

where cos(u)/u is a special tabulated function i.e. Ci(z). Thus we have absolute error as

Error ∼=
i

πW
Ci(π|(p − m)|). (27)

We note that integral (24) can be approximated simply by Hankel function as defined in the right hand side

of equation (24), if p is not close to m . If this equality holds, i.e. p close to m (near diagonal elements),
then the integral can be numerically evaluated. In general, the maximum error occurs when p − m = L ,
where L=0 and the relative value of this error is tabulated in Table 1. If L becomes larger, i.e. L >1, the
relative error decreases (see Table 1).

4. Numerical Results

Our numerical results are presented for the general geometry given in Figure 1(a) and its three strip
special case is also considered, using the formulation given in the previous sections. Surface current density
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distributions induced on the strips are obtained as the plane electromagnetic wave illuminates the strips. Our
aim is to make computations in reasonable cpu times, and even reduce cpu time when treating reradiating
characteristics. We achieve this by exploiting the properties of the sinc functions.

Table 1. Relative error of the computed main integral.

Bandwidth W , parameter tx Relative Error in the Relative Error in the
and sample point number N Computational Process of the Computational Process of the
per λ (λ=0.06 m) main matrix elements for L=1 main matrix elements for L=2∣∣∣∣∣Ci(Lπ)

πW

1

txH
(2)
0 (kLtx)

∣∣∣∣∣
∣∣∣∣∣Ci(Lπ)

πW

1

txH
(2)
0 (kLtx)

∣∣∣∣∣
W=208.3(1/m), N=25 and
tx=0.04λ 0.0353 0.0142
W=416.6(1/m), N=50 and
tx=0.02λ 0.0280 0.0109
W=833.3(1/m), N=100 and
tx=0.01λ 0.0229 0.0086
W=4166.6(1/m), N=500 and
tx=0.002λ 0.0158 0.0056
W= 8333.3(1/m), N=1000 and
tx=0.001λ 0.0138 0.0048

Simulations were carried out on an AMD Athlon 3200+ 2.0 GHz processor with 1.00 GB RAM under
Matlab r©7.0 program package on the windows operating system. This is readily available through a desktop
code to compute the problem with a sinc basis functions in reasonable cpu times. Since the computation
time depends on the total number of basis functions and increasing the bandwidths of sinc functions causes
also the increase in the number of sample points on the strips. In the simulations, the number of points (for

example like N=50 points and W=416.6 (1/meter) see table 1 and II) is selected to evaluate matrix elements
in the reasonable time with a low error rate. This technique is applied to the general geometry in Figure1
(a) by considering N=10 and N=3 strip cases. . The geometry is divided into equally spaced sample points
and uniform meshing is applied to the conducting surface parts. MoM procedure is used to calculate the
current densities on the strips. We have analyzed both TE and TM modes of incident wave and plotted for
various angles of incidence.

First, we examined here horizontal strips equally spaced in free space in Figure 1(a). The parameters

are set when producing Figure 2, the width of the strips as (1/π)λ and the spacing between the strips as

(1/π)λ . We fixed the total number of strips N =10, but W will be determined depending on the number

basis (sinc) functions on each strip. The magnitude and the phase of the current densities on the strips are
shown in Figure 2 and Figure 3, respectively, for both TE and TM mode excitations. Forty sinc functions per

strip is chosen for TE case and this is equivalent to W =1046.6 (meter)−1 . The number of basis functions

whereas 160 per strip for TM case and this is equivalent to W =4180.6 (meter)−1 .

Simulations for various values of the strip widths and the spacing between the strips have been carried
out and the results are compared with the results of [15, 16]. In Figure 2 and Figure 3, strip width is fixed. In
addition, we get a cpu processing reasonable. Figure 2 and Figure 3 shows the current density distributions
as a function of normalized length x/λ . Current density distributions induced on the strips are shown in
the presence of TM and TE excitations.
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Figure 2. The magnitude and the phase of the surface induced current for 10 strips for parts (a) and (b), respectively.

For the TE case, problem parameters are. kw=2, kd=2, N=10 and θinc =-45◦ .
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Figure 3. The magnitude and the phase of the surface induced current for 10 strips for parts (a) and (b) respectively.

That is the TM case and the problem parameters are. kw=2, kd=2, N=10 and θinc =-45◦ .

The second geometry, three horizontal strips separated with λ/2 distance in free space, is examined as

a special case of Figure 1(a) (Each strip has 2λ width) and it is illuminated by plane electromagnetic wave.

Parameters for making Figure 4 are chosen as W =290 (meter)−1 , the number of sinc functions N =70 per
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strip for TM case and for Figure 5, W =208 (meter)−1 , N =50 per strip for TE case. Normal incidence
is chosen for both TM and TE cases. The same three strip geometry is also simulated by the ordinary
MoM i.e. pulse basis for E-polarization and triangular basis for H-polarization case. Ordinary MoM imposes
the analytical convolution between sub domain basis and testing functions; the resultant new function is
integrated with a given Hankel type kernel. So more cpu time is required in the ordinary MoM then the
sinc-based MoM. The results are plotted on the same graph for both polarizations separately; the real and
imaginary parts of current densities are given in Figure 4 and Figure 5. For each case, excellent agreement
is observed with the ordinary MoM.

Computation time for the TE case in each geometry is greater than that of the TM case. Since the
TE formulation of the geometry is more complicated, more time is consumed to obtain results. In the TM
case, magnitude of the current density increases at the endpoints of the strips. It is seen that using our
method, such abrupt changes in current density can be well reproduced.

Once current densities are computed, the far field scattering patterns can be obtained depending on
the presented formulation. In the Figure 6(a), the scattered field pattern of the current density for the TE

excitation of five strips is given. For the TM case given in Figure 6(b), the following parameters are chosen.

the width of the strips is 0.1λ , and the spacing of the strips (d) is 0.4λ . Normalized far field pattern is

plotted when incidence angle θ=60◦ . Figure 6(a) and 6(b) present the agreement with the plots given in [11]
for the same geometry. The results show the known facts of the antenna and the theory of the scattering.
It can be said that the field does not drop zero on the direction of the x-axis for E-polarization but it drops
the zero for the H-polarization case.
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Figure 4. The magnitude of the surface induced current for 3 strips. That is the TE case and N=3, θinc =0◦ . Each

strip has 2λ width and 0.5λ distance between the strips. Figures (a) and (b) are the real and imaginary parts of

the current densities respectively. Solid line shows the sinc-based MoM; and the dashed line shows the pulse-type

ordinary MoM solution.

For the three strip special geometry, not the relative error of the whole problem but the relative error
of the computed main integral in the formulation is tabulated in Table 1. Relative error for different tx values
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are presented via the Ci function table. It is observed that as tx increases or W decreases, the relative error

increases. Relative error reached 0.01 value when W =416.6 (meter)−1 and the number of basis functions

was taken as N=50 at L=2 case (Table 1). In Table 1, the number of basis functions are chosen first and then
the other parameters tx and W are obtained. In theory increasing W gives more accurate results. But in
reality for reasonable W values results can be produced within acceptable error limits. The relative error in
the computation of the main integrals can be reduced by taking L>1. The error level of the main integrals
is in the same status of the accuracy of the ordinary MoM.
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Figure 5. The magnitude of the surface induced current for 3 strips. That is the TM case and N=3, θinc =0◦ .

Each strip has 2λ width and 0.5λ distance between the strips. Figures (a) and (b) are the real and imaginary parts

of the current densities, respectively. Solid line shows the sinc-based MoM and dashed line shows the triangular-type

ordinary MoM solution.
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Table 2 and Table 3 show CPU time of the overall process of our method and ordinary MoM with
pulse and triangular basis functions for E and H polarizations respectively. There is an apparent reduction
in the overall running time of the program which solves the same geometry by using sinc based MoM. Three
strips each with a 2λ width 0.5λ spacing is used for the simulations.

Table 2. For sinc-based MoM. Cpu time of overall process for 3 strips, each with a 2λ width and 0.5λ spacing, for

TE and TM excitations.

CPU time of overall program, for a 3-strip
case, each strip with width 2λ, in seconds (Geometry.

Figure1(b)). Sinc type basis functions in MoM.
Number of

sample points
on each strip TE(H-pol) TM(E-pol)

(per 2 lambda)
101 293 12.25
81 138 6.87
61 53 4.23
41 23 2.5

Table 3. For pulse and triangular-based MoM. Cpu time of overall process for 3 strips, each with a 2λ width and

0.5λ spacing, for TE and TM excitations.

CPU time of overall program, for a 3-strip case, each strip with width 2λ,
in seconds (Geometry. Figure1(b)). Comparison of ordinary pulse (E-pol)

and triangle (H-pol) sub domain basis functions cases in MoM.
Number of

sample points
on each strip TE(H-pol) TM(E-pol)

(per 2λ)
100 1667 441.23
80 1132 284.7
60 687.8 161.9
40 337.85 73

5. Conclusion

The MoM procedure is applied to finite planar conducting grating for both polarities. Sinc-type basis and
testing functions are chosen in the Galerkin procedure. The properties of the sinc functions explained in the
previous sections provide faster computation of the main matrix elements over other methods [15, 16]. One
useful property of the sinc type basis functions in MoM is to eliminate the analytical convolution between
the sub domain basis and testing functions for which a new sinc is enough for this process. This new sinc
function is located at the difference points of the source and of the observation. The other exploited property
is the integration of the Hankel function with this new sinc function and the result can be approximated by
the Hankel function at the points of the source and observation.

These properties used in MoM provide one a fast and an accurate solution in comparison to ordinary
MoM. We have shown that without very large W, reasonable accuracy can be obtained.
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The sinc based MoM can also be applied numerically to difficult electromagnetic scattering problems,
as in 3D geometries. The simplicity of the producing main matrix elements in planar geometries creates the
high motivation and the properties of the sinc also the reason of the benefit for using sinc-based MoM.

Appendix A

The set of the sinc functions which are defined in the figure 2 constitutes complete orthogonal set and this
orthogonally can be represented as

∞∫
−∞

sinc(2Wx − n)sinc(2Wx − m)dx =
{

1/(2W ) if n = m
0 if n �= m

(28)

where n and m are integer numbers and W is the frequency domain bandwidth of the given sinc function
originally in the spatial domain. The details of this orthogonally are given in the [19].

Appendix B

The convolution of two sinc functions located at different points in the spatial domain produces a sinc
function located at the point of their difference.

∞∫
−∞

sinc(2Wx′ − n)︸ ︷︷ ︸
g1(x′)

sinc(2W (x − x′) − m)︸ ︷︷ ︸
g2(x′−x)

dx′ = (1/(2W )) sinc(2Wx − n + m)︸ ︷︷ ︸
g3(x)

, (29)

where n and m are integer numbers and W is the bandwidth of these sinc functions. Equation (23) can also
be written as

g1(x) ∗ g2(−x) = (1/(2W )) g3(x). (30)

Proof of this relation follows by taking the Fourier transform of both sides.
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