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Abstract

Numerical dispersion performances of ADI-FDTD and S-FDTD methods have been compared. It

has been shown that for time steps below the stability limits of the S-FDTD method it has much better

dispersion performance compared with the ADI-FDTD method and that the S-FDTD method can be

usefully employed for space increments in the order of λ/25 toλ/50.
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1. Introduction

The finite-difference time-domain (FDTD) method has widely been used for the solutions of electromagnetic

problems [1]. The stability condition for this method [1] imposes a limitation on the time step size. When
the method is applied to electrically small problems this limitation necessitates unnecessarily small time
steps, which considerably increases the computational time. Alternating-direction implicit finite-difference
time-domain (ADI-FDTD) method [2] is unconditionally stable and theoretically there is no limitation on
the time step size. But as the size of time steps is increased, numerical dispersion errors become large; so
the time step size for the ADI-FDTD method is limited in use by the level of the numerical dispersion error
that can be tolerated.

On the other hand, Symplectic FDTD (S-FDTD) method [3] is an explicit scheme which uses fourth-
order finite differencing for space discretization and exponential differential operators for time discretization.
The method reduces the numerical dispersion errors significantly. It has been shown [3] that the stability
limit of this method is much higher than the Yee’s FDTD method and that the stability limit depends
linearly on the number of the exponential coefficients.

In this paper performances of the ADI-FDTD method, with second order and fourth order finite
differencing in space, are compared with the performances of the S-FDTD method.
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2. Numerical Dispersion Performance

When an electromagnetic problem is simulated in a discretized domain the phase velocity of the electromag-
netic wave differs slightly from the phase velocity of the natural medium. The variation in the phase velocity
is not constant but varies with the frequency, direction of propagation and the sizes of the time and spatial
steps. There have been many publications dealing with the numerical dispersion of the ADI-FDTD method
[4–7]. In this paper the dispersion relation formula used by Weiming Fu et al. [5] is used for calculating the

three dimensional (3-D) dispersion error of the ADI-FDTD method, which is given by the relation
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respectively. k̃ represents the numerical wavenumber, Δ (Δ = Δx = Δy = Δz) is the cell size, Δt is the

time increment, and s = cΔt/Δis the stability factor. Parameters Aγ in these equations are defined as

Ax = Δ
2 cosϕ sin θ , Ay = Δ

2 sin ϕ sin θ and Az = Δ
2 cos θ .

The dispersion error of the Exponential Coefficient Optimized S-FDTD Method can be optimized for
chosen parameters of the method and the numerical error relationship for the S-FDTD is given by [3]:
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where
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∑
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and m is an integer and equals to (number of coefficients)/2. Parameters ηγ are defined in equations (2)

and (3). ci and di are time step coefficients to be determined.

Equations (1)–(5) have been used to obtain the three dimensional numerical dispersion performances
of the two methods. As the S-FDTD Method has a stability limit it was only possible to compare the
performances of the two methods for time steps corresponding to this limit or below.

The graphical results of the numerical dispersion study carried out for the S-FDTD (with 6 and 10

coefficients) and the ADI-FDTD methods (second and fourth order) are given by Figure 1 to Figure 5. The

Figure 1 and Figure 2 show the dispersion errors against the angle θ for space increments λ/25 and λ/50 at
stability factors close to the stability limits of the S- FDTD method. The stability limit of the 6 coefficient
S-FDTD is 1.48 and the stability limit of the 10 coefficient S-FDTD is 2.47. The results are given for the 6
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Figure 1. Dispersion error as a function of propagation angle θ , for ϕ = 90◦ and Δ = λ/25.
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Figure 2. Dispersion error as a function of propagation angle θ , for ϕ = 90◦ and Δ = λ/50.

203



Turk J Elec Engin, VOL.16, NO.3, 2008

and 10 coefficient S-FDTD (which are almost the same) as well as for the conventional second order ADI-
FDTD and the fourth order ADI-FDTD methods. The results show that although there is not a significant
difference in error performance of the two ADI-FDTD methods, the errors of the S-FDTD method are much
smaller for both of the S-FDTD methods. The increasing the number of coefficients for S-FDTD does not
have a significant improvement in dispersion performance but increases the stability limit. No results are
presented against the ϕ angle as there is no significant variation with ϕ . Figure 3 shows the dispersion
error against space increment Δ at the stability factors s = 2.45 and s = 1.45. For both of the ADI-FDTD
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Figure 3. Dispersion error as a function of space increment per wavelength, for θ = 0◦ and ϕ = 90◦ .

�� ����� (

!�)���*�#� ��� �

���� ���& ��&� ��+& 	��� 	��& 	�&� 	�+& ���� ���& ��&�

�
��
��

��
��
�
�
��
��
��

��
��
��
�

�

�

�

�

�

	�

	�

	�

	� ������ ��� !"#�$�
� ������ ��� !"#�$�
�
��

����� ��'"#�$�

�
�
����� ��'"#�$�

Figure 4. Dispersion error as a function of stability factor, for θ = 0◦ , ϕ = 90◦ and Δ = λ/25.
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KUŞAF, ÖZTOPRAK: Dispersion Analysis of the ADI-FDTD and S-FDTD Methods,

methods the errors become unacceptably high for larger values of Δ. Figure 4 and Figure 5 show dispersion
errors against the stability factor s up to the stability limits of the S-FDTD for space increments λ/25 and

λ/50. As the s increases (in other words, as Δt increases) the errors for both of the ADI-FDTD methods
increases while the errors for both of the S-FDTD method s remains low.

The stability limit of the conventional Yee’s FDTD method is 0.577 [1] in 3-D, so it can not be used
for stability factors above this limit. As the performances of the S-FDTD methods introduced in this paper
are better than the ADI-FDTD method up to the stability limits of the S-FDTD methods for λ/25 and

λ/50 space increments the new S-FDTD methods can be usefully employed in these regions.
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Figure 5. Dispersion error as a function of stability factor, for θ = 0◦ , ϕ = 90◦ and Δ = λ/50.

3. Conclusion

It has been shown that ADI-FDTD method has large dispersion errors when the space increments are on
the order of λ/25 to λ/50 for stability factors of larger than 1. It has also been shown that for time steps
below the stability limits of the S-FDTD method it has much better dispersion performance compared with
the ADI-FDTD method. Therefore the S-FDTD method can be usefully employed for space increments in
the order of λ/25 to λ/50 for stability factors below the stability limit of the S-FDTD.
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