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Abstract

Identification is considered to be among the main applications of inverse theory and its objective for a

given physical system is to use data which is easily observable, to infer some of the geometric parameters

which are not directly observable. In this paper, a parameter identification method using inverse problem

methodology is proposed. The minimisation of the objective function with respect to the desired vector of

design parameters is the most important procedure in solving the inverse problem. The conjugate gradient

method is used to determine the unknown parameters, and Tikhonov’s regularization method is then used to

replace the original ill-posed problem with a well-posed problem. The simulation and experimental results are

presented and compared.

Key Words: Identification, inverse problem, optimization, separately excited dc motor, conjugate gradient

method.

1. Introduction

Separately excited dc motors are very often used as actuators in industrial applications. These actuators have
low friction, small size, high speed, low construction cost, no gear backlash, operate safely without the use
of limit switches and generate moderate torque at a high torque to weight ratio. DC motors are preferred
over ac motors because of their lower manufacturing costs and, ease of controller implementations, since their
mathematical model is simpler [1].

Dynamic model identification has been a major topic of interest in control engineering, motivated by the
new achievements in control systems theory and requirements of new industrial and military applications [1–3].
System identification of dc motors is a topic of great importance, because for almost every servo control design
a mathematical model is needed [3]. There are situations when identification model is available. For example,

the motor parameters might be subject to some time variations [4]. In these cases, a mathematical model that
is accurate at the time of the design may not be accurate at a later time. Moreover, a mathematical model is
never a complete description of a given system; this is because a model that represents a system well over a
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range of frequencies may not represent the system as well as over a different range of frequencies. Therefore,
accuracy and adequacy are two major modelling issues that always has to be dealt with. On broader sense,
system identification is often the only means of obtaining mathematical models of most physical systems [5, 6];
this is because most systems are usually so complex that, unlike dc motors, there is no easy way to derive their
models based on the physical laws.
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Figure 1. The block diagram of the dc motor.

Identification is considered to be among the main applications of inverse theory and its objective for a
given physical system is to use data which is easily observable to infer some of the geometric parameters which
are not directly observable [6, 7]. For example, a general approach in identification of cracks or materials and
their geometry in inaccessible locations, seeks to define an objective function that would reach its minimum
when the measured electromagnetic field data in the physical system under test matches the electromagnetic
field given by an assumed configuration. Firstly, the physical system to be investigated is described in terms
of parameters, and then, the objective function is minimised with respect to the parameters by an iterative
procedure. At the minimum of the objective function, the values of the parameters describe the real structure
of the physical system.

The main difficulty with inverse problems is due to their ill-posed character, in the sense of Hadamard
[8]. That is, they have no solution or if a solution exists, it might not be unique or not continuous with respect
to the given data. Therefore many techniques were proposed to regularize these problems. For example, Beck
introduces the “future time” method, while Murio developed the “mollification technique” to obtain smooth
solutions of various inverse problems. Tikhonov, Alifanov and others from the Russian school proposed to cast
the ill-posed inverse problem into an optimization problem with a regularized objective functional, and/or a self
regularizing algorithm of solution.

The crucial point in inverse problem is the efficiency of the process by which the solution is arrived
at. The objective functions are said to have multiple minima, and much research effort is expended on global
optimization methods, such as zeroth-order probabilistic methods-Monte-Carlo iteration. Recently, though
the great number of iterations required, they are mostly developed, since the “pseudo”-deterministic methods,
(e.g., steepest descent, conjugate gradient; quasi Newton, etc), that has relatively high speed of convergence,

reach only local minima [9, 11]. They depend on the initial guess and, usually the number of iterations
required cannot be predicted in advance. Ill-conditioned inverse problems require regularization to prevent the
solutions from being excessively sensitive to noise in the data [6]. While efficient algorithms exist for computing
inverses, the role of regularization in increasing the cost of the computations has not been well considered. The
regularization techniques that are most widely employed are Tikhonov’s, Levenberg’s and Levenberg Marquard’s,
and truncated singular value decomposition (TSVD) [6, 12].

This paper is structured as follows. Section 2, describes the dynamic of the separately excited dc motor.
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Section 3, describes the inverse problem methodology applied to the parameter identification of a dc motor. In
section 4, experimental results are illustrated and compared to the simulation results. Finally, conclusions of
the paper are summarized in section 5.

2. DC motor direct model

The block diagram of the dc motor used in this study is shown in Figure 1. The dynamic of the separately
excited dc motor may be expressed by the equations

Kω(t) = −Raia(t) − La
dia(t)

dt
+ Ua(t) (1)

Kia(t) = J
dω(t)

dt
+ fω(t) + TL(t), (2)

where K , Ra , La , J and f are, respectively, the torque and back-EMF, the armature resistance, the armature
inductance, the rotor mass moment of inertia and the viscous friction coefficient. ω (t), ia(t), Ua(t) and TL(t),
respectively, denote the rotor angular speed, the armature current, the terminal voltage and the load torque.

3. Inverse problem methodology for parameter identification

Identification is considered to be among the main applications of inverse theory and its objective for a given
physical system is to use data which is easily observable to infer some of the geometric parameters which are
not directly observable.

A general approach in identification seeks to define an objective function that would reach its minimum.
For our cases, the objective function for the inverse problem can be written as the squared sum of errors between
measured and calculated values of the rotor angular speed of the separately excited dc motor at 24 testing points
(observation data), i.e.

F (X) =
1
2

24∑
i=1

(ωC
i − ω0

i )2, (3)

where ωC
i are the values of ω calculated using the direct model, and ω0

i are the measured values of ω at testing
point i .

Define X = [Ra La K J f Tst]
T as a vector of design parameters. The minimisation of the objective

function with respect to the desired vector is the most important procedure in solving the inverse problem. In
this paper, we use the conjugate gradient method to determine the unknown parameters. Iterations are built
in the manner where

Xk+1 = Xk + αk · dk, (4)

where αk is the step size, dk is the director vector of descent given by

dk = −∇F T (Xk) + βkdk−1, (5)
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and the conjugate coefficient βk is determined from the relation

βk =
∇F (Xk) · ∇F T (Xk)

∇F (Xk−1) · ∇F T (Xk−1)
. (6)

Here, the row vector defined by

∇F =
(

∂F

∂Ra

∂F

∂La

∂F

∂K

∂F

∂J

∂F

∂f

∂F

∂Tst

)
(7)

is the gradient of the objective function.

Sensitivity analysis is performed using the direct model with perturbations of each parameter. Sensitivity
analysis is of great importance since it gives information on identification feasibility. It is also of prime
importance to evaluate the ratio of sensitivity of one parameter with respect to all other parameters during the
process.

Sensitivity of the objective function F to the design variable X can be written as

∂F

∂X
=

24∑
i=1

∂F

∂ωC
i

· ∂ωC
i

∂X
=

24∑
i=1

(ωC
i − ω0

i ) · ∂ωC
i

∂X
. (8)

The finite difference method is employed to approximate the gradient of the objective function:

∂ωC
i

∂X
=

ωC
i (X + δX) − ωC

i (X)
∂X

, (9)

where δX represents a small perturbation of the corresponding parameter X .

The main disadvantage of the finite-difference method resides in its resolution cost. In order to determine
the n first-order derivatives, the direct model has to be solved at least n+1 times. Nevertheless, for such complex
systems, the finite-difference method seems to be the only way to calculate the sensitivity components.

The step size of the Kth iteration, αk , can be determined by minimizing the function F (Xk - αkdk) for

the given Xk and dk .

The optimization problem is ill-posed when existence or unity of the solution with respect to experimental
data is not verified; at which point it is common to use a regularization method in order to limit the space
parameter [6]. The most commonly used methods are Tikhonov’s, Lenvenberg’s and Levenberg-Marquardt’s.
All of these introduce a regularization term Fr representing, more or less, the least-squared difference between

the calculated parameter vector X (Lenvenberg) and the initial guessed one X0 (Tikhonov) or the previous
calculated one:

F ∗ = (1 − λ)F + λFr . (10)

Here λ ∈ [0 , 1] is the regularization parameter.

The regularization term for Tikhonov method is of form (11), whereX0
i is the initial set of parameters

and Xk
i is the current set of parameters:

Fr =
∑

i

(Xk
i − X0

i )2. (11)
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Levenberg’s method is of the same kind, but X0
i = Xk−1

i is the set of parameters solved by the Gauss-Newton

algorithm at previous iteration (k -1).

Table 1. Parameter Identification Results.

Parameter Initiales Values Optimales Values
Ra(Ω) 28 30.9034
La(H) 0.820 0.7954

K (N.m.A−1) 1.34 1.3212
J(kg.m2) 0.0028 0.0022

f(N.m.s/rad) 0.00054 0.0009
Tst(N.m) 0.127 0.1230

The convergence criterion in our design is based on the variation of the objective function value. If
differences of the objective function value between two subsequent iterations is less than a specified positive
number ε ,

∣∣F (Xk+1) − F (Xk)
∣∣ ≺ ε (12)

the optimization process will stop and the final optimization is achieved. The computational algorithm for the
solution of the inverse problem in this paper can be summarized as follows:

Step 1: Pick an initial guess X0 . Set k=0.

Step 2: Solve the direct problem given by equations (1), (2).

Step 3: Calculate the objective function F (Xk) given by equation (3). Terminate the iteration process
if the specified stopping criterion is satisfied. Otherwise, go to step 4.

Step 4: Solve the equation of sensitivity given by Equations (8), (9), and compute the gradient of the

objective function ∇F (Xk).

Step 5: Knowing ∇F (Xk), compute the conjugate coefficient βk from equation (6). Then compute the

direction vector of descent dk from equation (4).

Step 6: Knowing αk and dk , compute the new estimated vector Xk+1 from equation (4).

Step 7: Set k = k+1 and go back to step 2.

4. Results and discussion

The separately excited dc motor used for experimental tests has the nominal characteristics shown in Table 2.

To evaluate the performance of the proposed identification method using inverse problem, the first thing
to do is to properly express the design goal of identifying the parameters of a dc motor into a mathematical
equation. The goal is achieved through minimizing an objective function of the summed squared error evaluated
at 24 measurements points, as mentioned above.
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Figure 2. Rotor speed angular response. Figure 3. Armature current response.
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Figure 4. Deceleration test. Figure 5. Mechanical characteristic.

The design parameters are the armature resistance Ra , armature inductance La , back-EMF constant
K , rotor mass moment of inertia J , viscous friction coefficient f , and the static torque Tst .

The identification algorithm, using conjugate gradient method, was executed using Tikhonov method,

for a regularization parameter λ=10−9 , from which an optimal solution was obtained after 22 iterations. Table
1 summarizes the identification results. In order to show the validity of the technique in simulation, we have
applied a stepped-amplitude terminal voltage to the armature circuit of a dc motor, as well as a deceleration
test. According to Figures 2 and 4 the curves simulated from the dynamic test parameters with the proposed
method are close to the real curve (experimental curve). With regard to Figure 3 and the steady state Figure
5, the curves simulated from the dynamic test parameters with the proposed technique are almost identical and
close to real measurement (experimental curve).
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5. Conclusion

The inverse problem of parameter identification of a separately excited dc motor is investigated by employing
the conjugate gradient method. The finite difference method is employed to approximate the gradient of the
objective function. The Tikhonov’s method is then used to cast the ill-posed inverse problem into an optimization
problem with a regularized objective functional. The results show a comparison between experiment and
the proposed identification technique based on inverse problem, this comparison is made on the basis of real
measurements taken in laboratory on a separately excited dc motor, with 180 W of rated power. It shows the
advantage of the only dynamic test for identification, coupled to the inverse problem method.

Table 2. Specification of Experimental Dc Motor.

Rated power 180 W
Rated speed 1500 rpm

Armature voltage 270 V
Field voltage 220 V

Armature current 1.1 A
Field current 0.4 A
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