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Abstract

A new mathematically rigorous and numerically efficient method based on the combination of Orthogonal

Polynomials Method, and Analytical Regularization Method, for electromagnetic wave diffraction by a model

structure for various antennae such as Fresnel zone plates is proposed. It can be used as validation tool for

the other (more general or less accurate) numerical methods and physical approaches. The initial boundary

value problem is equivalently reduced to the infinite system of the linear algebraic equations of the second kind,

i.e. to an equation of the type (I + H)x = b in the space l2 with compact operator H . This equation can

be solved numerically by means of truncation method with, in principle, any required accuracy. Numerical

results show that physical optics approximation may not be valid, especially in diffraction by sources other

than plane wave, as it does not take into account the contribution of strip edges and interaction of strips by

means of traveling slow waves.
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1. Introduction

Electromagnetic wave diffraction by flat and perfectly conductive annular strips (see Figure 1) is a canonic
diffraction problem which occurs, in practice, during the design and modeling of various antennas including
Fresnel zone plate antennas (FZPA) [1, 2]. Essential part of the methods used in such investigations concerns
boundary integral equations of the first kind. Reduction of such integral equations lead to linear algebraic
systems of the first kind, the numerical instability and inaccuracy of which have already been subject of
attention [3–5]. Mathematical reason for the instability and inaccuracy is fast and unbounded growth of

condition numbers of finite dimensional (truncated) systems as system size increases [6]. In this paper we

107



Turk J Elec Eng & Comp Sci, Vol.17, No.2, 2009

suggest a new method free of such a drawback for the canonic problem mentioned above. The method is based
on successive application of Grinberg method [7–9], conventional Orthogonal Polynomial Method (OPM) [10]

(it is noteworthy that many authors have used various methods that are very similar to OPM; see [11] for

example) and Analytical Regularization Method (ARM) [12–17] aimed at final infinite algebraic system to be
of the second kind. Equations of the second kind have their well-known benefits in numerical stability and
reliability; see [3–5]. ARM is the principal stage of the method suggested.
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Figure 1. Geometry of the problem.

It clearly follows from our description that the technique proposed is rather universal. It can be used
for much more complicated structures without any loss of efficiency and accuracy. Consider, for example, the
case of arbitrary shaped, axially symmetrical toroidal screens (ARM approach for scalar wave diffraction by

arbitrary shaped toroidal screen can be found in [17]). We use Analytical Regularization in the sense of [12,

14]. The historical and ideological background of ARM is a semi-inversion procedure which was invented almost

half a century ago (see [12, 14] for historical references). It consists of nothing but analytical construction and
application of either left-hand or right-hand regularizers for the operator of the corresponding boundary value
problem. Regularizers (together with the same terminology) are widely used in functional analysis, including

theory of integral equations (see [21] and Chapter 5 in [18], for example), but for the case, when the regularizer
is already known.

It is necessary to outline construction of the second kind of equation of good quality (i.e. efficiently

solvable) by means of the one-sided regularizer; this is possible for the simplest diffraction problems only (see

[12] for details). For more complicated diffraction problems, two sided regularization of their boundary value

problem operators is much more flexible and powerful (see Appendix A), and it is always a challenge to construct
such regularizers in close analytical form for a new class of diffraction problems. In particular, for the diffraction
problem considered herein we have no other choice but to use the corresponding two-sided regularization that
we constructed analytically. In this paper, implementation of ARM is based on our method [15, 16] of solving
of conventional OPM integral equation and on Analytical Regularization procedure for new class of integral
equations involving so-called “free constants;” see Appendix C.

To outline the work here, initially, the electromagnetic wave diffraction boundary value problem (BVP) is
reduced to scalar integral equations of the first kind by means of standard magnetic vector and scalar potentials
using Grinberg’s method [8, 9]. For such integral equations of the first kind, analytical construction of a two-
sided regularizer is not straightforward. As such, we need to transform the integral equation at hand to the
canonic integral equation of OPM (but with free constants; see Appendix C), the regularizers of which are

already known [15, 16]. This transformation, invented in [17], is made by scaling the unknown functions and
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the kernel of the integral equation. The functional equations constructed in this way are of the second kind, but
bear the assumption that the “free constants” are known (when actually they are not yet known). Condition of
the electromagnetic field energy finiteness in any bounded space volume leads to the Meixner edge conditions,
and both of them can be treated as restrictions on functional classes that the surface current must belong to.
The idea of eliminating such “free constants” by means of the energy finiteness condition is given in [12]. A

similar procedure to determine the “free constants” by means of the Meixner condition is considered in [7], but,
unfortunately, not in a form where one can immediately obtain an equation of the second kind. That is why
we used both restrictions mentioned above for making the “secondary regularization” that has been applied for
elimination of such drawback as the last approach; see Appendix C. As a result of these efforts, we obtained
the algebraic system of the second kind of high quality that allows its efficient solution.

FZPA characteristics with parameters of practical importance are calculated to compare the exact results
for FZPA with the Physical Optics (PO) approach. It is shown that PO approach is not always relevant for
design of FZPA, and the design needs rather strong mathematical modeling of the kind suggested herein.

In appendix A, the abstract scheme of the ARM is given in brief. In appendix B, the canonic scalar integral
equation of OPM is equivalently reduced to infinite linear algebraic system of the first kind. Thereafter, ARM
is applied to transform this system to the one of the second kind. In appendix C, presented is an extension
of appendix B, considers the case of the canonical scalar integral equations of OPM with “free constants.”
Actually, this equation with “free constants” is the target for the electromagnetic wave diffraction problem
mentioned above. The idea (the technique) of using “free constants” to narrow the class of solution can be

found in [7].

2. Electromagnetic wave diffraction by thin perfectly conductive flat
annular strips

We consider here the problem of wave diffraction of an incident electromagnetic wave (Ei , Hi) by perfectly

conductive and infinitely thin screen defined with the surface S =
⋃

Sj , Sj

⋂
Sl = ∅ for l �= j and Sj ={(z , ρ ,

ϕ): z = zj , ρ ∈ [aj ,bj ], ϕ∈ [-π ,π ]}, j =1,2,. . . ,N (see Figure 1). The scattering field (Es , Hs) is what we

seek. The time dependence of the fields is chosen as e−iωt , and is omitted below. The posing of the diffraction
BVP is traditional in radio science [19]. Our nearest purpose is to reduce this problem into special vector

integral equation. That can be done by Grinberg’s method [7–9], which is essentially based on flatness of an
obstacle and, therefore, on identity Az =0, z ∈ S,whereAz is z-component of magnetic vector potential A .

Taking into account the standard boundary conditions Etotal
tangental(q) = 0 on surface S and absence of sources

on S, one can show that scalar Lorentz potential ψ s is a solution of the following inhomogeneous Helmholtz
equation on the surface S [19] (indices i and s denote “incident” and “scattering,” respectively):

[
Δt + k2

]
ψs = −∂Ei

z

∂z
, on S (1)

Using Green’s formula technique similar to [19], but for unclosed screens (see [14]), one obtains the integral

representation of magnetic vector potential A(q) = ∫ J(p)G(q , p)dS on the surface S (p and q are integration

and observation points, respectively, and R(q ,p) is the distance between them), where G(q , p) = [-4πR(q ,
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p)]−1 exp{ikR(q , p)} is the Green’s function of free space for Helmholtz equation, and J(p) is the current
density on S , which actually is the jump of normal derivatives of A on both sides of S . By means of A and
ψ s , the boundary condition gives the following vector integral equation of the first kind:∫

S

J (p)G (q, p) dS =(ik)−1[grad2ψ
s(q) − Ei

tangential(q)] , q ∈ S (2)

with unknowns J(p) and ψ s(q). Here, the operator grad2 denotes a surface gradient. The general form

(solution) of ψ s can be obtained from (1); see below. Simultaneously with (2), the J(p) can be sought. Axial

symmetry of the obstacle lets one use Fourier expansions of the terms in (1) and (2). Performing this leads us

from (1) to the following general solution for Fourier coefficient of ψ s for Sj :

ψj
m (ρj) = Aj

mJm (kρj) + Bj
mYm (kρj) + Zj

m (kρj) , (3)

Zj
m (kρ) =

π

2

⎧⎪⎨
⎪⎩Ym (kρj)

ρj∫
aj

fj
m (ξ) Jm (kξ) dξ +Jm (kρj)

bj∫
ρj

fj
m (ξ) Ym (kξ) dξ

⎫⎪⎬
⎪⎭ , (4)

where Aj
m and Bj

m are some arbitrary (unknown in the moment) constants, fj
m (ξ ) is Fourier coefficient of

right-hand side of (1), and Jm (kρ j),Ym (kρ j) are Bessel and Neumann functions of order m respectively.

Equation (2) is considered in cylindrical coordinates. Because of axial symmetry, it is convenient to apply

discrete Fourier transform to both sides of (2). Doing this, one arrives to the two scalar and coupled integral

equations of the first kind (m = 0,±1,±2,±3, ...):

2π
N∑

j=1

∫ bj

aj

⎧⎪⎨
⎪⎩

jjρ
m(zp, ρp) · j, lGc

m(zq − zp; ρq, ρp)+

+jjϕ
m(zp, ρp) · j, lGs

m(zq − zp; ρq, ρp)

⎫⎪⎬
⎪⎭ρp

j dρp
j = lλρ

m (zq , ρq) + i
k

∂
∂ρq

ψl
m (ρq)

2π
N∑

j=1

∫ bj

aj

⎧⎪⎨
⎪⎩

− jjρ
m(zp, ρp) · j, lGs

m(zq − zp; ρq, ρp)+

+jjϕ
m(zp, ρp) · j, lGc

m(zp − zp; ρq, ρp)

⎫⎪⎬
⎪⎭ρjdρj = lλϕ

m (ρq) + im
ρq

ψl
m (ρq)

ρl ∈ [al, bl], l = 1, 2, 3, ..., N.

(5)

Scalar functions lλρ,ϕ
m are Fourier coefficients of right-hand side of (2), concerning the tangential electric field

on the S . The unknown Fourier coefficients of the current density in (5) are written in integration point

coordinates, which leads the kernel to the form (zq = zp , ϕ = ϕ q -ϕ p)

j, lG(0, ρq, ρp, ϕ)
{

cos ϕ
sin ϕ

}
=

∞∑
m=−∞

j, lGc,s
m (ρq , ρp)eimϕ =

=
1

2(i)t

[ ∞∑
m=−∞

j, lGm−1(ρq , ρp)eimϕ ±
∞∑

m=−∞

j, lGm+1(ρq , ρp)eimϕ

]
, t =

{
0, for c
1, for s

.

(6)

Here, j,lG(zq−zp ,ρ q , ρ p , ϕ q -ϕ p) is free-space Green’s function for Helmholtz equation, written in cylindrical

coordinates system for points q=(zq , ρ q , ϕ q) and p=(zp , ρ p , ϕ p). Well known edge condition dictates the
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following representation of unknown Fourier coefficients of the current density:

jjρ,ϕ
m (ρj) = [(ρj − aj) (bj − ρj)]

r jhρ,ϕ
m (ρj) , r =

{
1/2, for ρ
−1/2, for ϕ

, (7)

where jhρ,ϕ
m (ρ) are some smooth functions. Conditions (7) determine the classes of functions in which the

solutions of equations in (5) must be found. In particular, condition for radial component of the unknown

vector enables us to determine constants Aj
m and Bj

m of equation (3); see Appendix C.

3. Reduction of scalar integral equations to the canonic OPM form

Let smooth function η j(t), t ∈ [-1,1] with dη j(t)/dt > 0 be given, and it is a parameterization of interval

[aj , bj ] by means of points of interval [-1,1]. With substitution of ρ q =η l(u), ρ p =η j(v), both equations in

(5) can be rewritten as

2π
N∑

j=1

1∫
−1

{
jZ̃ρ

m (v) j,lG̃c
m (u, v) + jZ̃ϕ

m (v) j,lG̃s
m (u, v)

}
ηj (v) ηj′

(v) dηj (v) = lg̃ρ
m (u) ;

2π
N∑

j=1

1∫
−1

{
−jZ̃ρ

m (v) G̃s
m (u, v) + jZ̃ϕ

m (v) G̃c
m (u, v)

}
ηj (v) ηj′

(v) dηj (v) = lg̃ϕ
m (u) ,

ρl ∈ [al, bl], l = 1, 2, 3, ...,N

(8)

where j,lG̃c,s
m (u, v) = j,lGc,s

m

(
ηl(u), ηj(v)

)
, j Z̃ρ,ϕ

m (v) = jjρ,ϕ
m

(
ηj(v)

)
, and lg̃ρ,ϕ

m (u) are right hand sides of

equations in (5) parameterized by η l (u) , that includes constants Aj
m and Bj

m (which are yet unknown).

Before attempting to solve equation (8), it is necessary to understand the singular structure and properties

of smoothness of the kernelsj,lG̃c,s
m (u, v). Functions{j, lGc,s

m } , j =1,2,. . . ,N in (8) are infinitely smooth, if j �= l .

For j = l it is clear that j,jG̃c,s
m (u, v) are infinitely smooth function in any point u �= v , and only a vicinity of

the points u = v requires more detailed investigation. Omitting left superscripts for this case, the analysis we

have made shows that functions G̃c,s
m (u, v) have the following representation:

G̃c,s
m (u, v) = − 1

4π
√

η(u)η(v)

[
ln |u − v|

{(
1, for c

0, for s

)
+

3∑
n=2

c,sAm
n (u)|u− v|

}
+ Hm

3,(c,s)(u, v)

]
(9)

with c,sAm
n =

(
2 (i)t

)−1 {
Am−1

n ± Am+1
n

}
, t is defined in (6), and

Am
2 (u) =

[kη′ (u)]2

4
− m2 − 1/4

4

(
η′ (u)
η (u)

)2

, Am
3 (u) =

m2 − 1/4
4

(
η′ (u)
η (u)

)3

(10)

are smooth functions. Functions Hm
3,(c,s) (u, v) are continuous with all its first partial derivatives up to the third

order, and all its partial fourth derivatives have at most logarithmic singularity only. We have used the simplest
parameterization:
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η j(t)=0.5[-(aj − bj)t+(aj + bj)]; aj < bj ,t ∈ [-1,1]

for numerical results presented below (see the discussion about choice and construction of the most

efficient parameterization in [14]).

Representations given by (9) complete the description of the singular behavior of function G̃c,s
m (u, v) for

our purposes. Defining Ĝc,s
m (u, v) = 4π2

√
η(u)η(v) G̃c,s

m (u, v) as new kernel and function Km(u ,v) by means

of the equality

−π−1Ĝc
m(u, v) = −π−1ln|u − v| + Km(u, v), m = 0,±1,±2,±3, . . . (11)

one can see from formulae (9)–(11) that function Km(u ,v) has the representation as

Km (u, v) = − 1
π

{
ln |u − v|

3∑
n=2

cAm
n (u) |u − v|n

}
− 1

π
Hm

3,c (u, v) . (12)

Thus function Km(u ,v) is much smoother than ln |u − v| (like δ2 ln |δ| , where δ=u − v); for after closer

investigation, we used Ĝc,s
m (u, v) below instead of G̃c,s

m (u, v). Otherwise, the main singularity in (12) will

be proportional to δ ln | δ | , that to say, the kernel Km(u ,v) would be much more singular that immediately

reduces the quality of the final algebraic system (making inequality (B15) invalid, for example). It is worth

noting that the singularity structure of Km(u ,v) is the same as one of Ĝs
m (u, v).

Let us denote by M the operator M : Λ2 → Λ2 of integral equation (8), where Λ2 = Λ × Λ and

Λ = L2([−1, 1]) is the space of square integrable on [−1, 1] functions. Space Λ2 would be standard choice of a
functional space for an implementation of classic Method of Moment scheme, and, definitely, it is the space of
choice of any real world computer; see [12, 14] for explanation of this fact.

The singularities of kernels in (8) are at most proportional to ln |u − v| and, therefore, the kernels are

square integrable. Consequently, M is compact operator in Λ2 , and (8) is an equation of the first kind inΛ2 . It

is noteworthy that the proper physical solution of (8) does not belong to Λ2 (because current function Z̃ϕ
m(v)

has in general the representation of the kind (B2) and, evidently, is not square integrable). All these mean that

(8) is ill-conditioned equation in Tikhonov sense (see Chapter 15 in [18] and [20], for example). Thus, any direct

method of equation (8) solving is numerically unstable.

A similar though simpler integral equation is considered in [4], where, in particular, the authors point

out two principal origins of Method of Moment instability: coordinate-free instability (or stability) and ill-

conditioning (or well-conditioning) of the coordinate family, i.e. the basis functions chosen for the implementa-
tion of the numerical method. The second origin depends on the details of the method implementation.

One can conclude by arguments in [4] that condition number ν (M)= ||M ||||M−1|| of the truncated system

must grow at least linearly as ν N (M)≥ C| λ max (M) |N , where N is the algebraic system size, λ max (M) is

eigenvalue of M with maximum modulus, and C is some constant. According to the observation made in [23]

for a strip (which has similarity with our annular strips in that it also has flat structure), one can speculate that

| λ max (M) | has to be proportional to (kL)2 where L is the width of the widest annular strip in our FZPA system.

Given estimate for ν N (M) should be considered as the lowest boundary for the rate of the condition numbers

growing. Unlucky choice of the basis functions may transform the rate of ν N (M) even to be exponential.
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Examples of such bad behavior of the condition numbers are presented in [4] and [6]. Recommendations for

proper choice of basis are given in [4] (see also discussion about Lagrangian bases in [18]), where it is admitted
that numerical implementation of what they recommend is not always easily implementable in practice.

Thus we have clear reason to transform equations in (8) into functional equations of the second kind in
space l2 ; we do this next according to the scheme mentioned in introduction.

Using equation (12), one can rewrite equation (8) as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1∫
−1

{
lẐρ

m (v)
(
− 1

π ln |u − v| + l,lKm (u, v)
)

+ lẐϕ
m (v) l,lĜs

m (u, v)
}

dv

+
N∑

j = 1
j �= l

1∫
−1

{
j Ẑρ

m (v) j,lĜc
m (u, v) + jẐϕ

m (v) j,lĜs
m (u, v)

}
dv

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= lĝρ
m (u) ,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1∫
−1

{
−lẐρ

m (v) l,lĜs
m (u, v) + lẐϕ

m (v)
(
− 1

π ln |u − v| + l,lKm (u, v)
)}

dv

+
N∑

j = 1
j �= l

1∫
−1

{
−j Ẑρ

m (v) j,lĜs
m (u, v) + jẐϕ

m (v) j,lĜc
m (u, v)

}
dv

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= lĝϕ
m (u) ,

u ∈ [−1, 1] , l = 1, 2, 3, ...,N, m = 0,±1,±2, ...

(13)

with new unknown functions pair lZρ,ϕ
m and right-hand side lĝm (u):

lẐρ,ϕ
m (v) =

[
ηl (v)

]1/2
ηl′ (v) lZ̃ρ,ϕ

m (v) , lĝρ,ϕ
m (u) = 2

[
ηl (u)

]1/2 lg̃ρ,ϕ
m (u) . (14)

with regard to conditions (7), the solution pair lZρ,ϕ
m should have the representation below (with r defined in

(7)):
lZ̃ρ,ϕ

m (v) =
(
1 − v2

)r lhρ,ϕ
m (v) , v ∈ (−1, 1) , (15)

where lhρ,ϕ
m (v) ∈ C0,α [−1, 1] are functions of Hölder class. Thus it can be proved that integral equation (2) is

equivalent to the infinite set of coupled integral equation of the first kind of type (13). System of kind (13) can

be referred as the canonic coupled integral equations system for OPM each kernel of which has π−1 ln |u− v| as
the strongest singularity.

Equation (13), as well as equation (8), is of the first kind. The degree of its coordinate-free ill-conditioning

can be estimated as follows. Formula (B6) means that integral of the kind (B1), but with K(u, v) ≡ 0 has

eigenvalues γ2
n = |n| for big n with T̂n(u) as corresponding eigenvectors. If K(u, v) is smooth enough in

comparison with ln |u− v| (which is the case for the kernels in (13)), integral operator in (B1) has eigenvalues

asymptotically close to 1/|n| for big indices |n| . Consequently, the operator of an algebraic system of size N

obtained from (B1) by any direct method will have the smallest eigenvalue close to 1/N for big enoughN .
That is why the inverse operator will have the biggest eigenvalue close toN . Thus, condition number of the
system will be proportional to |λmax|N , where |λmax| is the eigenvalue with the biggest modulus of integral

operator in (B1). System (13) is similar to (B1), but with a doubled structure. Consequently, coordinate-free

ill-conditioning of equation (13) means qualitatively that the condition numbers of truncated systems derived

from (13) will grow with at least with linear dependence on the system size. As well, for the equation (8),
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unlucky choices of the basis in Galerkin methods may lead to much faster (even exponential) increase of the
condition numbers.

That is why we apply the procedure in Appendix B. The system right hand sides include “free constants”

Al
m,B

l
m ((3)–(6)), which are yet unknown. Solution pair of this equation has to have the representation of the

form (15), which can be reformulated and taken as two additional equations for Al
m and Bl

m . System (13) is the

subject of the procedure for solution suggested in Appendix C (where it is reduced to a functional equation of

the second kind). Thus, initial electromagnetic diffraction problem for N annular strips is equivalently reduced
to the set of algebraic systems of the second kind depending on m = 0,±1,±2,±3, ....

4. Numerical results and discussion

In this section, we discuss numerical results obtained for two configurations of annular strips. The first of them
is a Fresnel zone plate configuration consisting of six annular strips, with optical focus F =4λ , where λ is
wavelength of incident field. As well known, the circular boundaries of Fresnel zones have radii rn of the kind
(see [2]) and that

krn = nπ
√

1 + 2kF/(nπ), k = 2π/λ, n = 1, 2, 3, ..., kF = 8π. (16)

We have taken the following aj , bj , and zj to define surface S of annular strips:

kzj = 0; kaj= kr2j−1; kbj= kr2j; j = 1, 2, 3, 4, 5, 6. (17)

The same configuration of annular strips is considered in [2], where it is referred as the first configuration. Figure
2 includes plots of principal feature of an algebraic system of the second kind: it is clear seen that truncated
matrices of algebraic system that (13) has been reduced to for m=1 are uniformly bounded for configuration

(17). When this configuration is illuminated by plane wave of unit amplitude and the wave propagates in

negative direction of z-coordinate (see Figure 1), according to Physical Optics (PO) approach, the current
density on perfectly conductive flat ring is equal to doubled amplitude of incident field, and the current’s phase
is constant. With this in mind, one can clearly see on Figure 3 the deviation of exact current from its PO
approach. Figure 4 shows the same data for the same excitation, but for another structure, which is single
annular strip with a1=10λ and b1=12λ . This strip is much wider of any strip of (17), and because of this PO
approach is much better for this obstacle.

Figure 3 and Figure 4 presents scattered far-field patterns for both of the same obstacles. And here,
as well, we see much better agreement of exact solution with PO approach for single strip, and the reason for
this is, roughly speaking, the same. Nevertheless, it is possible to think that far field pattern demonstrates
acceptable accuracy from engineering point of view for PO approach even for the worst case shown.

The most typical task of Fresnel zone plate is its usage as an antenna. In particular, it means that total
field excited by a point source should have high directivity in the main lobe, and much smaller fields in the
others lobes. PO gives solution of this task according to formula (17) and under supposition that the point

source is placed in focus point: in axis OZ (see Figure 1) on distance F from the plate.
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Figure 2. Condition number of final algebraic system and far scattered field patterns (by physical optics and analytical

regularization method - point source excitation) concerning the Fresnel Zone Plate Antenna model of 6 annular strips.
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Figure 3. Normal incident unit amplitude plane wave on a FZPA model of 6 annular strips. Radial and azimuth

currents in amplitude and phase, and far scattered fields of ARM and PO are given.

Figure 2 includes far field patterns given by PO approach and by exact solution of ARM. The first (and

correct) impression from the Figure is that PO does not work in the case considered. Of course, the question
arises: Why? The answer we believe in is the following. It is known, even in scope of PO, that effect of high
directivity of Fresnel zone plate is very sensitive to the plate parameters. This means that such effect has
resonant nature. Physical effects, which are negligible in other situations, may play important role in forming
of resonance frequencies, etc. Many of such effects are out of PO consideration. The first of them is energy
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Figure 4. Normal incident unit amplitude plane wave on a single annular strip of width 2λ . Radial and azimuth
currents in amplitude and phase, and far scattered fields of ARM and PO are given.

re-radiation by strips’ edges. For example, correct currents in Figures 3 and 4 are very far from being constant
(PO predicts two), which is a direct result of the existence of edges. Nevertheless, far field patterns in Figures 3
and 4 demonstrate acceptable agreement between PO and ARM, when the structure is excited by plane wave.
Consequently, it should be something more which makes polar plots in Figure 2 such dramatically different.
We suppose that this “something” is the presence of slow (surface) waves traveling along radial coordinate of

the obstacle in both directions and re-radiating via the edges. Really, as follows from (16) and (17), widths of

strips and distances between them tend to λ/2 as n → ∞ . That is why the system of strips considered can be
roughly interpreted as periodic-like structure, especially for the most outer strips. As known, plane waves do not
excite slow waves of a periodic structure. On the contrary, point source, as well as any strongly inhomogeneous
field, is very efficient for such purpose. That is why we have relatively good agreement of PO and ARM for
plane wave excitation, but complete disagreement for point source. Of course, all this said does not mean that
Fresnel zone plate can not work well in reality. For example, presence of deep minimum of radiated energy in
main lobe direction of exact solution clear indicates that z-coordinate Zps of the point source must be shifted

from F . As well known, optical calculation of a mirror focus position may give error till λ/2. This value is

negligible in optical range of frequencies (when, in our case, F , aj , bj , bj −aj ,aj+1−bj >> λ), but is quite big

for the structure considered. So, simple adjustment of Zps in real device may essentially improve the antenna

characteristics. Nearly the same can be said about optimal choice of strips’ radii aj and bj (which are not as

easily changeable as Zps). Such optimization problems supposed to be the topic of our next publication.

5. Conclusion

A mathematically strong and numerically efficient method for electromagnetic waves diffraction by axially
symmetrical system of annular strips (flat rings) is suggested. The method equivalently reduces the diffraction
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problem to the set of infinite algebraic systems of the second kind. Thus, being numerically stable, the truncation
procedure allows obtaining the problem solution with, in principle, any accuracy required. Due to this, the
method can be used as validation tool for the other (more general or less accurate) numerical methods and
physical approaches. The method suggested has been applied to Fresnel zone plate antenna, and the results
thus calculated were compared with ones of the PO approach. We found that the PO approach does not always
give satisfactory solution, because the diffraction process involves a few complex physical phenomena which are
not taken into account by the PO approach. We conclude that any physical model of the problem should take
into account presence of the strips’ edges (i.e. edge waves) and, possibly, exciting of slow waves traveling back
and forth along radial direction, and re-radiated by the edges. The method suggested herein gives a simple but
efficient alternative to complicated physical models of such a kind. It is based on conventional mathematical
posing of the problem and does not require any additional physical supposition. Thus the design of a Fresnel
zone plate antenna can not be based on the PO approach, only. The effect of high directivity is sensitive to
values of the antenna parameters. That is why optimization of the parameters is necessary, which requires strong
mathematical modeling of the antenna. Such optimization problem will be the subject of our next publications,
as well as the method generalization for arbitrary shaped bodies and screens of revolution.

Appendix A: Abstract Scheme for ARM

Without going into mathematical details (see [12, 14, 18, 20, 21]), we explain here the algebraic scheme of

ARM only. Let A be an operator given on a pair of functional (Banach or Hilbert) spaces, i.e. A : B1 → B2 .

According to conventional terminology [21, 22]), A is said to be an operator of the second kind if, at first,
B1 = B2 = B for some spaceB , and

A = I + H, (A1)

where I and H are the identical and some compact operator respectively. Otherwise A is an operator of the
first kind. Let us suppose additionally that pair (L, R) of operators is given: L : B2 → B and R : B → B1 is
such that

LAR = I + H, LAR : B → B, (A2)

where H is compact operator in B . In such a case we refer to the pair (L, R) as a two-sided regularizer if both

L �= I and R �= I . If R = I orL = I , we refer to the pair (L, R) as a one-sided (left or right) regularizer.

When an equation of the first kind (i.e., with operator A of the first kind)

Ax = b (A3)

is given and its regularizer (L, R) is known, the equation can be immediately reduced to one of the second kind

(LARy = (I + H)y):

(I + H)y = c; x = Ry, c = Lb, y, c ∈ B. (A4)

The methods of construction of various regularizers (L, R) in closed explicit form, and applying the regularizer
to equations of the first kind, is the key point of ARM in Electromagnetics and diffraction theory. The strong
necessity of such or similar procedure is well known and outlined by many authors (see, for example, [3, 4]).
From numerical point of view, the most convenient space B is Hilbert space l2 of square-summable sequences
B = l2 for which I and H are matrix-operators.
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The most essential advantage of equations of the second kind (in contrast to those of the first kind) is

that solutions yM of truncated systems (I +HM )yM = cM tend to the solution y∞ of infinite system (A4), i.e.

||y∞−yM || → 0, if ||HM −H || → 0 and ||cM − c|| → 0 for M → ∞ , and that this convergence is not just only

theoretical, but numerical as well. Namely, the sequence νM = ||I +HM || · ||(I+HM )−1|| of condition numbers

of truncated systems has the finite limit ν∞ = ||I +H || · ||(I +H)−1|| , and that is why it is uniformly bounded:

νM ≤ const (for sufficiently large M). That is why real numerical process of truncated system solving is stable
relative to the round off errors for arbitrary bigM .

An implementation of this idea requires, of course, analytical construction (in explicit form) of operators
L andR . These operators are constructed herein for integral operator of every above-considered integral
equation. Due to OPM, operators L and R have rather simple form, based on Fourier-Chebyshev transform
and corresponding infinite diagonal matrices; see below. Thus each of the integral equations considered, as well
as diffraction problems posed, have been equivalently reduced to the correspondent equation of the second kind
of type (A4) with B = l2 (or with B equal to finite direct sum of a few spacesl2 , which is the same from

qualitative and numerical points of view).

Appendix B: Treating the Canonical Integral Equation with Loga-

rithmic Singularity by OPM and ARM

Let us consider the canonical integral equation

1∫
−1

{
− 1

π
ln |u − v| + K(u, v)

}
z (v) dv = b (u) , u ∈ [−1, 1] , (B1)

with unknown function z(v). Suppose all other functions in (B1) are known and smooth enough for our

purposes. In particular, K(u ,v) is continuous with its first derivatives and all its mixed derivatives of the
second order are square-integrable.

We are looking for a solutions z(v) of the kind

z (v) = (1 − v2)−
1/2m (v) , v ∈ [−1, 1] , (B2)

with function m(v) belonging to Hölder class on [-1,1]. These properties of functions K(u, v), z(v) and b(u)
are quite natural for diffraction problem considered.

Any equation of (8) is of type (B1). We use below the orthonormal Chebyshev polynomials of the

first kind T̂n (x), which are connected with standard Chebyshev polynomials of the first kind Tn (x) (i.e.

Tn (cos θ) = cosnθ) by means of the formulae

T̂n (x) = d−1
n Tn (x) ; d0 = π1/2, dn = (π/2)1/2

, n �= 0; (B3)

1∫
−1

(
1 − x2

)−1/2
T̂n (x) T̂s (x) dx = δs,n, s, n = 0, 1, 2, 3..., (B4)
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with Kronecker delta δsn (i.e. δnn = 1 and δsn = 0 for s �= n). Using formula 5.4.2.9 of [22],

∞∑
n=1

cos nx

n
= − ln

∣∣∣2 sin
x

2

∣∣∣, x ∈ [−2π, 2π] , (B5)

one can after elementary transformations obtain

− 1
π

ln |u − v| =
∞∑

n=0

T̂n (u) T̂n (v)
γ2

n

, u, v ∈ [−1, 1] ; γ0 = (ln2)−1/2
, γn = |n|1/2

, n �= 0. (B6)

Due to the properties of functions z(v), b(u) and K(u ,v), they are equal to their Fourier-Chebyshev
series:

z (v) =
(
1 − v2

)−1/2
∞∑

m=0

zmT̂m (v), ; b(u) =
∞∑

n=0

bnT̂n (u) , u ∈ (−1, 1) (B7)

K (u, v) =
∞∑

s=0

∞∑
n=0

ksnT̂n (u) T̂s (v) , u, v ∈ [−1, 1] , (B8)

where {zm}∞m=0 are unknown coefficients and {bn}∞n=0 and {ksn}∞s,n=0 are Fourier-Chebyshev coefficients of

the functions b(u) and K(u ,v) respectively:

bn =

1∫
−1

(
1 − u2

)−1/2
b (u) T̂n (u) du; ksn =

1∫
−1

1∫
−1

K (u, v) T̂s (u) T̂n (v)

(1 − u2)1/2 (1 − v2)1/2
dudv (B9)

Moreover, coefficients ksn satisfy the following inequality (see [7, 8]):

∞∑
s=0

∞∑
n=0

(
1 + n2

) (
1 + s2

)
|ksn|2 < ∞, . (B10)

After substituting the right hand sides of series (B7), (B8) into equation (B1), changing the order of integration

and summation, the orthogonal property (B4) gives us the equalities of the Fourier-Chebyshev coefficients of

the left and right hand sides of equation (B1):

γ−2
n zn +

∞∑
s=0

knszs = bn, n = 0, 1, 2, ... , (B11)

which are equivalent to (B1) because of the completeness of functions system {
�

T n(u)}∞n=0 . Equalities (B11)
can be considered an infinite algebraic system, which is possible, in principle, to solve by means of truncation
procedure. It is found in paper [23] that condition number νM of the algebraic (finite-dimensional) system of
Moment Method for diffraction by infinitely thin strip is growing proportionally to M , when M tends to infinity,
where M is the size of the system. It can be easy seen that system (B11) has the same qualitative property:

the condition number νM ≈ const ·M , where M is the size (truncation number) of the corresponding truncated
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system. Really, according to (B6) and (B10), γ−2
n ≈ n−1 , and ksn are decaying much faster, when s, n → ∞ .

That is why, eigenvalues of infinite matrix in (A11) are asymptotically equal to n−1 for large n . Consequently,
eigenvalues of inverse matrix are proportional asymptotically to n , and evidently, spectral condition numbers
νM of truncated matrices are proportional to M . In contrast, the system resulting from (B11) after ARM (see

below) has uniformly bounded conditions numbers νM ≤ const, M → ∞ of its truncated systems (and these

νM are relatively small; see Figure 2, for example).

So, it is clear that (B11) is a system of the first kind. In order to apply corresponding ARM to (B11),

let us define matrix-operators L, R, K, K̂α (see appendix A):

L = R = diag{γn}∞n=0, K = {ksn}∞s,n=0;

K̂α = L2−αKRα = {k̂sn}∞s,n=0; k̂sn = γ2−α
n γα

s ksn, (B12)

and vector-columns
z = {zn}∞n=0; b = {bn}∞n=0;

y = R−αz = {yn}∞n=0, yn = γ−α
n zn; b̂ = L2−αb = {b̂n}∞n=0, b̂n = γ2−α

n bn, (B13)

where diag denotes that L and R are diagonal matrix-operators, and α ∈ [0, 2] is some parameter to be chosen;

see below. Using new unknowns yn , instead of zn , and multiplying each nth equation of (B11) by γ2−α
n , one

obtains infinite algebraic system with the following functional view:

(I + K̂α)y = b̂, y, b̂ ∈ l2. (B14)

It can be proved that (B14) is system of the second kind, i.e. K̂α is compact in l2 operator for any α ∈ [0, 2] . It

means that we constructed the family (L2−α, Rα), α ∈ [0, 2] of regulators, and each solves the initial problem:
to obtain an algebraic system of the second kind. Thus, the optimization problem arises: to find the best in some
sense α . From a numerical point of view, it is most naturally to think the “best” α as one providing the fastest

convergence of truncation method for system (B14). Namely, let K̂M
α is finite matrix of sizeM , obtained as

truncation of matrix K̂α . It is necessary to find such α ∈ [0, 2] , which provides the fastest asymptotic decaying

of for M → ∞ . The investigation made shows that the solution of this problem (for Hilbert-Schmidt operator

norm) is α = 1.

In paper [24] (for a system similar to (B11)) the regularization is constructed in a way equivalent to the

choice α = 0 in our notation (with the exception operator R is absent in [24]). This approach is based on

ideas of semi-inversion method explained in [12, 13], which is mistakenly mismatched in [25] with Analytical

Regularization. We understand the terminology ARM in the sense [12–17] described above, and semi-inversion

method as a very special case (whenR = I) of Analytical Regularization in general. By introducing parameter
α , one has the possibility to find not the best value of α only in sense mentioned, but, what is most important,

to construct operator K̂α with very important qualitative properties. In particular, from formulae (A10) and

(A12) it follows that
∞∑

n=0

∞∑
s=0

(1 + n) (1 + s)
∣∣∣k̂ns

∣∣∣2 < ∞ for α = 1, (B15)
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and evidently K̂α for α = 1 is compact operator, but much more than compact operator only: its coefficient
decaying much faster than necessary even for to be Hilbert-Schmidt operator. It can be proved (see [12, 14])

that equations (B1) and (B14) are equivalent in the sense of one to one correspondence between solutions of

both equations (in relevant functional spaces). Truncation procedure applied to equation (B14) of the second
kind enables us to obtain solutions of both equations with, in principle, any required accuracy.

We use α = 1 in calculations and eliminate α from notation without any additional notice.

Appendix C: Treating the Canonical Integral Equation with Loga-
rithmic Singularity Including “Free Constants” by OPM and ARM

Let us consider integral equation of the kind

1∫
−1

{
− 1

π
ln |u − v| + K (u, v)

}
z (v) dv = b (u) + AΦ+ (u) + BΦ− (u) , u ∈ [−1, 1] , (C1)

where Φ±(u) are two smooth-enough and linearly independent functions. Such an equation without free

constants A and B (i.e. A = B = 0) is known as an OPM canonic integral equation given in Appendix

B. This section includes below a brief explanation of the Analytical Regularization of equation (C1), when A

and B are unknown. In general, for arbitrary A and B , the unknown function z(v) is singular for v = ±1
and has the form

z (v) = z(A, B; v ) =
(
1 − v2

)−1/2
m̃(A, B; v ), (C2)

where m̃(A, B; v ) is a smooth function that depends on parameters A and B . m̃(A, B; v) can be represented

by means of a Fourier-Chebyshev series m̃(A, B; v) =
∑∞

n=0 znT̂n(v) , where T̂n(v) are orthonormal Chebyshev

polynomials of the second kind. Physical properties of the considered diffraction problems dictate the edge
conditions of the type (7) for equations of the type (C1). In particular, when z(v) is proportional to radial
component of current density it should be of the type

z (v) = z(A, B; v ) =
(
1 − v2

)1/2
m(A, B; v ) (C3)

with some smooth function m(A, B; v). Thus it is necessary to find such constants A and B such that (C3) is

valid. Evidently, the necessary (and sufficient) requirements are

m̃(A, B;±1) = 0, i.e.
∑∞

n=0
znT̂n(±1) = 0. (C4)

Let the Fourier–Chebyshev expansions of functions Φ±(u) be

Φ± (u) =
∞∑

n=0

φ±
n T̂n (u), u ∈ [−1, 1] ; φ±

n =

1∫
−1

(
1 − u2

)−1/2
Φ± (u) T̂n (u)du. (C5)

Define φ̂±
n = γnφ±

n , borrowing γn from (B6) and [15]: γ0 = (ln2)−1/2 ,γn = (n)1/2, n �= 0. Then we

can suppose for a moment that constants A and B and functions Φ±(u) are known, and apply to (C1) the
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version of ARM constructed in [15] similar to the step followed from (B13) to (B14). Doing this, we arrive to

the following algebraic system with new unknownsyn = zn/γn :

yn +
∞∑

s=0

k̂nsys = b̂n + Aφ̂+
n + Bφ̂−

n , n = 0, 1, 2, ... . (C6)

Condition (C4) can now be rewritten as

∞∑
n=0

γnynT̂n (±1) = 0. (C7)

Equation (C7) must be considered together with (C6). The final equation of the second kind evidently dictates

the further transform (regularization) of equation (C7). Let us substitute the expressions for yn that follow

from (C6) into (C7):
∞∑

n=0

γnT̂n (±1)

{
−

∞∑
s=0

k̂nsys + b̂n + Aφ+
n + Bφ−

n

}
= 0. (C8)

Then passage to the equations

∞∑
s=0

Q(±)
s ys − AP

(±)
+ − BP

(±)
− = b(±) (C9)

(with two variants: (+) and (-)) can be done by defining the following numbers s=0,1,2,. . . :

Q(±)
s =

∞∑
n=0

γnk̂nsT̂n (±1) ; b(±) =
∞∑

n=0

γnb̂nT̂n (±1) ; P (±)
+ =

∞∑
n=0

γnφ̂+
n T̂n (±1) ; P

(±)
− =

∞∑
n=0

γnφ̂−
n T̂n (±1) .

(C10)

Due to the property
∞∑

n=0

∞∑
s=0

(1 + n) (1 + s)
∣∣∣k̂ns

∣∣∣2 < ∞ , concerning (C6) (see [15] and (B15)), numbers

Q
(±)
s exist and tend to zero sufficiently fast for the purpose, while index s increases. Functions Φ±(u) are smooth

and, consequently, their Fourier-Chebyshev coefficients φ±
n are very fast decaying. This means that numbers

P
(±)
± exist. In the case of the diffraction problem considered, Φ±(u) are eigenfunctions of the corresponding

Sturm-Liouville problem, generated by Separation of Variables Method for Helmholtz equation. That is why

Φ±(u) are Bessel and Neumann functions (see (3), (4), and (13) ), and consequently φ±
n are proportional to

the corresponding Bessel functions; and why φ±
n tends to zero faster than n−l with arbitrary l >0, as n→ ∞ .

Thus equations (C6) and (C9) can be considered together as infinite algebraic system of the second kind

in l2 with unknowns A , B , {yn}∞n=0 , and it is equivalent (in the sense of one-to-one correspondence between

solutions) to integral equation (C1) with conditions (C3). This statement can be proved in strong mathematical

sense; see [14].

Now, let us consider equations (13) for N =1. Such equation consists of coupled pair of canonic OPM
equation and OPM equation with “free constants.” It can be easy shown that the above described procedures
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of ARM for both equations give ARM for equation (13) with N =1. In the case N >1, the same procedures

applied to block-diagonal of N × N matrix (13) give ARM for system (13) of coupled integral equation. The

resulting algebraic system (I + H)y = b is of the second kind—with compact operator H .
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[16] E. Özkan, F. Dikmen, Y. A. Tuchkin, Scalar Wave Diffraction by Perfectly Soft Thin Circular Cylinder of Finite

Length; Analytical Regularization Method, Elektrik, Turkish Journal of Electrical Engineering and Computer

Science, TUBITAK Doga Series, Vol 10, 2002, 459-472

[17] Yu. A. Tuchkin. Scalar wave diffraction by axially symmetrical toroidal screens. URSI-98, Proceedings of Interna-

tional Symposium URSI Commission B, May 25-28,

[18] R. Kress, Linear Integral Equations, Springer, 1999.

[19] D. Colton, R. Kress, Integral equation methods in scattering theory, Wiley, 1983.

[20] L. V. Kantorovich, G. P. Akilov, Functional Analysis in Normed Spaces, (Translated from the Russian by D.E.

Brown [and] Edited by A.P. Robertson), Pergamon Press Inc. (1964).

[21] S. G. Krein, ”Linear differential equations in Banach space”, Transl. Math. Monogr., 29, Amer. Math. Soc. (1971)

(Translated from Russian).

[22] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev. Integrals and series. Elementary functions, (v.1). Moscow, Nauka,

1981,798 p.

[23] K. F. Warnick, W. C. Chew, “On the spectrum of the electric field integral equation and the convergence of the

moment method” Int. J. Numer. Meth. Engng 51:31-56, 2001

[24] G. Fikioris. “A Note on the Method of Analytical Regularization”. IEEE Antennas and Propagation Magazine, Vol.

43, No 2, pp 34 – 40, April 2001

[25] A. I. Nosich. The Method of Analytical Regularization. IEEE Antennas and Propagation Magazine, Vol. 41, No 3,

April 1999, 34 – 49.

124


