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Abstract

In this paper a new protection scheme is introduced to detect and identify transformer winding faults.

The new approach is based on artificial neural networks (ANNs) using radial basis functions (RBFs) and the

principal component analysis (PCA). The nonlinear system’s input and output data is manipulated without

considering any model of the system. This approach is used to detect and identify internal short circuit faults

of a three phase custom built transformer. The suggested technique is also able to distinguish between the

fault and magnetizing inrush current. The test studies carried out shows that the proposed method leads to

satisfactory results in terms of detecting and isolating parameter faults taking place in non-linear dynamical

systems.
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1. Introduction

The continuity of transformer operation is of vital importance to maintaining the reliability of a power net-
work. Any unscheduled repair work, especially replacement of a faulty transformer is very expensive and time
consuming. Major damage following a fault may require shipping the transformer to a manufacturing site for
extensive repair, which results in an extended outage period. If the faulted condition can be detected before a
major damage occurs, the necessary repairs can often be made more quickly [1].
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In a power transformer two types of faults can be considered. These are internal, and incipient short
circuit.

Internal short circuit faults are generally turn to turn short circuits or turn to earth short circuits in the
transformer windings.

This type of fault occurs suddenly and usually requires fast action by the protective relay to disconnect
the transformer from the electric power system. Statistical surveys show that 70%–80% of transformer failures
result from inter-turn/internal faults. Internal fault phenomenon is one of the transient conditions in a power
transformer and begins with a small discharge inside the transformer tank. As the short circuit current continues
to flow, it causes further damage by accelerating the insulation breakdown and leading to more serious permanent
faults.

Incipient transformer faults usually develop slowly, often in the form of gradual deterioration of insulation.
They are also called ‘high impedance’ faults and it is usually very difficult to distinguish this type of faults from
normal operation conditions. When the condition of system equipment degrades because of some electrical,
thermal or chemical effects, intermittent incipient faults begin to persist in the system and may lead to serious
failure [2, 3].

Traditionally, a Fast Fourier Transform (FFT) or a wavelet technique (WT) is used for analyzing dynamic
and transient signals such as transformer incipient faults. However, this procedure has some drawbacks in
analyzing transient signals taken from power systems [4]. These techniques rely on the fault current including
second and fifth harmonic components. The most familiar of these problems is the current offset. DC offset
currents can cause increased flux density in the current transformers and this can result in saturation. Saturated
current transformers are the cause of a variety of relay mal-operations. Traditionally harmonic restraint
algorithms are used to overcome this problem [5, 6]. They compare the peak values of the second harmonic and
fundamental frequency components of the differential currents. If a second harmonic component exceeds a pre-
specified percent of the fundamental frequency component, the algorithm classifies the situation as magnetizing
inrush. All the past algorithms may be affected by current transformer saturation.

In [7], the discrimination method is based on the time interval of the peak value of the current waveform,
and no explicit discrimination algorithm is given in wavelet-based discrimination between a magnetizing inrush
and a fault. Additionally, in the study of analysis using the DWT of magnetizing inrush currents and fault
currents inside a transformer, spikes in detail coefficients have been pointed out, but no accurate detection
algorithm has been indicated. Since the DWT method uses only the current waveform, the detection speed is
inevitably degraded. To obtain more satisfactory results, wavelet filters having longer length and more levels
of wavelet decomposition must be employed or wavelet coefficients must be interpreted by an expert system.
Consequently, more processing time is required, which is a drawback for protection relays.

It is observed that an internal fault current unlike magnetizing inrush current primarily has mainly the
fundamental component of power system frequency. Therefore the use of FFT or wavelet based techniques
for identifying internal faults may not be suitable due to the low magnitude of harmonic component currents.
However, a high-speed online detection method of magnetizing inrush current, internal fault current, and load
current was investigated in the proposed paper.

PCA is one of the multivariate statistical techniques, which can reduce the dimension of the data. The
original idea was reviewed by J. J. Edward [8] to solve fault detection and identification (FDI) problems. The
similar methods based on malfunction detection might lead to difficulties in the fault identification stage. There
are also several existing diagnostic tools based on PCA. Process monitoring and fault diagnosis using PCA
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have been studied intensively and applied to industrial processes. In the literature, linear PCA and its various
extensions such as multi-scale PCA, neural PCA, model based PCA or multiple local PCA have been applied
to a variety of dynamic and static systems to diagnose system faults [9]. Many other approaches have also been
suggested to extend the monitoring capabilities of PCA using different methods such as support vector machine
[10] and genetic programming [11].

In [12], an algorithm for transformer differential protection based on pattern recognition of the differential
current is described. The algorithm uses PCA to preprocess data from the power system in order to eliminate
unnecessary information and increase unknown pattern in differential current to discriminate between internal
faults from inrush and over-excitation conditions. The algorithm was proven using PSCAD/EMTDC simulations
in a three-phase power system considering critical fault cases.

In [13], a protection algorithm for single phase distribution transformers is proposed. The proposed

protection algorithm is based on PCA uses both primary and secondary currents for feature (residual) extraction.
After analyzing both currents, two residuals, �1 and �2 , are obtained and compared a threshold value to see
if there is a fault in the protection region. Then fault detection and identification is achieved by a simple rule
set of low and high of the residuals.

In [14], a monitoring system for distribution transformer based on PCA is proposed. The use of
the historical data of distribution transformers to evaluate distribution transformer’s optimal operation is
preprocessed by PCA. Many indices of the operational parameters from huge historical loading data are
calculated to evaluate distribution transformer’s optimal operation. PCA is used for reducing the dimension of
the indices through matrix conversion.

Similarly in [15], a condition monitoring of power transformers is presented based on partial discharges.
Partial discharges obtained by remote radiometric measurements from a power transformer with a known
internal defect are analyzed. Investigation based on Euclidian and Mahalanobis distance measures and Ward and
Average linkage algorithms were performed on partial discharge data pre-processed by PCA. A clear separation
of partial discharges emanating from the transformer and discharges emanating from its surrounding is achieved.

In this study a new on-line protection algorithm is presented. The proposed algorithm uses only rms
value of the phase currents and it is not rely on the current harmonic components. It consists of two stages:
Residual generation with dynamic PCA and fault isolation with an RBF based diagnoser. The RBF network is
a universal approximator which can approximate arbitrarily well any multivariate function given a sufficiently
large number of hidden units. The term dynamic comes from the employed data manipulation technique. The
suggested protection scheme is also sensitive to magnetizing inrush conditions and load changes. The two RBF
networks are also used for discriminating magnetizing inrush and load change cases. Rule based reasoning
approach is then used for interpreting the outputs of the RBF networks.

As an extended version of the referenced paper [13 and 16], this paper presents a complete protection
scheme including magnetizing inrush phenomenon, multiple and external faults studies. The paper has the
principles of the PCA fault detection and RBF fault identification in the first and second sections, respectively.
Experimental results using faults induced on a laboratory transformer are then presented to demonstrate
the performance of the proposed protection scheme compared with traditional FFT based schemes. Finally,
conclusions and future work are given in the last section.
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2. Principal Component Analysis (PCA)

For PCA the discrete time linear system is assumed to be in the form of

xk+1 = Axk + Buk + Bffk

yk = Cxk + Duk + Dffk
(1)

where xk , uk and yk denote the state, the known input applied to the system and the system output at time
k respectively [7], [8]. fk is the unknown fault input and the matrices Bf and Df determine which part of the

system (actuators or sensors) will be affected by the different faults.

If the data are collected dynamically, i.e. Y = (yT
k−l+1...y

T
k )T , the output signal Yk can be formulated as

Yk,s,N = ΓXs,N + HUk,s,N + GFk,s,N . (2)

The sequences uk and fk are stored in a similar way in the matrices Uk,s,N andFk,s,N . This representation is

called the parity space model. A residual to be used for fault detection and diagnosis can be defined, if there is
no actuator and sensor fault as

r = WT (Yk,s,N − HUk,s,N) = WT GFk,s,N , (3)

where WT Γ should be chosen as zero. However, the parity space model can be used if a nonlinear system’s
linearised model is utilized or a state space model is obtained from the data. However, a nonlinear system may
not easily be linearised every time. Hence, a PCA based fault detection method can be a solution to determine
faults in nonlinear complex systems since it only uses measured data. It is not necessary to construct a state
space model for the system.

A principal component is defined as a linear transformation of the original variables, which are normally
correlated, into a new set of variables that are orthogonal to each other. The basic goal in PCA is to reduce
the dimension of the data. This is done in the mean square sense. Such a reduction in dimension decreases the
computation time and removes the effects of the noise.

Consider a data matrix Y ∈ Rm×n consisting of m sample rows and n variable columns that are
normalized to zero mean and unit variance. The matrix Y can be decomposed into a score matrix T =
[t1, t2, ..., tn] as

T = Y V, (4)

where matrix V = [v1, v2, ..., vn] is a loading matrix whose columns are the right singular vectors of Y. PCA
decomposes Y as follows:

Y = TrV
T
r + R = TrV

T
r + T̂rV̂

T
r =

k∑
i=1

tivi +
n∑

i=k+1

tivi, (5)

where R = T̂rV̂
T
r is the residual (error) matrix, Vr , Vr ∈ Rn×k, k〈n, are the first k principal component

loading, Tr , Tr ∈ Rm×k are corresponding scores. Matrices V̂r and T̂r consist of the last n−k column vectors
of loadings and row vectors of scores, respectively. The decomposition of data matrix Y in equation (5) can
be implemented by SVD of covariance matrix Ycov as

Ycov = Y T Y = V Ω1/2V T , (6)
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where V = [ Vr V̂r ] ,V Ω1/2 = [ Tr T̂r ] , the elements of diagonal matrix Ω are the positive square roots of

the eigenvalues λi(i = 1, ..n)of the matrix Ycov called the singular values.

3. A new protection algorithm

The architectural structure of the proposed protection scheme is given in Figure 1. It consists of three RBF
networks (ANN1, ANN2 and a diagnoser), PCA and a decision making unit. The PCA unit is used to produce
residuals R using the line currents of IA , IB and IC . Residuals are applied to ANN1, ANN2 and diagnoser
in order to produce a binary number to diagnose faults. ANN1 and ANN2 have an input layer with 1 neuron,
a hidden layer with 8 neurons and an output shown in red seen Fig.2. The nodes in the adjacent layers are
fully connected to these networks. The outputs of the ANN1 and ANN2 are binary numbers and denoted
via magnetizing inrush (MI) and load change (LC), respectively. If any of these outputs becomes binary 1, it
indicates a ‘magnetizing inrush’ or ‘load change’ condition.

The outputs of the ANN1 and ANN2 are applied to the decision making unit. The decision making unit
activates the diagnoser unit according to the rule set given in subsection 3.3. The diagnoser discriminate the
fault type and define the percentage of the winding get involved.
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Figure 1. The overall structure of protection scheme.

The proposed method can be expressed step by step as follows.

3.1. Residual generation with PCA

There are three steps in the PCA based fault detection approach. These are data manipulation, off-line procedure
and on-line fault detection.
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(a) The data manipulation stage: The data matrix Y can be constructed in a dynamic way. The

matrix Y is constructed under normal operating conditions from the samples of the system inputs (u(k)) and/or

outputs (y(k)) as

Y = [yT
k−l+1y

T
k−l+2, ..., y

T
k ]T , (7)

where l denotes the system order and y contains inputs and/or outputs data of length k .

(b) Off Line Procedure: In the off-line procedure the data matrix Y’s mean and variances are firstly

calculated. It is also auto scaled (i.e., zero mean, unity variance) using mean and variances calculated before

constructing the correlation matrix (covariance). Then the covariance matrix of data matrix Y is calculated by

using equation (6). Then, matrices V̂r and T̂r are calculated for online fault detection procedure.

(c) On-line Fault Detection Procedure: In the on-line fault monitoring stage, each new observation
vector is auto scaled using the means and variances obtained in the off-line stage and projected onto the principal
component sub-space. For a new sample Ym , the residual (R) is given by

R =
∥∥Ym − TrV

T
r

∥∥2
=

∥∥Ym − YmVrV
T
r

∥∥2
=

∥∥Ym(I − VrV
T

r )
∥∥2

=
∥∥∥YmV̂rV̂

T
r

∥∥∥2

(8)

If the residual exceeds a predefined threshold value, it is assumed that a fault has occurred in the system.
Immediately after detection of the fault, a fault isolation technique is required. Threshold based fault isolation
techniques may not work well in the PCA based FDI. Hence, a classification technique or a reasoning based
fault isolation method should be used.

In order to indicate probable faults, an RBF network similar to a fuzzy reasoning method including a
fuzzy rule-base based on expert knowledge has been used in the identification unit. The residual vector R is
then applied to the RBF network as an input.

3.2. The structure of the diagnoser, ANN1 and ANN2

RBF networks are used in the online fault isolation procedure and to detect magnetizing inrush and load
changes.

The basic architecture of the diagnoser based on RBF networks is shown in Figure 2. The diagnoser gives
the decision about the type and degree of fault such as “single fault” or “multiple faults.” The corresponding
fault probabilities are also made available in the diagnoser. FP, S and M are respectively indicate the fault
percentage, the decision of a single phase fault and the decision of multiple phase fault.
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Figure 2. The structure of the RBF network type diagnoser, ANN1 and ANN2.
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As is seen in Figure 3, the suggested RBF network type diagnoser has an input layer with 1 neuron (i.e.

coming from the PCA algorithm), a hidden layer with 8 neurons and an output layer with 3 neurons. In this
network, the nodes in adjacent layers are fully connected. All of the three RBF networks, ANN1, ANN2 and
diagnoser can be represented by the parametric model [12]

f(Rk) =
n∑

i=1

wiΦi(‖Rk − ci‖ , σi), (9)

where

• Rk is the kth input,

• Φ(·) is a given function, known as the radial basis function,

• ci is the center of the ith RBF,

• σ i is the width of the ith RBF,

• || denotes the Euclidean norm, and

• wi is the linking weight between the i node in the hidden layer and the output layer.

Radial Basis Function (RBF) neural networks are simply a weighted linear combination of a set of basis

functions (normally Gaussian). The basis functions in the hidden layer produce a localized response to the input
and typically use hidden layer neurons with Gaussian response functions. In that case, the activation levels Φi

of hidden unit i are calculated by as:

Φi = exp

[
−‖R − ci‖2

σ2
i

]
. (10)

Off-line RBF Network Training: To obtain the training set the suggested ANNs based on RBFs a number
of laboratory experiments have been done. These experiments cover ‘normal operating conditions with load
loads’, ‘turn to turn faults’ and ‘turn to earth faults’ in both primary and secondary sides of the transformer.
True rms values of the primary currents are pre-processed by the PCA to extract feature vectors used in the

network training. The training vectors (TV) in k th discrete time have been constructed as:

TV = [RkFPkSkMkLCkMIk]40x6, (11)

where k=1,2, .. 40, Rk is the output of the PCA algorithm, FPk is the fault percentage vector, Sk is the
single phase fault indicator, Mk is the multiple phases fault indicator, LCk is the load changing indicator, and
finally MIk is the magnetizing inrush current indicator. TV set is a matrix with a dimension of 40×6.

Approximately 70 training and validating tests concerning RBF network are carried out. The training
and validating procedure are performed for not only a single phase but also for the other two phases. For
example, if RBF network is trained for internal fault scenario in phase A (in primary or secondary side), the

validating test outputs are obtained from phase B and/or phase C. This approach is also valid for multiple fault
scenarios. In the training procedure, RBF network parameters are chosen as; learning coefficient for weights is
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0.09, learning coefficient for centers is 0.08, learning coefficient for widths is 0.07, iteration is 100 and the sum
of squares error is 3.45.

After training the ANN networks, the calculated R vector in real time is applied to the trained networks
as an input. The suggested network type is similar to fuzzy based fault identifier and its learning algorithm is
‘gradient descent’.

3.3. Decision making unit

The decision making unit allows the diagnoser unit to work or not. If the decision making unit detects a
magnetizing inrush (MI) or load change condition (LC), it produces a signal to block the diagnoser. The rule
set for decision making unit is:

IF LC OR MI is 1 THEN diagnoser unit will not work ELSE diagnoser unit will work.

3.4. Generalization of the protection method

After the explanation of all steps forming the protection method the generalization of the suggested technique
can be summarized as follows:

i . Three-phase instantaneous currents are taken from a real-time system and sampled with a frequency
of 2 kHz using a NI-DAQ PCI 16MIO-E series data acquisition board. A general-purpose DAQ board can be
used for field tests.

ii . True rms values of the phase currents are calculated using following:

Irms =

√√√√(
1
N

)
∗

N−1∑
n=0

(in)2, (12)

where N is number of the samples per cycle and in is the sampled value of the instantaneous current at the
sampling instant of n .

This procedure causes 20 ms delay (for 50 Hz power frequency) for the initialization. After calculating
the first true rms values of the phase currents, a sliding window algorithm is used for calculating rms values
yielding to 0.5 ms time delay only.

iii. Principal component analysis (PCA) is used for feature extraction. PCA algorithm uses the rated
measured input-output values of the protected device in the background. The technique works both for no-load
and loaded condition in the transformers. The transformer data was obtained from the manufacturer data sheet.

iv. The residual vector R is the input of the RBF based ANN units. Two RBF based ANNs are used
for MI and LC units. The training vectors for these units are obtained from laboratory experiments. They are
related to the rated values of the input -output currents of the transformer. The outputs of these units are the
binary numbers which are used as the input of the ‘decision making unit’.

v. The diagnoser unit deals with the fault conditions and has the outputs of S, M and FP. This unit
produces its decisions within 3 to 6 sampling intervals.
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4. Real time test studies

Real time test studies have been carried out by using a custom-built transformer in the laboratory. The rated
values of the transformer are given in Table 1. The custom-built transformer has been equipped with various
taps placed on both primary and secondary windings so that internal faults could be performed by connecting
two taps. A combination of an electromechanical relay and a start switch is used for connecting two taps
manually. In order to have more realistic fault studies a fault resistance of 1 Ω in the primary and secondary
side of the transformer is used for limiting incipient short circuit currents in the laboratory environment.

Table 1. Transformer Specifications.

Rated-Power 1000 VA
Input-Output Voltage Ratio 380/220 V
Winding Ratio 525/265
Rated-Frequency 50 Hz
Type of the transformer Three phase Shell form

The diagram of the real-time test model is shown in Figure 3. The Signal Conditioning Unit includes
residual generation, the RBF based ANNs and Decision Making unit. As soon as the ‘S’ or ‘M’ parameter in
diagnoser unit receives a logic 1 in the diagnoser unit, a trip signal will be initiated, then the transformer will
be switched off.
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Figure 3. Real-Time Test System.

A number of tests are performed to check the FDI algorithm performance in the laboratory environment.
As a primary voltage source, a variable auto-transformer is used and manually controlled. In all real time
experiments the time step was 0.5 ms which corresponds to 40 samples per cycle of the supply frequency. When
an internal fault occurs on the primary of the transformer, the primary current will increase a bit and secondary
current doesn’t change much. However, a very large magnitude of circulating current flows trough the shorted
turns. For a 10 turn short circuit in the transformer primary winding the circulating current is measured as
around 10 A. As stated before, a fault resistance of RF is used to limit the circulating current. Short circuits
have been performed manually using an electromechanical relay such that the duration of the fault last 3 to 6
periods of system frequency.

(a) Test studies for transformer energizing

Figure 4 shows the instantaneous value of the primary current during energizing the transformer. It is
clearly seen from the Figure that the MI condition ends within 250 ms; however the variation of the second
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harmonic current is still over 35–40% due to the CT saturation. This may cause mal-operation of a traditional
protection algorithms based on FFT.

Figure 5 shows the true rms values of the primary currents of the transformer and the related PCA output
vector during the magnetizing inrush. It is seen that as the effect of MI decreases the PCA output drops zero
suddenly. As seen in Figure 5, the feature vector (the output of the PCA algorithm) becomes a zero within
250 ms and the proposed algorithm detects the MI condition within 40 ms only. The MI unit produces binary
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Figure 4. Primary currents of the transformer during MI condition.
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Figure 5. Line currents and related PCA output R during magnetizing inrush condition.
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decision 1 immediately after detection of the magnetizing inrush. In this case, the decision making unit does
not produce a trip signal.

As seen in Figure 6, the MI unit detects magnetizing inrush condition because the RBF output (dotted

line) exceeds the MI pointer. If RBF output reaches the value of 0.97 or above, the MI unit interprets it as
“MI inrush detection.” The other outputs related with LC, FP, S, and M are zero. The decision making unit
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Figure 6. The output of the MI unit during magnetizing inrush condition.
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Figure 7. Line currents and related PCA output R during a load changing condition.
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interprets this situation as energizing of the transformer and produces binary 1, and does not produce a trip
signal.

(b) Test studies for load changes

Figure 7 shows the response of the proposed algorithm to a steady state load change condition. In
this particular test the test transformer is full loaded for a moment. LC unit produces binary decision as 1
immediately after the load change. However the fuzzy reasoning unit does not permit the diagnoser unit to
initiate a trip signal.

As is seen from Figure 8(a), the LC unit (dotted line) detects the load changing condition, and the other
outputs related with MI, FP, S, and M are zero. Decision making unit interprets this situation as a load change
and does not initiate a trip signal. This is valid for all level of load changes conditions. Figure 8(b) illustrates

the detailed representation for the case seen in Figure 8(a). The LC unit out put exceeds preset value of 0.97
and this indicates a load change condition.
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Figure 8(a). The output of the LC unit during a load
changing condition.

Figure 8(b). A detailed representation of Figure 8(a).

(c) Faulted transformer test studies

The following examples are related to internal fault scenarios. In case of ‘no fault’ condition, the
magnitude of the R vector is relatively small as in seen in Figure 9. The decision making unit interprets
this situation as “no fault” and does not produce a trip signal.

Single-Phase Fault Condition A: An internal fault is created in the primary phase winding side
between the turns 151 and 156. The fault duration is initiated at 380 ms and ended at 500 ms. The test
transformer is loaded with an R-L load before the fault is initiated. Figure 10(a) shows the instantaneous values

of phase currents (IA, IB, and IC) before, during and after the fault. As it is seen since this is high impedance

turn to turn fault, hence the phase currents do not change in a detectable amount. Figure 10(b) shows the
primary currents and the related PCA output R.
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Figure 9. The output of the PCA during a no-fault
condition.

Figure 10(a). Instantaneous values of primary phase
currents during a turn to turn fault in the phase A of
primary winding.
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Figure 10(b). An internal fault in primary side of the transformer and related PCA output R.

Figure 10(c) gives more information about the response of the algorithm to the same fault condition such
as the output of the ANN based on RBF. The proposed algorithm produces trip signal within a quarter of a
power system frequency cycle.
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Figure 10(c). A single phase fault and its related net-
work outputs.

Figure 10(d). More details of the algorithm response
to the same fault.

The response of a traditional FFT based protection algorithm to the same fault condition can be estimated

using Figure 11. It is seen that variation of the 2nd harmonic component in the phase currents during an internal

fault. (The horizontal axis shows ratio of the 2nd harmonic current to the fundamental component in percent).
Figure shows that the second harmonic component of the current present at the beginning and at the end of
the fault instants. These peaks can also occur during load switching and capacitor switching conditions. Hence
traditional algorithm based on second harmonics current can not detect this condition.
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Figure 11. The variation of the 2nd harmonic component currents during a turn to turn fault.

Single-Phase Fault Condition B: Similarly an internal fault is created in phase C of the secondary
winding of the test transformer (between turns 194 and 199). Figure 12 shows primary phase currents of the

transformer and the feature vector (R and PCA outputs) during the fault. The fault begins at 360 ms and ends
at 500 ms. The proposed method produces trip signal within a quarter of a power system frequency cycle.
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Figure 12. An internal fault in secondary side of the transformer and related PCA output, R.

Figure 13 shows the output of the RBF based ANN for the same fault condition seen in Figure 12.

/

0

,

1

-

�

�

2

�����������

2 ,2

	���



	�
��
��
 �

$	�������
�������+	
�����$��������

�22 �,2 �22

���������
$���������

$	�������%���	��

Figure 13. A single phase fault in secondary side (phase C) and its related network outputs.

Multiple Phase Fault Conditions: In this scenario multiple faults are created involving phase B and
phase C between turns 100 and 105, and turns 194 and 199 at the same time. Figure 14 shows the primary
currents and the related PCA output during a multiple fault conditions in the primary side. The fault begins
at 340 ms and ends at 490 ms. The transformer is loaded with an R-L load prior to the fault conditions.
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Figure 14. An internal fault both in phase B and C in the primary side of the transformer and related PCA output.

Figure 15 shows the output of the ANN based on RBF for the fault and the proposed protection scheme
initiates a trip signal within a quarter of a power system frequency cycle.
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Figure 15. Internal fault in multiple phases and its related network outputs.
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5. Conclusion

In this paper, a new relaying method is introduced to provide protection against transformer internal fault
conditions. The proposed scheme includes a new approach for discrimination between normal operating current
and internal fault current. A PCA algorithm is used to generate residuals by using the true rms values of the
transformer primary currents. An ANN algorithm based on RBFs produces the decisions of three main outputs
to distinguish the internal fault conditions from the magnetizing inrush current’ and ‘load changing’ conditions.

Real-time test studies indicate that:

1. The proposed protection scheme provides protection against transformer internal fault conditions which
may not be detected using traditional protection algorithms. Also, the fault conditions initiated with a
small number of winding turns can also be properly detected using the new protection scheme.

2. The protection scheme detects the load change and magnetization inrush current conditions but it does
not produce a trip signal and remains stable for those conditions. The suggested protection algorithm is
immune to CT saturation such as MI phenomena. It does not need any further algorithm to correct the
CT secondary current.

3. Since the fault current is mainly the fundamental component of power system frequency for high impedance
faults, traditional FFT or wavelet based techniques do not give distinctive features. Therefore, the
performance of the proposed technique for these types of faults is relatively better than the traditional
techniques.

The proposed protection scheme can easily be implemented in a microprocessor based protection relay
environment due to its computational simplicity. And it can be modified to provide protection for faults taking
place within generator or motor windings.
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