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doi:10.3906/elk-0908-166

Variance and kurtosis-based characterization of

resonances in stochastic transmission lines: local versus

global random geometries

Ousmane Oumar SY1, Martijn C. van BEURDEN1

Bastiaan L. MICHIELSEN2, Antonius G. TIJHUIS1

1Electromagnetics Group, Department of Electrical Engineering, Eindhoven University of Technology
Den Dolech 2, 5600 MB, Eindhoven, THE NETHERLANDS

e-mail: O.O.Sy@tue.nl, M.C.v.Beurden@tue.nl, A.G.Tijhuis@tue.nl
2ONERA - DEMR, BP 74025, 2, av. Edouard Belin, 31055 Toulouse Cedex 4, FRANCE

e-mail: Bastiaan.Michielsen@onera.fr

Abstract

A stochastic method is proposed to characterize electromagnetic couplings involving geometrically per-

turbed transmission lines. A combined exploitation of suitably defined statistical tools is presented to appre-

ciate the intensity of the dispersion of response variables both physically via the variance, and statistically

through the kurtosis or fourth-order moment. The usefulness of this method to analyze resonances is illus-

trated by the study of a transmission line affected by two different types of random geometrical perturbations,

viz. a local deformation modeled by a wavelet and global sinusoidal undulations.

1. Introduction

Numerical methods are a precious help in ElectroMagnetic Compatibility to represent electromagnetic interac-
tions between material objects, and electromagnetic fields incident on them. Compared to experiments, they
constitute an economical means of investigating a variety of coupling configurations, as can be needed for the
analysis of performance and the consequences of fatigue and ageing studies.

The accuracy of the response quantities of these modes, also known as “observables”, depends on the
accuracy of the characterization of the interaction configuration. In reality, many practical cases arise where such
knowledge cannot be guaranteed due to changing operational conditions, ageing, or a prohibitive complexity.
The effect of uncertainties in the configuration should hence be accounted for, to highlight the limits of the
model and to improve on the pertinence of its predictions.

Among the existing uncertainty quantification methods, a systematic study of all the possible configura-
tions yields an exhaustive picture of the electromagnetic coupling, but it can be numerically intractable due to
the large amount of computations required. Conversely, a sensitivity analysis based on the study of a few config-
urations will generally be very efficient numerically, but it will provide only local information about the behavior
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of the observable. From these perspectives, a stochastic approach represents an interesting alternative to both
of the aforementioned quantification methods: it uses probability theory to handle the global fluctuations of
the configuration and to characterize the variations of the observable via a smaller number of calculations than
an exhaustive deterministic approach.

Owing to these interesting features, stochastic methods are often employed to study the field distribution
in a mode-stirred chamber [10, 7, 8]. The propagation of signals in complex surroundings such as urban areas is

also often handled stochastically, in particular to take the multipath phenomena into account [5, 3]. Stochastic
methods are also employed to investigate the electromagnetic properties of wire structures that are present for
instance in medical, aeronautical or military devices. The underlying deterministic model is based either on
transmission-line theory [16, 2], which provides analytical solutions for the electromagnetic observables such
as the induced voltage or the current at some port of the device, or based on a thin-wire integral equation
which is solved numerically. We have applied the latter approach to study the voltage Ve , induced by a plane
wave incident on a randomly undulating frame. The quality of the quantification achieved by evaluating and
interpreting the average and the variance has been illustrated in [20, 21] and confirmed experimentally in [22].
However, the variance alone provides only a general idea of the spread of Ve around its average, whereas in
sensitive medical automotive or aeronautical devices, the assessment of the risk posed by extreme values of Ve ,
caused for instance by resonances, also calls for special attention. As shown in [23, 24], the detection of such a
risk amid a large set of samples of Ve is feasible through the calculation of the fourth-order moment, or kurtosis,
of Ve . The present paper is an extension of the aforementioned contributions as it employs the variance and the
kurtosis to compare the behavior of thin-wire structures affected either by localized geometrical perturbations
as in [24], or by global fluctuations as in [23].

In Section 2 a deterministic interaction model is presented, which provides the Thévenin voltage Ve

induced at the port of a thin wire illuminated by an incident field. The subsequent randomization of this model
in Section 3 permits the definition of the average, the variance and the kurtosis of Ve , which can be computed
by quadrature. The valuable information conveyed by these moments is then illustrated in Section 4 for the
case of a thin wire affected by local wavelet-type deformations that are randomly located and secondly through
the example of a wire undergoing global sinusoidal undulations of random amplitude. Comparisons between
the two different types of setups will then highlight some commonalities, particularly concerning the efficiency
of the kurtosis to identify risky frequencies around resonances, unlike the variance.

2. Deterministic interaction

The setup studied in this paper is first described in a deterministic context, i.e. when all the parameters
defining the configuration of the electromagnetic coupling are known. In the present case, a perfectly electrically
conducting (PEC) thin-wire frame is considered. This wire, denoted S and depicted in Figure 1, comprises
two 5 cm long vertical wires, one of which contains a port region. These poles are connected below to an
infinite ground plane and above by a thin wire parameterized by its Cartesian coordinates (x = 0, y, z = h(y)).
The smooth function h can consist of a sum of sines, in agreement with the mechanical mode representation
of a vibrating string. Alternatively, h may be given in terms of wavelets which allow for a multi-resolution
geometrical model.

The effect of external sources is expressed by the incident field E i , which induces a voltage Ve at the port of
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Figure 1. Interaction configuration.

S . This voltage reads [15, 25]

Ve = − 1
IT

∫
S

j · E i, (1)

where the transmitting-state current j is induced on S in the absence of E i , when a current source IT is
impressed at the port. The current j is calculated by solving, via the method of moments, a frequency-domain
electric-field integral equation (EFIE) modeling the transmitting state [25]. Such a model bears a certain cost
stemming from the need to fill a full impedance matrix and to solve the subsequent linear system. This numerical
cost is optimized by using quadratic-segment basis functions [4], together with a reduced kernel in Pocklington’s

thin-wire integral equation [14].

Moreover, resonances will appear at frequencies where a wave, propagating along the waveguide formed
by the wire and the ground plane, becomes resonant due to the boundary conditions at the wire extremals.

This test-case, derived from an EMC benchmark [17], stands for a large class of interaction problems,
for example the common-mode interference appearing at the connection of a power cable to a printed circuit
board or certain types of wire antenna problems. An example of practical application involving such a setup
can be found in [19], where the wire represents cables that connect a control computer of a helicopter to the

rotor actuators. Automotive examples are analyzed in [1, 6] where the immunity of a car wiring to external
sources of perturbation, such as GSM or bluetooth, is investigated.

3. Stochastic rationale

3.1. Randomization

The parameters of the deterministic model presented above may be hindered by uncertainties concerning the
geometry of the device S . A stochastic quantification of the aforementioned uncertainties starts by regarding
the uncertain parameters as random variables within their ranges. As a preliminary step, all the uncertain input

parameters are gathered in the vector u = (u1, . . . , ud) ∈ U ⊂ Rd . The cornerstone of the stochastic method
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resides in the assumption that u is randomly distributed in U according to an a priori known probability
distribution Pu , or equivalently a known probability density function (pdf) fu . Establishing fu can, for
instance, be guided by the exploitation of manufacturing data-sheets, when available, from experiments or from
physical considerations.

The randomness of the parameters u of the configuration induces in turn the randomness of Ve . To
mark this dependence, Ve is written as Ve(u). A complete characterization of the randomness of Ve(u) is

only possible by identifying its probability distribution PVe , which can be expressed in terms of Pu as [18]

PVe : C � v′ �−→ Pu

(
V −1

e (v′)
)
∈ R+. (2)

The latter equation is however not directly usable in practice owing to the intricate dependance of Ve on u

via an integral equation, which severely complicates the determination of the reciprocal function V −1
e .

Unlike PVe , the statistical moments of Ve can be computed and post-processed to obtain partial informa-
tion about the dispersion of Ve . These statistical moments are obtained by considering a measurable function
l acting on Ve and by evaluating the expectation of the random variable l(Ve) as follows

E[l(Ve)] =
∫
U

l(Ve(u′))fu(u′)du′. (3)

The integral in this equation is defined over the known domain U and has an integrand that consists of
computable terms, viz l(Ve(u ′))fu (u ′). Equation (3) can therefore be approximated by a quadrature rule as
follows

E[l(Ve)] ≈
N∑

k=1

l(Ve(uk))fu(uk)ωk, (4)

where the abscissae uk belong to U , the weights ωk are positive for stable quadrature rules [11, 9] and the
number N indicates the complexity as it also corresponds to the number of evaluations of Ve required. This
quadrature rule needs to be selected cautiously to efficiently handle the generally multidimensional domain U .

3.2. Physical and statistical dispersions: variance and kurtosis

The mean μ[Ve] = E[Ve] and the standard deviation σ[Ve] =
√

E [|Ve − μ[Ve]|2] are statistical moments that

have the same physical dimension as Ve . These “physical” moments quantify the spread of Ve locally around
μ[Ve] as confirmed by Chebychev’s inequality [18], which states that

PVe (|Ve − μ[Ve]| > mσ[Ve]) ≤
1

m2
, for m ≥ 1. (5)

The strength of this inequality resides in its validity for all probability distributions that have finite variances.
Based on Eq. (5), confidence domains can be defined as disks Cm centered around μ[Ve] with a radius equal

to mσ[Ve] . Chebychev’s inequality then guarantees, for instance, that the measure of the interior of the circle

C2 (resp. C4 ) is at least 75% (resp. 93%). These bounds can be too coarse, with a Gaussian distribution, for

example, 95% of the values lie C2 .
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In physical terms, the dispersion of Ve is measured in Volts via the value of σ[Ve] . Nonetheless,

the magnitude of σ[Ve] does not inform about the presence of a extreme values of Ve , lying several σ[Ve]

away from μ [Ve] . Although Chebychev’s inequality ascertains that such extreme values of Ve do not occur
frequently, whenever they do occur they can damage electronic devices. Therefore, in practice, improbable is
not synonymous with innocuous.

only exceptionally, they can prove for in practice.
These extreme samples are better highlighted by normalizing Ve as follows

Vn =
Ve − μ [Ve]

σ [Ve]
, where E [Vn] = 0, σ[Vn] = 1. (6)

Extreme samples of Ve will therefore be such that |Vn| takes a large value. This observation motivates
the introduction of the kurtosis of Ve which reads

κ [Ve] = E

[
|Vn|4

]
= E

[∣∣∣∣Ve − μ [Ve]
σ [Ve]

∣∣∣∣
4
]
≥ 0. (7)

Since the kurtosis is a fourth-order moment, it weighs the tail of p|Vn| [18, 13] by allocating an important

“mass” to very large values of |Vn| . Hence, as κ [Ve] increases, the likelihood of observing large values of |Vn|
grows accordingly.

It is worth noting that the detection of risky values of Ve can also be performed by studying the kurtosis
of |Ve| , as is done in [23, 24]. The risk indicator κ [|Ve|] would then be given by

κ [|Ve|] = E

[( |Ve| − E [|Ve|]
σ [|Ve|]

)4
]
≥ 0, (8)

where E [|Ve|] and σ [|Ve|] come into play instead of μ [Ve] and σ [Ve] . In the cases where E [|Ve|] is close to 0,

employing κ [|Ve|] or κ [Ve] leads to equivalent results since extreme values of Ve will necessarily give rise to

extreme values of |Ve| and vice versa.

A joint analysis of the standard deviation and the kurtosis enables the assessment of the distribution
of Ve in the entire complex plane: σ [Ve] will measure the importance of the spread of Ve around μ [Ve] in

volts, while κ [Ve] will quantify the statistical dispersion of Ve by indicating the plausibility of observing some

samples of Ve several σ [Ve] away from μ[Ve] .

4. Results

4.1. Test-cases

The stochastic method proposed in the previous section is now applied to two different types of thin-wire
structures.

First, a wire Sw affected by a local deformation consisting of a so-called Mexican-hat wavelet [12] is
considered. With reference to the notations of Section 2, the height of the axis of Sw is given by the function

Sw : h1(y) = 5 + w(y − y∗) in cm (9)
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where

w(t) = δz

((
t

τ

)2

− 1

)
exp

(
−

(
t

τ

)2
)

, τ = 10 cm. (10)

The resulting deformation is centered around y∗ and spans the range [y∗ − δy/2; y∗ + δy/2] with δy ≈ 4 cm,
and its amplitude is given by δz = 4 cm. The location y∗ of the geometrical deformation is assumed to be
random and uniformly distributed between the abscissae [ym, yM ] = [0.1; 0.9] m. The random input of this

problem is hence u = y∗ ∈ [ym, yM ] = U . Figure 4.1 shows some examples of geometries produced by such a
parametrization.

In a second stage, a thin wire Sh obtained via harmonic undulations is studied with an axis given by

Sh : h2(y) = 5 + δz sin(2πy) in cm. (11)

In this case the amplitude u = δz is assumed to be random and uniformly distributed in U = [−4; 4] cm.
Figure 4.1 illustrates this type of geometry.
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Figure 2. Examples of geometries resulting from the a local deformation (Figure (a)) and a global deformation
(Figure (b)) of the axis of a thin wire.

In both cases, the wire is meshed into 224 segments. The incident field corresponds to a plane wave

propagating in the direction θ = 45◦, φ = −90◦ , and such that E i lies in the plane of incidence, with

|E i| = 1 V.m−1 . This field has a frequency f , which belongs to the range [100; 300] MHz.

To clarify the notation, the statistical moments corresponding to the voltage induced at the port of Sw

and Sh are indexed by the subscripts w and h , respectively.

4.2. Complexity

At each frequency f , the statistical moments are computed by a trapezoidal quadrature rule which employs N

evaluations of Ve to reach the target maximum relative error of 1 % for each of the integrals defining E [Ve] ,

σ [Ve] and κ [Ve] .

The resulting values of N , for the wires Sw and Sh , are plotted as a function of f in Figure 3. A single
computation of the induced voltage amounts to 0.2 seconds. On average, the statistics are obtained using 59
and 133 calculations of Ve , for Sw and Sh respectively. For Sw , a peak of N =513 appears when f = 202
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MHz, while for Sh , the maximum value N = 257 is attained at several frequencies, viz. around 130 MHz,
between 177 MHz and 193 MHz and between 275 MHz and 300 MHz.

100 125 150 175 200 225 250 275 300
10

0

10
1

10
2

10
3

f  [MHz]

S
w

S
h

N

Figure 3. Complexity N to compute μ [Ve] , σ [Ve] and κ [Ve] with a maximum relative error of 1%: wires Sw (circles)
and Sh (triangles).

Overall, these performances are primarily dictated by the integral defining κ [Ve] , as it converges slower

than σ[Ve] , which itself converges slower than μ [Ve] . This argument is supported by Figure 4, where the relative
error of the statistical moments is plotted versus the number N of function calls at f = 300 MHz.

4.3. Comparison of the standard deviations σ[Ve]w and σ[Ve]h

The standard deviation depicted in Figure 5 shows that both σ[Ve]w and σ[Ve]h vary by three orders of

magnitude in the range of frequencies considered. In general, σ[Ve]w is lower than σ[Ve]h except around 200

MHz, and for f ≥ 270 MHz. The increase of σ[Ve] in the vicinity of 200 MHz signals the presence of a

resonance. The peak of σ[Ve]w appears at 202 MHz and is shifted with respect to the highest value of σ[Ve]h ,
which occurs at 210 MHz. This shift can be explained by the difference of variations of the wires in terms of
their random inputs: the random modifications of y∗ in [ym, yM ] produce changes of the shape of Sw but do
not modify its total length, whereas in the case of Sh both its shape and its total length vary as α assume
different values in the interval [−4, 4] cm.

Even though the geometrical deformation of Sw is localized on a narrow portion of the wire, relatively to
the global deformation of Sh , it produces a more acute resonance peak. Moreover, the graph of σ[Ve]h reveals

robust behavior for frequencies around 132 MHz and 284 MHz, where σ[Ve]h is minimal.

As highlighted in Section 3.2, the magnitude of σ[Ve] indicates the extent of the spread of Ve around the

mean μ [Ve] . This spread can consist of a smooth distribution of Ve with a wide support, or, to the presence
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Figure 4. Relative error of the quadrature approximations of μ [Ve] (solid lines), σ [Ve] (dashed lines) and κ [Ve]
(dash-dotted lines) at f = 300 MHz: wires Sw and Sh (circles).

of some extreme samples of Ve coexisting with a cluster of values around μ[Ve] . The distinction between these
two cases is possible through the analysis of the kurtosis.

4.4. Kurtosis

4.4.1. Wire Sw

The kurtosis κ[Ve]w of the voltage induced at the port of Sw is depicted in Figure 6, where its values can be

compared to those of σ[Ve]w . This figure reveals the limited risk of observing extreme samples, since κ[Ve]w
remains below 3 for most of the frequencies. A sharp increase of κ[Ve]w appears around 202 MHz hereby
revealing the increased statistical spread of the samples of Ve around this particular frequency. The highest
effect of the resonance can hence be identified with a better resolution via the graph of κ[Ve]w , comparatively

to the graph of σ[Ve]w .

The conclusions drawn from Figure 6 can be verified by assessing the actual distribution of Ve in the
complex plane. To this end, 1000 deterministic values of Ve are computed at fw,1=210 MHz and fw,2=234
MHz, the resonance frequency fw,r =202 MHz being discussed further in Section 4.4.3. These frequencies are

chosen such that, although at σ[Ve]w(fw,1)=206 mV is an order of magnitude larger than σ[Ve]w(fw,2)=33 mV,

the kurtosis κ[Ve]w(fw,1) = 1.6 and κ[Ve]w(fw,2) = 2.4 are comparable, with even κ[Ve]w(fw,1) ≤ κ[Ve]w(fw,2).

The 1000 deterministic samples are then normalized via Equation (6), and then plotted in the complex plane in

Figure 7. The first normalized Chebychev circle, derived from Equation (5), is also plotted to mark a distance

of 1σ[Ve] from μ [Ve] .
The distribution of the samples confirms the comparable dispersion of Ve at both frequencies, with a slightly
larger dispersion at 234 MHz.
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Figure 5. σ [Ve]w (circled line) and σ [Ve ]h (dashed line) as a function of f .

4.4.2. Wire Sh

Concerning the voltage induced at the port of Sh , its kurtosis is represented in Figure 8, together with σ[Ve]h .
In comparison with Figure 6, the level of risk is higher even away from the resonance which occurs around
fh,r =210 MHz. The kurtosis provides a finer characterization of Ve than σ [Ve]h as it reveals the different

types of sample distributions within a single resonance region. Frequencies can be identified where despite an
important κ[Ve]h , the value of σ[Ve]h remains relatively low, e.g. when f ∈ [195, 205] MHz and f ∈ [215, 225]
MHz. In addition, a kurtosis larger than four is observed around the robust frequencies f =132 MHz and f =284
MHz.

All these observations are corroborated by the calculation of 1000 samples at both the frequencies
fh,1 =202 MHz and fh,2 =284 MHz. The normalized samples are plotted together with the normalized Chebychev

circles C1 and C2 in Figure 9. This plot confirms that regardless of the fact that σ [Ve]h is more than 100

times larger at fh,1 than at fh,2 , the statistical spread of Ve is contrarily more pronounced at fh,2 , i.e. at fh,1

all the samples of Vn are contained in C2 , while at fh,2 , samples such that |Vn| > 2σ [Ve]h are present.

A comparison between the evolution of the complexity N , shown in Figure 3, and the values of the kurtosis
associated to Sh , plotted in Figure 8, shows that frequencies at which κ[Ve]h is important also correspond to
frequencies where N is larger. This link can be understood by the definition of the kurtosis which measures the
presence of extreme values taken by Ve , thereby indicating roughness of Ve in terms of the random input. This
observation also stems from the use of a trapezoidal rule which depends on the smoothness of the integrand. As
such this behavior differs from that of a Monte-Carlo quadrature rule, the convergence rate of which depends
on the variance of its integrand [11].

4.4.3. Comparison of the resonances of Sw and Sh

Even though the resonances for the two wires appear at different frequencies, they can be mutually compared
both with respect to σ[Ve] and κ[Ve] . In terms of physical dispersion, the resonance of Sw gives rise to
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Figure 6. κ[Ve]w (solid line) and σ[Ve]w (dashed line) versus f .

σ[Ve]w,max = 17 V, while the resonance of Sh leads to a peak value σ[Ve]h,max = 5 V which is more than 3 times

lower than σ[Ve]w,max . This does not necessarily imply that the statistical dispersion of Ve will be three times

as important for the resonance of Sw as for the resonance of Sh . On the contrary, the kurtosis is comparable
at these two resonance situations, although larger for Sw , as revealed by κ[Ve]w,max = 11.4 ≥ κ[Ve]h,max = 9.1.
These features are endorsed by the sample distribution appearing in Figure 10, where again 1000 deterministic
samples are computed for each of the resonance frequencies.

At resonances, the samples are distributed along a circular pattern both for Sw and Sh . All the samples
associated with Sh are contained inside C4 , while for Sw the spread extends to the disk of radius 5.

−2 −1 0 1 2
−2

−1

0

1

2

Re(V
n
) 

Im
(V

n) 

 

 

f
w,1

=210 MHz

f
w,2

=234 MHz

Figure 7. 1000 normalized samples Vn and Chebychev circle C1 .
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Figure 8. κ[Ve]h (solid line) and σ[Ve]h (dashed line) versus f .
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Figure 9. 1000 normalized samples Vn and Chebychev circles C1 and C2 .

5. Conclusion

This paper has proposed a stochastic method of quantifying uncertainties affecting deterministic models of
electromagnetic interactions. An efficient and accurate computation of the average, the variance and the kurtosis
permits the assessment of the dispersion of the observable: the variance allows for the construction of confidence
circles containing the majority of the values of the observable, whereas the kurtosis completes this information
by indicating the likelihood of having extreme samples that lie far away from the mean.

The hierarchy in the numerical effort required to obtain these statistical moments has been highlighted
by showing that accurate evaluation of higher order moments translates into a higher complexity. The results
although shown in the case of a 1-D stochastic problem can be extended to higher dimensional problems,
provided that efficient quadrature rules are employed.

227



Turk J Elec Eng & Comp Sci, Vol.17, No.3, 2009

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Re(V
n
)

Im
(V

n) 

 

 

f
w,r

=202 MHz

f
h,r

=210 MHz

Figure 10. 1000 normalized samples Vn at resonances: fw,r =202 MHz for Sw and fh,r =210 MHz for Sh . Chebychev
circles C4 and C5 (dashed lines).

This method has been employed to study two different types of thin-wire geometries that are nonetheless
fundamental as they exemplify two generic geometrical parameterizations, viz. a harmonic Fourier model
and a localized wavelet model. The global variations of the harmonic geometry lead to a large physical
dispersion accounted for by a larger standard deviation about the mean. On the other hand, the localized
wavelet perturbation provokes a larger resonance peak.

The analysis of the kurtosis has refined the information conveyed by the variance by revealing that a large
value of the variance, equivalent to an important physical dispersion of the observable, could still correspond
to a limited statistical dispersion revealed by a low fourth-order moment. The study of the kurtosis is therefore
advisable to foretell situations where a seemingly limited physical variability of the voltage induced on an
electronic device, dissimulates extreme values that can prove hazardous to the proper functioning of electronic
equipment.
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