
Turk J Elec Eng & Comp Sci, Vol.18, No.1, 2010, c© TÜBİTAK

doi:10.3906/elk-0904-4

Differential power analysis resistant hardware

implementation of the RSA cryptosystem

Keklik ALPTEKİN BAYAM1, Berna ÖRS2

1STMicroelectronics, Inc., Datastorage Division, 1060 E Brokaw Road,
San Jose, CA 95131 USA

e-mail: keklik.alptekin@st.com
2İstanbul Technical University, Faculty of Electrical and Electronics Engineering,

Maslak, İstanbul-TURKEY
e-mail: siddika.ors@itu.edu.tr

Abstract

In this paper, RSA cryptosystem was implemented on hardware, then modified to be resistant against

Differential Power Analysis attacks by using the Randomized Table Window method. This is the first FPGA

realization of an algorithmic countermeasure which makes RSA resistant to power analysis attacks. Modular

exponentiation is realized with Montgomery Modular Multiplication. The Montgomery modular multiplier

has been realized with Carry-Save Adders. Carry-Save representation has been used throughout the RSA

encryption algorithm. The primarily implemented RSA architecture prevents the extraction of the secret key

using Simple Power Analysis attacks. When comparing the protected implementation with the unprotected,

it can be seen that the total time has increased by 24.2%, while the throughput has decreased by 19.5%.

Key Words: RSA, Montgomery Modular Multiplier, Carry Save Adder, Side-Channel Attacks, Differential

Power Analysis Attack, Randomized Table Window Method.

1. Introduction

RSA is a widely used public-key cryptosystem. RSA encryption is a one-way function, in that it is not possible
to reverse without knowing the private key [1]. RSA is realized with large operands, such that the key length and
the operands are greater than or equal to 512 bits. The encryption and decryption in an RSA cryptosystem is

modular exponentiation: ME mod N . To achieve efficiency and speed, RSA is best implemented in hardware [2].

In this paper, a hardware architecture of the RSA cryptosystem is proposed and implemented using
Xilinx FPGA hardware. In this implementation a Montgomery Modular Multiplier (MMM) [3] with Carry

Save Adder [4] based logic and representation has been used to speed up the calculations.

Side-channel attacks [5] derive information retrieved from the device, but is neither plaintext nor cipher-

text. Power Analysis (PA) attacks [5] are a type of passive side-channel attacks, in which the power consumption

129



Turk J Elec Eng & Comp Sci, Vol.18, No.1, 2010

of the circuit is measured while the device is performing encryption or decryption. The private key or informa-
tion about the private key is retrieved after an analysis of the measurement data. PA attacks have two types:
Simple Power Analysis (SPA) attacks and Differential Power Analysis (DPA) attacks [6]. SPA attacks require a
single measurement, while DPA attacks require many measurements followed by a statistical analysis to retrieve
information about the private key.

There are hardware and algorithmic countermeasures against PA attacks. Itoh et al. have proposed
an algorithmic countermeasure, knowns as the Randomized Table Window Method (RT-WM), against DPA

attacks in [7].

The first implementation in this work prevents the extraction of the private key itself, though it cannot
prevent the leakage of the Hamming weight information of the private key during an SPA attack. Protection
against SPA attacks comes from the architectural design of the circuit but is unprotected against DPA attacks.
In the second implementation in this work, RT-WM algorithm [7] has been implemented on top of the former
unprotected implementation.

This paper presents a hardware implementation of the RSA cryptosystem resistant to differential power
analysis. Section 2 and Section 3 explain the mathematical background, and the fundamentals of RSA and
MMM architectures, respectively. This section is the basis to the architectural choices in the implementation.
Section 4 presents the basics of side-channel attacks and gives detail about power analysis attacks and the
countermeasures against them. Section 5 explains the unprotected implementation of the RSA cryptosystem.
Section 6 investigates a DPA resistant implementation. Review of the present work and conclusions are given
in Section 7.

2. The RSA cryptosystem

The RSA cryptosystem was developed by Rivest, Shamir, and Adleman in 1977 [1]. RSA is a public-key
cryptosystem that serves both for encryption-decryption and digital signature.

RSA encryption and decryption are performed by modular exponentiation as C = ME mod N and

M = CD mod N , respectively, where M is the plaintext, C is the ciphertext, N and E are the public keys,
D is the private key and C, M, E, D ∈ {0, 1, . . . , N − 1} [1].

2.1. The m-ary method

The m-ary method reduces the number of multiplications processed in an exponentiation [8]. The exponent
E is scanned r -bits at a time, where m = 2r and sr = k , where k is the bit length of E . Preprocessing is
necessary for the exponentiation process, in which the powers of M mod N from 2 to m−1 are calculated [8, 2].
The m-ary method is given in Algorithm 1.

2.2. The sliding window technique

In the m-ary method, a zero word makes us skip the multiplication. In order to increase the number of skipped
operations and reduce the number of total operations executed, the sliding window technique has been suggested
by Bos and Coster and Knuth in [9, 8]. A sliding window exponentiation algorithm decomposes E into zero
and nonzero words, which are called windows. In this technique, nonzero words cannot end with 0. Therefore

130



ALPTEKİN BAYAM, ÖRS: Differential power analysis resistant hardware implementation...,

Algorithm 1 The m-ary Method: left to right.
Require: N = (nk−1, . . . , n1, n0)2 , E = (ek−1, . . . , e1, e0)2 , M = (mk−1, . . . , m1, m0)2
Ensure: C = ME mod N
1: Compute and store Mw mod N for w = 2.3, . . . , m− 1.
2: Decompose E into r -bit words Fi for i = 0, 1, . . . , s− 1, sr = k
3: C = MFs−1 mod N
4: for i from s − 2 downto 0 do
5: C = CC2r

mod N
6: if Fi �= 0 then
7: C = CMFi mod N
8: end if
9: end for

the multiplications in the preprocessing step are only done to evaluate the odd numbers: 3, 5, 7, . . . , m−1. The
preprocessing multiplications are almost halved.

The analysis performed in [10] shows that the sliding window technique proposed in [9] requires 5–8%

fewer multiplications than the m-ary method, namely 6.37% for 512-bit key length.

3. Montgomery modular multiplication

In 1985 Montgomery introduced a new method for modular multiplication [3]. Montgomery’s approach avoids
the time consuming trial division that is a bottleneck for most other algorithms.

The Montgomery algorithm computes the result by replacing the division operation with k times division
by a power of 2, where a , b and N are k -bit binary numbers. Montgomery multiplication is defined as

R = a′b′r−1 mod N , where r = 2k and the real multiplicands a and b need to be transformed into their
N -residues such as a′ = ar mod N .

We need a post-processing, where R′ and 1 are the multiplicands of the Montgomery Multiplication as

R = (abr) 1r−1 mod N = ab mod N .

In our implementation, we use the Montgomery Multiplication algorithm with no final subtraction, as
given in Algorithm 2 [11, 12].

Algorithm 2 Montgomery Modular Multiplication with No Final Subtraction (MonPro NFS).

Require: N = (nk−1, . . . , n1, n0)2 , X = (xk, . . . , x1, x0)2 , Y = (yk, . . . , y1, y0)2 , r = 2k+2 mod N , n0 = 1.
Ensure: T = MonPro NFS(X, Y, N) = XY r−1 mod N
1: T = 0
2: for i from 0 to k + 1 do
3: if (T + xiY ) is even then
4: T = (T + xiY ) /2
5: else
6: T = (T + xiY + N) /2
7: end if
8: end for

When the exponentiation operation uses Montgomery Multiplication Algorithm, it needs preprocessing,
where the N residue of the base number is calculated; and a post-processing, where the result transferred from

131



Turk J Elec Eng & Comp Sci, Vol.18, No.1, 2010

the N residue to normal representation. A constant number has to be calculated for the preprocessing to

evaluate the N residue of the plaintext. This constant number is 22k+4 mod N when using MonPro NFS.

Adders are necessary to realize the Montgomery multiplication, namely for steps 4 and 6 of Algorithm 2.
Carry save addition is suitable, especially for large operands [4]. It is an appropriate way of reducing 3 k -bit

operands to 2 k -bit operands. The result is in carry save representation (C,S).

One final addition has to be performed to reduce the result from 2 k -bit operands to 1 k -bit operand—to
convert back to normal number representation. In this work, Carry Ripple Pipelined Adder (CRPA) has been
used as for this operation.

A Carry Ripple Pipelined Adder (CRPA) processes k -bit operands word by word by in k/w clock cycles

using w -bit carry ripple adders (CRAs).

4. Side-channel attacks

In cryptography, an attack based on side channel information is called a “side-channel attack.” Side-channel
information is the information that can be retrieved from the cryptographic device that is neither the plaintext
nor the ciphertext [5]. Active attacks, also referred as tampering attacks, require access to the internal circuitry

of the attacked device [5]. There are two types: Probing attack [13], and Fault induction attack [14, 15].

In passive attacks, the effects of the processing device are measured and used to retrieve the private
key. These have mainly four types according to the type of the revealed output: Timing Analysis [16], Power

Analysis [6], Electromagnetic Analysis [17, 18], and Acoustic Analysis [19]. All passive attacks can be either
simple or differential. The difference is that, while, in simple analysis attacks, the attacker needs only one
measurement, he needs numerous measurements and statistics of these measurements in differential analysis
attacks.

4.1. Power analysis attacks

Power Analysis (PA) attacks are based on analyzing the power consumption of the cryptographic device

while it performs encryption or decryption [6]. The physical supporting point of these attacks is that, today,

Complementary Metal Oxide Semiconductor (CMOS) technology is the one most commonly used for digital
integrated circuit implementations. The power consumption during transitions of a CMOS gate is not the same
for 0 → 1 transitions and 1 → 0 transitions, with 0 → 1 transitions consuming more power. This gives the
attacker a good starting point, where he uses Hamming weight information leaks. In this way the amount of
consumed current can be calculated.

4.2. Randomized table window method

In this work, Randomized Table Window Method (RT-WM) algorithm has been implemented as a countermea-

sure against differential power analysis (DPA) attacks. RT-WM algorithm proposed by Itoh et al. is given in

Algorithm 3 [7]. The main difference in the window method is that RT-WM uses randomized data inside the
table instead of sequential powers of M .

The recalculation of E determines how the table and the rest of the algorithm works. Equation (1) shows

132



ALPTEKİN BAYAM, ÖRS: Differential power analysis resistant hardware implementation...,

Algorithm 3 Randomized Table Window Method (RT-WM).
Require: N = (nk−1, . . . , n1, n0)2 , E = (ek−1, . . . , e1, e0)2 ,

M = (mk−1, . . . , m1, m0)2 , Const = 22(k+2) mod N

Ensure: ME mod N
1: r = b -bit random number; /* Generate random number */
2: ωcount = �(k − b) /t� /* Pre-computation Phase 1 starts */
3: subt = r
4: dw = E
5: for i from 0 to ωcount − 1 do
6: if dw ≥ subt then
7: dw = dw − subt
8: end if
9: subt = subt · 2t

10: end for
11: dm = (dwb−1dwb−2 . . . dw1dw0)
12: ω0 =

(
dwk−1dwk−2 . . . dw(ωcount−i−1)t+b

)

13: M ′ = MonPro NFS (M, Const) /* Enter MonPro Domain */
14: Q = M ′ /* Pre-computation Phase 2 starts */
15: V0 = M ′
16: R′ = M ′

17: if dm = 0 then
18: Q = 0
19: end if
20: for i from 1 to 2b − 1 do
21: R′ = MonPro NFS (R′, M ′)
22: if i = dm− 1 then
23: Q = R′
24: else if i = r − 1 then
25: V0 = R′
26: end if
27: end for
28: U = R′
29: for i from 1 to 2t − 1 do
30: Vi = MonPro NFS (Vi−1, U) /* Pre-computation Phase 3 */
31: end for
32: Start= 0 /* Modular Exponentiation Process */
33: for i from 0 to ωcount − 1 do
34: if Start= 1 then
35: R′ = Vωi

36: for j from 1 to t − 1 do
37: R′ = MonPro NFS (R′, R′)
38: end for
39: if ωi �= 0 then
40: R′ = MonPro NFS (R′, Vωi)
41: end if
42: else if ωi �= 0 then
43: Start= 1
44: end if
45: end for
46: R′ = MonPro NFS (R′, Q) /* Normalize Data */
47: R′ = MonPro NFS (R′, 1) /* Exit MonPro Domain */

133



Turk J Elec Eng & Comp Sci, Vol.18, No.1, 2010

how ω [i] , dm , r , b and t in Algorithm 3 make up the exponent E :

E =
(
. . .

((
ω02b + r

)
2t + ω12b + r

)
2t · · ·+ ωs2b + r + dm

)
. (1)

The calculation for the table values computed in pre-computation phases 2 and 3 as Vi = Mωi2
b+r . Using

the values in the table, the rest of the algorithm becomes like square for 2t times and multiply with a table
value until the mentioned equation is evaluated. This algorithm brings a preprocessing time and additional
memory for the table. An extra subtraction module is not necessary if an adder is already being used within
the RSA.

5. The unprotected implementation of RSA cryptosystem

In order to implement the RSA cryptosystem, Montgomery Multiplication block has been realized with Mon-
Pro NFS CSA algorithm, which is given as Algorithm 4. When Montgomery multiplication is realized using
Carry Save representation, the multiplicand, multiplier and the result are doubled as Carry and Save.

The RSA Encryption/Decryption algorithm, which uses Montgomery Multiplication, also changes ac-

cordingly and it is named MonExp NFS CSA [20], is given in Algorithm 5.

Algorithm 4 Montgomery Multiplication with No Final Subtraction using Carry Save Adder Representation
(MonPro NFS CSA).
Require: N = (nk−1, . . . , n1, n0)2 , XC = (xck+1, . . . , xc1, xc0)2 ,

XS = (xsk+1, . . . , xs1, xs0)2 , Y C = (yck+1, . . . , yc1, yc0)2 ,
Y S = (ysk+1 , . . . , ys1, ys0)2 , r = 2k+2 mod N , n0 = 1.

Ensure: (TC, TS) = (XC, XS) (Y C, Y S) r−1 mod N
1: TC = 0, TS = 0
2: for i from 0 to k + 1 do
3: xi = xci + xsi
4: (C1, S1) = TC + TS + xiY C0

5: (C2, S2) = C1 + S1 + xiY S0

6: if s20 = 0 then
7: (TC, TS) = (C2 + S2) /2
8: else
9: (TC, TS) = (C2 + S2 + N) /2

10: end if
11: end for

Figure 1 shows the I/O ports, blocks, and connections and important registers inside the RSA implemen-
tation. Figure 2 shows the main processing element of the hardware implementation using CSA representation.
There are three levels of CSAs, which determine the multiplier’s delay.

MonPro NFS CSA takes k + 2 clock cycles. The maximum frequency of the implementation with Xilinx
XC2V2000E for k = 512 is 140.96 MHz, which takes 3.65 μs resulting in a throughput rate of 140.41 Mb/s.
When implemented on Xilinx XC2V4000 for k = 1024, the maximum frequency achieved becomes 129.05 MHz;
the total time 7.95 μs, and the throughput rate 128.80 Mb/s. As shown in Table 1, the resulting throughput

rates are faster than [21, 22, 23], and almost the same speed as [24], which are also architectures using CSAs to
realize Montgomery multipliers.

134



ALPTEKİN BAYAM, ÖRS: Differential power analysis resistant hardware implementation...,

Algorithm 5 RSA Encryption with Montgomery Multiplication with No Final Subtraction using Carry Save
Adder Representation (MonExp NFS CSA).
Require: N = (nk−1, . . . , n1, n0)2 , E = (ek−1, . . . , e1, e0)2 ,

M = (mk−1, . . . , m1, m0)2 , Const = 2k+2 mod N

Ensure: R = ME mod N
1: Start=0
2: (MC ′, MS′) = MonPro NFS CSA (M, 0, Const, 0, N)
3: (RC ′, RS′) = (MC ′, MS′)
4: for i from k − 1 downto 0 do
5: if Start=1 then
6: (RC ′, RS′) = MonPro NFS CSA (RC ′, RS′, RC ′, RS′, N)
7: if ei = 1 then
8: (RC ′, RS′) = MonPro NFS CSA (RC ′, RS′, MC ′, MS′, N)
9: end if

10: else if ei = 1 then
11: Start=1
12: end if
13: end for
14: (RC, RS) = MonPro NFS CSA (RC ′, RS′, 1, 0, N)
15: R = RC + RS

��� ���

��	
�����
��������


��	��

���

�����	

������
��


���
���	
��


�

�

��� !�"#
�#��#!�"#

�
�
$�

�
�
$���


��
���


��	
�����

%

%

&

Figure 1. RSA module and its blocks.

Table 1. Implementation results of the Montgomery Multiplier in comparison with the previous works.

Design Device Bit length Clock Fre. Area Throughput
(k) (MHz) (# of Slices) (Mb/s)

This work XC2V1500 512 140.96 4339 140.41
XC2V4000 1024 129.05 5509 128.80

[21] XC2V1500 512 72.1 3125 71.82
[22] XC2V1500 512 105.57 4962 105.36
[23] XC2V1500 512 126.71 5170 126.46
[24] FPGA 1024 129.1 3611 129

Addition with CRPA takes k/w clock cycles, where k is the key length and w is the word length of
CRPA. The decision to choose the word length w was done according to the optimum frequency of the synthesis
results (see Table 2). In order not to make the exponentiation slower than the Montgomery Multiplication block,
w = 16 was chosen.

One RSA encryption takes
(
k2 + 3k + k/w + 2

)
clock cycles for the best case, where the exponent is

135



Turk J Elec Eng & Comp Sci, Vol.18, No.1, 2010

Figure 2. Hardware implementation of the Montgomery Multiplication unit using CSAs.

Table 2. Implementation results of the CRPA module.

Key length Word size Time Area Clock Fre.
(# of bits) (# of bits) (clock cycles) (Slices) (MHz)
512 32 16 976 145.73
512 16 32 932 179.87

E = 2k−1 , and
(
2k2 + 4k + k/w

)
clock cycles for the worst case where the exponent is E = 2k − 1. The

average for the exponentiation is
(

3
2
k2 + 5k + k/w + 4

)
clock cycles. Table 3 shows the implementation results

of the Montgomery multiplier and the RSA modules.

6. The protected implementation of RSA cryptosystem

The RT-WM algorithm given in Section 4.2 is applied as a countermeasure against DPA attacks in this work.
There are three phases in the preprocessing in Algorithm 3. ωcount comparisons and subtractions take place

136



ALPTEKİN BAYAM, ÖRS: Differential power analysis resistant hardware implementation...,

Table 3. Implementation results of the Montgomery multiplier and RSA modules.

Module Parameters # of Clock Time Area Clock Fre. Throu.
cycles s (Slices) (MHz) (b/s)

MonPro k = 512 k + 2 3.65 μs 4339 140.96 140.41 M
(XC2V1500)

MonPro k = 1024 k + 2 7.93 μs 5509 129.05 128.80 M
(XC2V4000)

RSA k = 512 3
2
k2 + 5k 3.4 ms 10240 116.35 150.50 K

(XC2V2000) w = 16 + k
w

+ 4

RSA k = 1024 3
2k2 + 5k 18.7 ms 25193 84.33 54.72 K

(XC2V6000) w = 16 + k
w

+ 4

in preprocessing phase 1. One comparison takes one clock cycle and, since the existing CRPA is used in
subtractions, one subtraction costs w (word count of CRPA) clock cycles.

The 2nd phase of the preprocessing calculates M r mod N , Mdm mod N and M2b

mod N . It takes
(
2b − 1

)
MonPro calculations for this phase.

The 3rd phase of the preprocessing finalizes the table. The table has 2t k -bit items and it takes (2t − 1)

MonPro calculations to finish the table. Since one MonPro calculation takes (k + 2) clock cycles in the proposed

design, the total time spent in the preprocessing calculations becomes �(k − b)� (w + 1)+(2 + b + 2t − 2) (k + 2)

clock cycles. The preprocessing brings an overhead of 2.1% in total time when compared to the binary method.
The RT-WM parameters selected for this study and the resulting additional time are shown in Table 4.

The exponentiation method which replaces the square and multiply method now becomes like t times square and
multiply once with a table value. A final multiplication is needed for the normalization. Therefore, accepting
that ω0 �= 0 for k -bit exponents, the exponentiation time achieved is (ωcount) (t + 1)+1 = �(k − b) /t� (t + 1)+1

Montgomery multiplications. The exponentiation takes (�(k − b) /t� (t + 1) + 3) (k + 2) + k/w clock cycles. If
k = 512, b = 3, t = 2 then one exponantiation takes 394784 clock cycles.

Table 4. Preprocessing time of the RT-WM.

Key length (bits) b t CRPA word count Time (clock cycles)
512 3 2 16 9492

In addition to the mentioned preprocessing, 2 multiplications are needed for entering and exiting the
MonPro domain (Algorithm 3) and k/w clock cycles are needed for CRPA addition. The total time spent in
RT-WM algorithm with the last CRPA addition is 404276 clock cycles.

The implementation results of the RT-WM algorithm, realized with 512-bit key length, 2-bit window
length, and, a 3-bit random number, on Xilinx XCV2600E. An exponentiation time of 18.43 Kb/s throughput
and an area of 22712 slices are achieved. The maximum clock frequency is 14.55 MHz. The total encryption
process takes 27.79 ms, which was 3.4 ms for the unprotected implementation.

The unprotected implementation fits into XCV1000E, occupying 9037 slices, which is 73% of the available
slices. When implementing the protected architecture, the most important addition to the previous implemen-
tation are 6 pairs of k -bit registers due to the RT-WM algorithm (Algorithm 3). As there are two registers in

137



Turk J Elec Eng & Comp Sci, Vol.18, No.1, 2010

each slice of Virtex-E family, this need causes an inefficient use of the slices which prevents fitting into the same
device. The number of slices are 2.5 times of the unprotected implementation. Thus the routing also becomes
inefficient, causing a great decrease in the clock frequency.

6.1. Optimization of the hardware implementation

The protected design needed 22712 slices, which could fit into the Xilinx XCV2600E FPGA. We have applied
optimizations in order to reduce the number of slices used. Virtex-E family FPGAs incorporate large block
SelectRAM memories, where the data widths of the ports can be configured, and the routing is optimized. Hence
we used these built-in block RAM structures for the protected design in order to fit into the XCV1000E. The
RT-WM algorithm needs 8 × 513 bits to be used as the “randomized table” values for the chosen parameters
as shown in Section 4.2, which were realized with registers. One needs to separate the carry and save pairs in
different RAM blocks in order to have read/write access to them at the same clock cycle. Therefore two RAM
blocks of 513-bit data length and 4 entries have been defined.

The resulting implementation fit into the device occupying 10986 slices, as 89% of the available slices. All
implementation results on XCV1000E are given in Table 5. Comparing the protected RSA implementations, we
see that the clock speed increased from 14.55 MHz to 66.66 MHz, making the average case throughput increase
from 18.48 Kb/s to 84.42 Kb/s. Total exponentiation time is reduced from 27.11 ms to 6.06 ms.

Table 5. All implementation results on Xilinx XCV1000E FPGA.

Design Module Unprotected RSA Protected RSA Protected RSA
Parameters k = 512, w = 16 k = 512, w = 16 k = 512, w = 16

k = 512, w = 16 b = 3, t = 2 b = 3, t = 2
Block RAM No No 2 × 4 × 513
Area (slices) 9037 22712 10986
Time (clock cycles) 395812 404276 404276
Clock Fre. (MHz) 81.06 14.55 66.66
Throughput (Kbit/s) 104.85 18.43 84.42
Exp. time (ms) 4.88 27.79 6.06

The time and area cost of the protected design is reduced with block SelectRAM usage.

7. Conclusions

We have implemented an RSA cryptosystem on hardware then modified it to be resistant against DPA attacks.
This work is the first hardware implementation of a RSA cryptosystem which is resistant to power analysis
attacks. Modular exponentiation is realized with Montgomery Modular Multiplication.

The Montgomery modular multiplier has been realized with Carry-Save Adders. The primarily imple-
mented RSA circuits architecture prevents the extraction of the secret key using Simple Power Analysis attacks.

In the second implementation of this work, the changes within the Randomized Table-Window Method
(RT-WM) have been applied over the first implementation in order to have a DPA resistant implementation.
This is the first hardware realization of RT-WM.

138



ALPTEKİN BAYAM, ÖRS: Differential power analysis resistant hardware implementation...,

Both architectures have been implemented on a Xilinx XCV1000E Virtex-E field progammable gate array.
The unprotected implementation was clocked at 81.06 MHz and exhibited 104.85 Kb/s throughput, with 4.88
ms total exponentiation time and occupied an area of 9037 slices. The protected implementation was clocked
at 66.66 MHz and exhibited 84.42 Kb/s of throughput, with 6.06 ms total exponentiation time and occupied
an area of 10986 slices with the use of the built-in block SelectRAM structure inside the XCV1000E. When
comparing the protected implementation with the unprotected, it can be seen that the total time increased by
24.2%, while the throughput has decreased by 19.5%. Thus, the final protected implementation became DPA
resistant, still fitting into the same device, but slower.

References

[1] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems.

Communications of the ACM, 21(2):120–126, 1978.

[2] C. K. Koç. High-speed RSA implementation. Technical Report TR 201, RSA Laboratories, November 1994.

[3] P. Montgomery. Modular multiplication without trial division. Mathematics of Computation, Vol. 44:519–521, 1985.

[4] R.F. Tinder. Engineering Digital Design. Academic Press, San Diego, U.S.A., revised second edition edition, 2000.

[5] S. B. Ors. Hardware Design Of Elliptic Curve Cryptosystems And Side-Channel Attacks. PhD thesis, Katholieke

Universiteit Leuven, Faculteit Toegepaste Wetenschappen, Departement Elektrotechniek, Kasteelpark Arenberg 10,

3001 Leuven (Heverlee), Belgium, February 2005.

[6] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. Wiener, editor, Advances in Cryptology:

Proceedings of CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 388–397, Santa Barbara,

CA, USA, August 15-19 1999. Springer-Verlag.

[7] K. Itoh, J. Yajima, M. Takenaka, and N. Torii. DPA countermeasures by improving the window method. In

B. S. Kaliski Jr., Ç. K. Koç, and C. Paar, editors, Proceedings of the 4th International Workshop on Cryptographic

Hardware and Embedded Systems (CHES), volume 2523 of Lecture Notes in Computer Science, pages 303–317,

Redwood Shores, CA, USA, August 13-15 2002. Springer-Verlag.

[8] D. E. Knuth. The Art of Computer Programming, volume 2/Seminumerical Algorithms. Addison-Wesley, 1997.

[9] J. Bos and M. Coster. Addition chain heuristics. In G. Brassard, editor, Advances in Cryptology - CRYPTO, volume

435 of Lecture Notes in Computer Science, pages 400–407. Springer-Verlag, 1989.

[10] C. K. Koç. Analysis of sliding window techniques for exponentiation. Computers and Mathematics with Applications,

10(30):17–24, 1995.

[11] C. D. Walter. Montgomery’s multiplication technique: How to make it smaller and faster. In Ç. K. Koç and

C. Paar, editors, Proceedings of the 1st International Workshop on Cryptographic Hardware and Embedded Systems

(CHES), volume 1717 of Lecture Notes in Computer Science, pages 80–93, Worcester, MA, USA, August 12-13

1999. Springer-Verlag.

[12] C. D. Walter. Montgomery exponentiation needs no final subtraction. Electronic letters, 35(21):1831–1832, October

1999.

139



Turk J Elec Eng & Comp Sci, Vol.18, No.1, 2010

[13] O. Kömmerling and M. G. Kuhn. Design principles for tamper resistant smartcard processors. In Proceedings of

the USENIX Workshop on Smartcard Technology, pages 9–20, Chicago, Illinois, USA, May 1999.

[14] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryptographic protocols for faults

(extended abstract). In W. Fumy, editor, Advances in Cryptology: Proceedings of EUROCRYPT’97, volume 1233

of Lecture Notes in Computer Science, pages 37–51, Konstanz, Germany, May 11-15 1997. Springer-Verlag.

[15] M. Joye, A. K. Lenstra, and J.-J. Quisquater. Chinese remaindering based cryptosystem in the presence of faults.

Journal of Cryptology, 4(12):241–245, 1999.

[16] P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems. In N. Koblitz,

editor, Advances in Cryptology: Proceedings of CRYPTO’96, volume 1109 of Lecture Notes in Computer Science,

pages 104–113, Santa Barbara, CA, USA, August 18-22 1996. Springer-Verlag.

[17] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results. In Ç. K. Koç, D. Naccache,

and C. Paar, editors, Proceedings of the 3rd International Workshop on Cryptographic Hardware and Embedded

Systems (CHES), volume 2162 of Lecture Notes in Computer Science, pages 255–265, Paris, France, May 13-16

2001. Springer-Verlag.

[18] J.-J. Quisquater and D. Samyde. Electromagnetic analysis (EMA): Measures and counter-measures for smard cards.

In I. Attali and T. Jensen, editors, Proceedings of the International Conference on Research in Smart Cards: Smart

Card Programming and Security (E-smart), volume 2140 of Lecture Notes in Computer Science, pages 200–210,

Cannes, France, September 19-21 2001. Springer-Verlag.

[19] A. Shamir and E. Tromer. Acoustic cryptanalysis. Preliminary proof-of-concept presentation, 2004. http:

//www.wisdom.weizmann.ac.il/~tromer/acoustic/.

[20] K. Alptekin Bayam, S. B. Örs, and B. Örencik. A hardware implementation of RSA. In Proceedings of The

International Conference on Security of Information and Networks - SIN, Gazimagusa, North Cyprus, May 8-10

2007.

[21] K. Manochehri and S. Pourmozafari. Modified radix-2 montgomery modular multiplication to make it faster and

simpler. In Proceedings of The International Conference on Information Technology: Coding and Computing, pages

598 – 602, Las Vegas, Nevada, USA, 2005. IEEE.

[22] C. McIvor, M. McLoone, and J. V. McCanny. Fast montgomery modular multiplication and RSA cryptographic

processor architectures. In Proceedings of The 37th Asilomar Conference on Signals, Systems and Computers, pages

379–384, Pacific Grove, California, USA, November 2003. IEEE.

[23] C. McIvor, M. McLoone, and J. V. McCanny. Modified montgomery modular multiplication and RSA exponentiation

techniques. In Proceedings of The Computers and Digital Techniques, pages 402–408, 2004.

[24] A. P. Fournaris and O. Koufopavlou. A new RSA encryption architecture and hardware implementation based on

optimized montgomery multiplication. In Proceedings of The International Symposium on Circuits and Systems

(ISCAS), pages 4645–4648, Kobe, Japan, May 2005. IEEE.

140


