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doi:10.3906/elk-0812-17

Stochastic stability of the discrete-time constrained

extended Kalman filter
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Abstract

In this paper, stability of the projection-based constrained discrete-time extended Kalman filter (EKF)

as applied to nonlinear systems in a stochastic framework has been studied. It has been shown that like

the unconstrained EKF, the estimation error of the EKF with known constraints on the states remains

bounded when the initial error and noise terms are small, and the solution of the Riccati difference equation

remains positive definite and bounded. Stability results are verified and performance of the constrained EKF

is demonstrated through simulations on a nonlinear engineering example.
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1. Introduction

The Kalman filter, under Gaussian assumption, is the optimal state estimator for linear dynamic systems
as it uses all the available information about the system in order to obtain a state estimate. Although
originally devised for linear systems, nonlinear systems can also be addressed by the Kalman filter through
some modifications to it as approximations to the optimal state estimator. The extended Kalman filter (EKF)
is one of the most popular estimation techniques that has been largely investigated for state estimation of
nonlinear systems [1-4]. The EKF uses the standard Kalman filter equations to the first-order approximation
of the nonlinear model about the last estimate. It is very sensitive to initialization, and filter divergence is
inevitable if the arbitrary noise matrices have not been chosen appropriately. There are many research papers
that address these issues as well as analyze the stability and robustness of the filter [4-11].

When Kalman filters are used in state estimation, it is often assumed that the system model is known and
any additional information about the system is overlooked. However, in the application of state estimators, there
may be specific additional information about the system that the standard Kalman filter does not incorporate.
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For instance, there may be defined constraints on the states that would help produce better estimates if utilized.
However, such information regarding state constraints are not incorporated in the standard Kalman filter. In
such cases, the Kalman filter can be modified to exploit this additional information. There are many ways
to incorporate the constraint information which require modifying the Kalman filter [12]. If either the system

and/or measurements are nonlinear with nonlinear or linear constraints, then the resulting modified filter is
classified as a constrained extended Kalman filter.

Recently, constrained Kalman filtering has become a focus of increased attention and the use of state
constraints has increased in practical engineering problems, both in linear and nonlinear systems. Applications
where constraints are utilized vary from chemical processes [13] to target tracking [14], from vision-based

systems [15] to biomedical systems [16], from robotics [17] to navigation [18], as well as fault diagnosis [19].

Thus, analysis of the stability and/or the stability conditions of the constrained EKF is of great importance.
The convergence and stability properties of the constrained EKF have been treated for the zero noise case in
[20], where it was proved that the EKF is exponentially stable for deterministic nonlinear systems; i.e., the
estimation error is bounded, even when the states are constrained. In this paper, the previous study has been
extended by removing the restriction imposed on the noise term. Then, using the direct method of Lyapunov,
it has been proved that under certain conditions, the EKF is still an exponential observer; i.e., the dynamics of
the estimation error is exponentially stable even when the states are constrained. This is an important outcome
as real life systems are generally not noise free.

This paper discusses the stability of stochastic discrete-time extended Kalman filters when applied to
nonlinear systems with state constraints. First, the stochastic stability of the unconstrained extended Kalman
filter is considered; then the analysis is extended to the projection-based constrained extended Kalman filter.
Due to stochasticity, the exponential stability of the nonlinear system is analyzed in the mean square error
sense. Estimation projection is an analytical method of incorporating state equality constraints in the Kalman
filter, where the filter was generalized in such a way that known relations among the state variables are satisfied
by the state estimate [18]. The main contribution of this work is proving that under certain conditions, the
estimation error of the extended Kalman Filter, when the states are constrained, remains bounded.

In Section 2, we recall the state estimation problem for nonlinear stochastic discrete-time systems when
the states are constrained, and present some auxiliary results from stochastic stability theory. In Section 3, the
constrained extended Kalman Filter is introduced and similar to the unconstrained case in [6], the boundedness
of the error is proved. Section 4 presents some numerical simulation results, which verify that the estimation
error for the stochastic constrained EKF remains bounded if the conditions are met. Conclusions drawn from
these results are also discussed.

2. State estimation and stochastic boundedness

Consider a nonlinear discrete-time system defined by

xn+1 = f(xn, un) + Gnwn (1)

yn = h(xn) + Hnvn (2)

where n ∈ N0 is the discrete time index, xn ∈ Rq is the state, un ∈ Rp is the known input, and yn ∈ Rm is

the output. Moreover, vn and wn are Rk and Rl valued uncorrelated zero-mean white noise processes with
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identity covariance, respectively, and Hn and Gn are time varying matrices of size m×k and q×l , respectively.

The functions f and h are assumed to be C1 -functions.

Where there are known relationships among the state components, there is an additional constraint:

Dxn = dn (3)

where D is a known s × q constant matrix, dn is a known s × 1 vector, s is the number of constraints, q is

the number of states, and s ≤ q . Also, it is assumed that D is full rank1, i.e.,rank(D) = s .

For this system, the unconstrained state estimate is given by

x̂n+1 = f(x̂n, un) + Kn(yn − h(x̂n)) (4)

where the observer gain Kn is a matrix-valued stochastic process of size q ×m . Using the unconstrained state
estimate x̂n , the constrained state estimate x̃n can be given as [18]

x̃n = x̂n − W−1DT (DW−1DT )−1(Dx̂n − dn) (5)

where W is any symmetric positive definite matrix.

Since, f and h are C1 -functions, they can be expanded via

f(xn, un) − f(x̂n, un) = An(xn − x̂n) + ϕ(xn, x̂n, un) (6)

and
h(xn) − h(x̂n) = Cn(xn − x̂n) + χ(xn, x̂n) (7)

with

An =
∂f

∂x
(x̂n, un) (8)

Cn =
∂h

∂x
(x̂n) (9)

We define the constrained estimation error as

ϑn = xn − x̃n (10)

ϑn = xn − (x̂n − W−1DT (DW−1DT )−1(Dx̂n − dn)).

If the unconstrained estimation error is given by [6]

ςn = xn − x̂n (11)

then employing (3) yields

ϑn = (I − W−1DT (DW−1DT )−1D)ςn . (12)

Taking the recursive expression for the unconstrained estimation error directly from [6],

ςn+1 = (An − KnCn)ςn + rn + sn (13)
1If D is not full rank, then there are redundant state constraints, which must be removed.
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where
rn = ϕ(xn, x̂n, un) − Knχ(xn, x̂n) (14)

sn = Gnwn − KnHnvn. (15)

Thus, the constrained estimation error is given by

ϑn+1 = (I − W−1DT (DW−1DT )−1D)ςn+1 . (16)

For the analysis of the constrained error dynamics in (16), let us recall two definitions [21, 22]:

Definition 1. The stochastic process ϑn is said to be exponentially bounded in the mean square sense if there
are real numbers η, ν > 0 and 0 < ϕ < 1 such that

E{||ϑn||2} ≤ η||ϑ0||2ϕn + ν (17)

is satisfied for every n ≥ 0.

Definition 2. The stochastic process ϑn is said to be bounded with probability one, if

sup
n≥0

‖ϑn‖ < ∞ (18)

holds with probability one.

Next, some standard results concerning the boundedness of stochastic processes are given.

Lemma 1. Assume there is a stochastic process Vn(ϑn) and real numbers v, v, μ and 0 < α ≤ 1 such that

v ‖ϑn‖2 ≤ Vn(ϑn) ≤ v ‖ϑn‖2 (19)

and
E(Vn+1(ϑn+1) |ϑn ) − Vn(ϑn) ≤ μ − αVn(ϑn) (20)

are satisfied for every solution of (16). Then, the stochastic process is exponentially bounded in the mean square
sense: i.e., we have

E(‖ϑn‖2) ≤ −v

v
E(‖ϑ0‖2)(1 − α)n +

μ

v

n−1∑
i=1

(1 − α)i

for every n ≥ 0. Moreover, the stochastic process is bounded with probability one.

Proof. See [6], [21], [22], [23], [24] for proof.

3. Error bounds for the constrained extended Kalman filter

Definition 3. A discrete-time constrained extended Kalman Filter is given by the following coupled difference
equations:

x̂n+1 = f(x̂n , un) + Kn(yn − h(x̂n)),
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and after each step,

x̃n+1 = x̂n+1 − W−1DT (DW−1DT )−1(Dx̂n+1 − dn+1),

and the Riccati difference equation:

Pn+1 = AnPnAT
n + Qn − Kn(CnPnCT

n + Rn)KT
n (21)

where

An =
∂f

∂x
(x̂n, un) (22)

Cn =
∂h

∂x
(x̂n) (23)

where Kn is the Kalman gain given by

Kn = AnPnCT
n (CnPnCT

n + R)−1. (24)

In the above equations, Qn and Rn are the symmetric, positive definite covariance matrices of the process and
measurement noise, respectively.

Typically, the matrices Qn and Rn are expressed in terms of the covariance of the corrupting noise terms
in (1) and (2) as

Qn = GnGT
n

Rn = HnHT
n .

Theorem 1. Consider a nonlinear stochastic system described by (1), (2) and a constrained Kalman Filter
as stated in Definition 3. Let the following assumptions hold:

1. There are positive real numbers a, c, p, p, w, d > 0 such that the following bounds on various matrices are

fulfilled for every n ≥ 0:

2.
||An|| ≤ a (25a)

||Cn|| ≤ c (25b)

pI ≤ Pn ≤ pI (25c)

qI ≤ Qn (25d)

rI ≤ Rn (25e)

||W || ≤ w (25f)

||D|| ≤ d (25g)

Note that (25f) and (25g) are imposed due to the state equality constraints.

3. An is nonsingular for every n ≥ 0.
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4. There are positive real numbers ∈ϕ,∈χ, κϕ, κχ > 0 such that the nonlinear functions ϕ, χ in (14) are
bounded via

5.

||ϕ(x, x̂, u)|| ≤ κϕ||x− x̂||2 (26a)

||χ(x, x̂)|| ≤ κχ||x− x̂||2. (26b)

Then, the estimation error ϑn given by (12) is exponentially bounded in the mean square sense with
probability one, provided that the initial estimation error satisfies

||ϑ0|| <∈ (27)

and the covariance matrices of the noise terms are bounded via

GnGT
n ≤ δI (28)

HnHT
n ≤ δI (29)

for some δ,∈> 0.

The proof of this theorem for unconstrained states is divided into several lemmas in [6]. The same lemmas
will be restated here as they are used to prove Theorem 1.

Lemma 2. Under the conditions of Theorem 1, there is a real number 0 < α < 1 such that Πn = P−1
n satisfies

the inequality

(An − KnCn)T Πn+1(An − KnCn) ≤ (1 − α)Πn (30)

for n ≥ 0 with Kn given by (24).

Proof . See [6] for proof.

Lemma 3. Let the conditions of Theorem 1 be satisfied, and Πn = P−1
n and Kn, rn be given by (24) and

(14), respectively. Then, there are positive real numbers ∈′, Knonl > 0 such that

rT
n Πn[2(An − KnCn)(xn − x̂n) + rn] ≤ Knonl||xn − x̂n||3 (31)

holds for ||xn − x̂n|| ≤∈′ and κnonl = κ′ 1
p (2(a + a p c 1

r c) + κ′ ∈′).

Proof . See [6] for proof.

Lemma 4. Let the conditions of Theorem 1 hold, and Πn = P−1
n and Kn, sn be given by (24) and (15),

respectively. Then, there is a positive real number Knoise > 0 independent of δ , such that

E{sT
nΠn+1sn} ≤ Knoiseδ (32)
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holds with Knoise = q
p

+ a2c2p2m
pr2 and

trace(GnGT
n ) ≤ δtrace(I) = qδ

trace(HnHT
n ) ≤ δtrace(I) = mδ.

Proof . See [6] for proof.

Proof of Theorem 1. In the unconstrained case, the function

Vn(ςn) = ςT
n

Πnςn

has been chosen for the proof. Here, for the constrained case we choose

Vn(ϑn) = ϑT
n (Cov(ϑn))−1ϑn (33)

with ϑn = (I − W−1DT (DW−1DT )−1D)ςn and
∏

n = P−1
n , which exists since Pn is positive definite. From

(25c) we have
1

4
−
p
||ϑn||2 ≤ Vn(ϑn) ≤ 1

4p
−

||ϑn||2 (34)

i.e., (19) with v = 1/p and v = 1/
p .

ϑn+1 = (I − W−1DT (DW−1DT )−1D)((An − KnCn)ςn + rn + sn)

and
Cov(ϑn+1) = (I − W−1DT (DW−1DT )−1D)Cov(ςn+1)(I − W−1DT (DW−1DT )−1D)T

Vn+1(ϑn+1) = ϑT
n+1(Cov(ϑn+1))−1ϑn+1

so we have

Vn+1(ϑn+1) = ςT
n+1(I − W−1DT (DW−1DT )−1D)T (I − W−1DT (DW−1DT )−1D)−T Πn+1

×(I − W−1DT (DW−1DT )−1D)−1(I − W−1DT (DW−1DT )−1D)ςn+1

Vn+1(ϑn+1) = Vn+1(ςn+1)

To satisfy the requirements for application of Lemma 1, we need an upper bound on E(Vn+1(ϑn+1) |ϑn ) as in

(20). From (16), we have

Vn+1(ϑn+1) = (sT
n + rT

n + ςT
n (An − KnCn)T )(I − W−1DT (DW−1DT )−1D)T

(I − W−1DT (DW−1DT )−1D)−T
∏

n+1(I − W−1DT (DW−1DT )−1D)

(I − W−1DT (DW−1DT )−1D)−1((An − KnCn)ςn + rn + sn)
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and applying Lemma 1, we obtain in conjunction with (33)

Vn+1(ϑn+1) ≤ (1 − α)Vn(ςn) + rT
n

∏
n+1(2(An − KnCn)ςn + rn)

+2sT
n

∏
n+1((An − KnCn)ςn + rn) + sT

nΠn+1sn

(35)

Taking the conditional expectation E [Vn+1(ϑn+1) |ϑn ] and considering the white noise property, it can be seen

that the term E
[
sT
n Πn+1((An − KnCn)ςn + rn) |ϑn

]
vanishes, since neither

∏
n+1 = P−1

n+1 nor An, Cn, Kn, rn, ςn ,

depend on vn or wn . The remaining terms are estimated via Lemmas 2 and 3, yielding

E(Vn+1(ϑn+1) |ϑn ) − Vn(ϑn) ≤ −αVn(ϑn) + Knonl||ςn||3 + Knoiseδ (36)

for ||ϑn|| ≤ 2||ςn|| ≤ 2 ∈′ . Defining

∈= min
(
∈′,

α

2pKnonl

)
(37)

with (33) and (34) for ‖ϑn‖ ≤ 2 ∈ , we obtain

Knonl||ςn||||ςn||2 ≤ α

2p
||ςn||2 ≤ α

2
Vn(ςn) =

α

2
Vn(ϑn).

Inserting this into (36) yields

E [Vn+1(ϑn+1) |ϑn ]− Vn(ϑn) ≤ −α

2
Vn(ϑn) + Knoiseδ (38)

for |ϑn|| ≤ 2 ∈ . Therefore, we are able to apply Lemma 1 with ||ϑ0|| ≤ 2 ∈ , v = 1/p , v = 1/
p and μ = κnoiseδ .

However, we have to ensure that for 2∈̃ ≤ ||ϑn|| ≤ 2 ∈ with some ∈̃ <∈ the supermartingale inequality

E [Vn+1(ϑn+1) |ϑn ] − Vn(ϑn) ≤ −α

2
Vn(ϑn) + Knoiseδ ≤ 0 (39)

is fullfilled to guarantee that the estimation error is bounded [25]. Choosing

δ =
α∈̃2

2pKnoise
(40)

with some ∈̃ <∈ , we have for ||ϑn|| ≥ 2∈̃

Knoiseδ ≤ α

2p

‖ϑn‖2

4
≤ α

2
Vn(ϑn);

i.e., (39) holds, which completes the proof.

4. Simulations

In the preceding section it was proved that the estimation error of the projection-based, discrete-time, con-
strained extended Kalman filter remains bounded under certain assumptions. These assumptions include the
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requirement of a sufficiently small initial estimation error and sufficiently small noise. Some numerical simula-
tions are presented in this section in order to illustrate the significance of these assumptions. For this purpose,
a nonlinear stochastic system is considered with constraints imposed on the parameters to be estimated. The
proposed system models the ingestion and subsequent metabolism of a drug in a given individual. A two com-
partment model is used to characterize the ingestion, distribution and metabolism of the drug in the individual
[4].

Let x1 and x2 denote the drug mass in the first compartment, the gastrointestinal tract, and in the
second compartment, the bloodstream of the individual, respectively. The rate of change of the drug mass in
the gastrointestinal tract is equal to the rate at which the drug is ingested minus the rate at which the drug is
distributed from the gastrointestinal tract to the bloodstream. The latter rate is assumed to be proportional to
the drug mass in the gastrointestinal tract. k1 is a positive constant characterizing the gastrointestinal tract
of the given individual. The rate of change of the drug mass in the bloodstream is equal to the rate at which
the drug is distributed from the gastrointestinal tract minus the rate at which the drug is metabolized and
eliminated from bloodstream. The positive constant, k2 , characterizes the metabolic and excretory processes
of the individual. The output variable, y, is the drug mass, x2 , in the bloodstream, as this is the variable
that is indicative of the effect of the drug on the individual. The state variables are given by the drug mass
in the gastrointestinal tract, x1 , and the mass of drug in the bloodstream. Thus, the state space model of the
two-compartment model is given by

xn+1 =
[

x1,n+1

x2,n+1

]
=

[
1 − k1Δt 0
k1Δt 1 − k2Δt

] [
x1,n

x2,n

]
+ Gnwn (41)

yn = [0 1]xn + Hnvn (42)

where Δ t is the integration-time interval sub-divider, which is chosen as 0.01, and it is assumed that k1 �= k2 .
Typically, the physiological constants satisfy the inequality k1 > k2 , due to the fact that x1 decays more
rapidly than does x2 [26]. Thus, x1,n and x2,n are the states, and k1 and k2 are unknown parameters, which
can be constant or time-varying, to be estimated along with the states.

Let us assume Φn (ψ ) is a known vector that is a function of some unknown vector, given as ψ =[
k1 k2

]T . Now ψ can be thought as a random walk process, that is

ψn+1 = ψn + δn, (43)

where δ n is any zero mean white noise sequence uncorrelated with the measurement noise variance ν n and with
the pre-assigned positive definite variances Var(δ n) = Sn . In applications, Sn may be chosen as Sn = S > 0
for all n . The nonlinear model is as follows:

[
xn+1

ψn+1

]
=

[
Φn(ψn)xn

ψn

]
+ Gn

[
wn

δn

]

yn = [0 1 0 0]
[

xn

ψn

]
+ Hnvn,

(44)

where wn is the process noise variance that is also uncorrelated with ν n . Considering its nonlinear nature, the
EKF can be applied to the problem in hand in order to estimate the state vector, which contains ψ n as one of
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its components. Also, let us impose a constraint on the parameters k1 and k2 and force them to satisfy k1 +
k2 = 1. This constraint could be incorporated in the EKF through the use of the equality Dx n = dn given
by (3), where D = [0 0 1 1] and dn = 1.

Simulations for the initial values and noise terms given in Table 1 have been conducted, where the results
are displayed in Figures 1 and 2, illustrating the estimation error on k1 and k2 for small and large initial
estimation error and process noise terms, respectively. As can be seen from Figure 1, if the conditions described
by (27) to (29) are satisfied, then the estimation error remains bounded; however, if, as shown in Figure 2, the

conditions defined by (27) to (29) are violated, then the estimation error grows without bound.

Table 1. Initial state values and noise terms used in simulations.

Stability conditions Stability conditions
are met are violated

Initial State - x̂0 [10 10 0.7 0.3]T [15 15 0.9 0.1]T

Process noise - Gn

√
10−9I4

√
5 × 10−2I4

Measurement Noise -Hn

√
10−5

√
5 × 10−2
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Figure 1. Estimation error for the parameters k1 and k2 (small initial error and process noise).

Moreover, in order to demonstrate the performance improvement with the use of constraints, both the
constrained and unconstrained estimates of the parameter k1 are displayed in Figure 3, along with the true
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ÖZBEK, KÖKSAL BABACAN, EFE: Stochastic stability of the discrete-time constrained...,

value of the parameter (0.7). As can be seen from Figure 3, when the additional information provided by the
known constraints is utilized, the estimation error performance improves, i.e., the estimation error is reduced.
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Figure 2. Estimation error for the parameters k1 and k2 (large initial error and process noise).
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Figure 3. Estimated k1 , with and without the use of constraint information.

221



Turk J Elec Eng & Comp Sci, Vol.18, No.2, 2010

5. Conclusion

In this paper, the error behavior of the constrained extended Kalman Filter, when applied to general estimation
problems for nonlinear stochastic discrete-time systems, has been analyzed. The analysis considered the stability
of the unconstrained EKF, which was then extended to the case where there were assumed constraints imposed
on the states. The analysis has shown that under certain conditions, similar to the unconstrained error, the
constrained estimation error is bounded in the mean square sense with probability one, under the conditions
that the initial estimation error and the disturbing noise terms are small enough, and that the solution of the
Riccati difference equation remains positive definite and bounded. Finally, some numerical simulation results
are presented in order to illustrate the stability, significance of the stability conditions and demonstrate the
estimation performance of the constrained EKF.
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