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Abstract

Chaotic systems are sensitive to initial conditions, system parameters and topological transitivity and these

properties are also remarkable for cryptanalysts. Noise like behavior of chaotic systems is the main reason

of using these systems in cryptology. However some properties of chaotic systems such as synchronization,

fewness of parameters etc. cause serious problems for cryptology. In this paper, to overcome disadvantages

of chaotic systems, the dynamics of Chua’s circuit namely x , y and z were modeled using Artificial

Neural Network (ANN). ANNs have some distinctive capabilities like learning from experiences, generalizing

from a few data and nonlinear relationship between inputs and outputs. The proposed ANN was trained

in different structures using different learning algorithms. To train the ANN, 24 different sets including

the initial conditions of Chua’s circuit were used and each set consisted of about 1800 input-output data.

The experimental results showed that a feed-forward Multi Layer Perceptron (MLP), trained with Bayesian

Regulation backpropagation algorithm, was found as the suitable network structure. As a case study, a

message was first encrypted and then decrypted by the chaotic dynamics obtained from the proposed ANN

and a comparison was made between the proposed ANN and the numerical solution of Chua’s circuit about

encrypted and decrypted messages.
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1. Introduction

Cryptology was as significant as weapons during the World War II and the Cold War. There were lots of
studies to develop robust crypto-systems and to use them in communications. These studies have continued up
to now. Today some of those crypto-systems called as “classical crypto-systems” are improved and still being
used. [1-3]. Chaotic crypto-systems can be introduced as an alternative way to classical crypto-systems [4-10].
During the last two decades a growing amount of research effort has been dedicated to the investigation of
chaos from different disciplines. Chaos is defined as stochastic behavior occurring in deterministic system [11].
It is known that chaotic systems are non-periodical and also sensitive to initial conditions, system parameters
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and topological transitivity [12]. These properties are remarkable for cryptanalysts. The main reason of using
chaotic systems in cryptography is especially noise like non-periodic dynamics of these systems.

Chaotic crypto-systems have two main sub-categories: continuous and discrete time chaotic crypto
systems. In [13], Chua’ s circuit based chaotic masking technique which can be considered as an application
of continuous time analogue chaotic systems was presented as an example of secure communication systems.
The system has two parts: a generator of chaotic dynamics (transmitter) and a receiver. The receiver has
generally the same circuit topology with transmitter. A chaotic dynamic, produced by the transmitter, is used
as an input for the receiver to synchronize the common dynamics of both systems. After synchronization, the
message, coded with the chaotic dynamic, is transmitted from the transmitter and recovered using the same
chaotic dynamic at the receiver [7, 8, 10, 14].

Simultaneously discrete time chaotic systems have been offered as an alternative way to encrypt messages.
Iterative equations such as Logistic map or Henon map are used to generate chaotic dynamics. Then generated
chaotic dynamics are separated into pieces. The starting and the finishing points of pieces are known by both
the transmitter and the receiver. Each piece represents an alpha-numerical symbol in the alphabet, like a look-
up table, and each character of the message is replaced with these pieces. The coded message is sent from the
transmitter then the original message is recovered at the receiver using the same chaotic dynamics which are
produced by the same iterative equations [4, 6, 9, 15].

It is known that chaotic circuits are sensitive to initial conditions. Initial conditions are static loads on
capacitors and inductor in analogue circuitry as well. So anyone can not intentionally define the same static
loads to generate the same chaotic dynamics in different times on the hardware. Additionally, communication
channels are also non-ideal which cause synchronization problems between two analogue chaotic circuits [16,

17]. Up to now, both continuous and discrete time chaos based cryptographic systems are presented and in both
of those chaos based cryptographic systems, the major weakness is fewness of system parameters. The system
parameters represent the secret keys for a chaos based cryptographic algorithms. In cryptology, it is accepted
that the cryptographic algorithm is known by everybody [1-3]. So the security of any crypto-system depends
on only secret keys.

The development of ANNs comes from simulating intelligent tasks which are performed by human brain.
They are most widely used by soft computing techniques that have the capability to capture and model complex
input/output relationships of any system. The advantages of ANNs are the ability to generalize results obtained
from known situations to unforeseen situations, the fast response time in operational phase, the high degree of
structural parallelism, reliability and efficiency. If a set of input-output data pairs which belongs to a problem is
available, ANNs can learn and exhibit good performance. For these reasons, application of ANNs has emerged
as a promising area of research, since their adaptive behaviors have the potential of conveniently modeling
strongly nonlinear characteristics [18-20].

In this paper, an ANN based chaotic generator is proposed to overcome the weaknesses of chaotic crypto-
systems. The ANN model, presented in this work, was trained in MATLAB to generate chaotic dynamics x̂ , ŷ

and ẑ which are similar to chaotic dynamics x , y and z generated by the numerical solution of Chua’s circuit.
As an application of chaotic cryptology, a message was encrypted and decrypted by the dynamics obtained from
the proposed ANN model and a comparison was made between the proposed model and the numerical solution
of Chua’s circuit about encrypted and decrypted messages.

This paper is organized as follows: In Section 2, Chua’s circuit configuration is described. ANN is
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explained briefly and the proposed model is described in Section 3. In Section 4, the results of encryption and
decryption processes are presented and in Section 5 concluding remarks are discussed.

2. Chua’s circuit

Chua’s circuit has a simple structure and easily produces chaotic dynamics with suitable parameters. Thus this
circuit has attracted the interest of many researchers. Chua’s circuit was described as “the first real physical
system where chaos is observed in laboratory, confirmed by computer simulation, proven mathematically by
two independent methods” [12, 21].

Figure 1 shows Chua’s circuit. The circuit consists of three components that can store energy (C1 , C2

and L), two linear resistors (R and RS) and a nonlinear resistor (NR) that is called Chua’s diode. Using

Kirchhoff’s current and voltage laws, the obtained differential equations are shown in Equation (1) [22].

R

iL

VRVC1VC2

C2 C1 NR

RS

L

+ + +

- - -

iR

Figure 1. Chaotic Chua’s circuit.

The mathematical model, f(VC1) and characteristic of nonlinear Chua’s diode are given in Equation (2)
and Figure 2 respectively. The Ga and Gb are the slopes in the inner and outer regions respectively, and +
BP denote the breakpoints.

C1
dVC1

dt = 1
R (VC2 − VC1) − f(VC1)

C2
dVC2

dt
= iL − 1

R
(VC2 − VC1)

LdiL

dt = −VC2 − iL.RS

(1)

iR = f(VC1) = GbVC1 +
1
2
(Ga − Gb) ∗ (|VC1 + BP | − |VC1 − BP |) (2)

Equation (1) and (2) can be transformed into dimensionless forms which are given in Equation (4) and (5), by
introducing the following variables.

x = VC1
BP

y = VC2
BP

z = RiL

BP

α = C2
C1

β = C2R2

L τ = t
RC2

a = GaR b = GbR c = BP

(3)
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The dimensionless state equations given in Equation (4) were solved by MATLAB differential equation solver,
namely “ode 45”. The parameters and initial conditions were given by: α = 10, β = 14.87,a= -1.27,b= -0.68,
c= 1, x0 = 0, y0 = 0 and z0 = 1. The obtained chaotic dynamics, named as x , y and z respectively, and
double scroll are shown in Figure 3(a) and Figure 3(b).

dx
dτ = α(y − x − f(x))

dy
dτ = x − y + z

dz
dτ = −βy

(4)

f(x) = bx +
1
2
(a − b) ∗ (|x + c| − |x − c|) (5)

The chaotic dynamics x , y and z are given in Figure 3(a). They represent VC1 , VC2 and iL which are shown

in Figure 1 respectively. The double scroll given in Figure 3(b) demonstrates relation between chaotic dynamics
x and y.
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Figure 2. Characteristic of Chua’s diode.

3. Artificial neural network

Because of distinctive advantages of human brain, such as powerful thought ability and solving complex
problems, ANNs are based on the mechanism of the biologically inspired brain model. ANNs are most
widely used soft computing techniques that have the capability to capture and model complex input/output
relationships. ANNs have a wide application area such as medical, chemistry, electronics and automotive,
etc. Some capabilities of ANNs like learning from experiences, generalizing from a few data and nonlinear
relationship between inputs and outputs, come into prominence [22, 23-25].

In order to design an ANN system, three characteristics must be identified: (i) the neuron model, which

is the single processing element; (ii) the network architecture, which defines the connections of the processing

elements; (iii) the learning algorithm, which evaluates the weights of the connections.

228
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Figure 3. The dynamics (a) and the double scroll attractor of chaotic Chua’s circuit (b) obtained by the numerical
solution.

The structure of ANNs consists of simple processing elements or neurons which have weighted inputs
and bias, summation and activation functions and output. Each neuron receives input signals from nearby
neurons or external sources and gives an output signal which is propagated to other neurons or constitutes a
part of the network output. In each neuron, the link among its inputs and output is provided by an activation
function. The activation function is a non-decreasing function, such as hard limiting threshold function (sign

function), linear or semi-linear function and smoothly limiting threshold function (sigmoid function) [26]. The
block diagram of a neuron is shown in Figure 4.

x1

x2

x3

xn b

w1

w2

w3

Wn

y
∑ f

Figure 4. A simple neuron.

In Figure 4, xi is the input, wi is the weight, where i=1, 2, 3 . . . n, b is the bias value and y is the
output of neuron. The calculation of output y is given in Equation (6). f represents the activation function of
the neuron.

yj = f(
∑

i

wixi + b) (6)

ANNs have many different architectures [18, 26, 27]. Multilayer perceptron (MLP) is the most used class of
feed-forward networks for constructing non-linear transfer functions among inputs and one or more outputs
[18, 26, 27]. A typical MLP neural network consists of inputs, outputs and one or more hidden layers with a
predefined number of neurons. The neurons in the input layer only act as buffers for distributing the input
signals to neurons in the hidden layer. During the training (learning) process, biases in each neuron and weights
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between the neurons are adjusted by learning algorithm according to some criterions. These criterions are
maximum allowable number of epochs, time and error (The mean square error, (mse) between the target output

and the measured value for all the training set falls below a predetermined threshold) [28].

It is possible to prove that this architecture is able to perform any transformation when it is trained with
the back-propagation (BP) learning algorithm for determining the weights of connections. The BP algorithm is
based on a learning rule by which the weights are evoluted in order to minimize the mean of squared differences
between the desired and actual values of the output neurons, namely:

E =
1
n

n∑

j=1

(ydj − yj)2 (7)

where n is the number of neurons, ydj is the desired value of the output neuron j and yj is the actual output

value of that neuron. Each weight wji is adjusted by adding an increment Δwji to it. Δwji is selected to reduce
E as rapidly as possible. The adjustment is carried out over several training iterations until a satisfactorily small
value of E is obtained or a given number of iteration, is reached. How Δwji is computed depends on the training

algorithm adopted.
The standard BP algorithm suffers from a few drawbacks such as the risk to converge in local minima and

a long computational time [18-20, 23-26]. To improve performance, five different types, high performance BP
training algorithms, which use different optimization techniques, were used in this study. These algorithms are
Levenberg–Marquardt (LM) [23, 24], Broyden–Fletcher–Goldfarb–Shanno (BFGS) [29], Bayesian Regularization

(BR) [27, 30], Conjugate Gradients (CGs) [18] and Resilient Back-propagation (RP) [18] algorithms. These
algorithms are briefly explained below.

Levenberg–Marquardt (LM) method: The LM algorithm is designed to approach second-order
training speed without having to compute the Hessian matrix. The method combines the best features of the
Gauss-Newton method and the steepest-descent method, but avoids many of their limitations.

Broydon–Fletcher–Goldfarb–Shanno (BFGS) method: This method uses an update formula
derived from the quasi-Newton update of Hessian. It requires the storage of the approximate Hessian matrix
and has more computation than conjugate gradient algorithms at each iteration, but usually converges in less
iteration.

Bayesian Regularization (BR) method: This method is the modification of the Levenberg-Marquardt
training algorithm to produce a well-generalized network. It minimizes a linear combination of squared errors
and weights. This algorithm can train any network as long as its weight, inputs, and activation functions have
derivative functions.

Conjugate Gradients (CGs) method: This algorithm is a second-order method, which restricts each
step direction to be conjugate to all previous step directions. This restriction simplifies the computation greatly
because it is no longer necessary to store or calculate the Hessian or its inverse. There are a number of versions of
CGs (Polak–Ribiere, Fletcher–Reeves, and Powell–Beale). Powell–Beale’s version of CGs is used in this article.

Scaled Conjugate Gradient (SCG) method: Each of the conjugate gradient algorithms requires a
line search at each iteration. This line search is computationally expensive, since it requires that the network
response to all training inputs be computed several times for each search. This method combines the model-
trust region approach (used in the Levenberg-Marquardt algorithm), with the conjugate gradient approach to
avoid the time-consuming line search.
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DALKIRAN, DANIŞMAN: Artificial neural network based chaotic generator for cryptology,

4. The structure of ANN based chaotic generator

The block diagram of the proposed ANN model is given in Figure 5. As shown in the figure, three initial
conditions and time variable were applied to the inputs and three chaotic dynamics x̂ , ŷ and ẑ were obtained
from the outputs of the ANN. For the training and test phases of the ANN, approximately 1800 input-output
data pairs which belong to 24 different initial condition sets were obtained from Equation (4). A quarter of
those 1800 data pairs were sorted to use in the test phase and the rest of data were used in the training phase.
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Figure 5. The block diagram of trained ANN model.

In this study, the aim is to find the best ANN structure to produce chaotic dynamics. It is achieved by
changing the number of hidden layers, the number of neurons in the hidden layers and the transfer functions in
the neurons. After the training process, the ANN models were tested with sorted test data and the results are
given in Table 1. As seen from the table, the suitable network structure is 4x20x19x3 trained with Bayesian
Regularization algorithm. This means that the number of neurons is 4 for the input layer, 20 for the first hidden
layer, 19 for the second hidden layer and 3 for the output layer. The input and output layer neurons have linear
activation functions and the first and the second hidden layer neurons have hyperbolic tangent sigmoid and
hyperbolic logarithmic sigmoid activation functions, respectively. The normalized error convergence curves in
the learning algorithms used in the analysis for 1000 epochs are graphically shown in Figure 6. As the learning
proceeds, the mean square error progressively decreases and finally attains a steady state minimum value as
shown in the figure. The test errors and the correlation coefficients for each of chaotic dynamics x̂ , ŷ and ẑare
also given in Table 2. The test and training errors and the correlation coefficients were calculated using the
differences between chaotic dynamics x , y , z and x̂ , ŷ , ẑ and these dynamics with different initial values are
shown in Figure 7.

Table 1. Training and test errors for ANN models trained with different algorithms.

Number of Neurons
Training Algorithm 1. Hidden 2. Hidden Train Error Test Error

Layer Layer (mse) (mse)
Bayesian Regularization (BR) 20 19 0.4320 0.0567
Levenberg–Marquardt (LM) 20 20 0.5345 0.0612
Broyden–Fletcher–Goldfarb– Shanno (BFGS) 20 20 1.441 0.1218
Conjugate Gradient Backpropagation 16 15 1.7304 0.1435
With Powell-Beale Restarts (CGB)
Scaled Conjugate Gradient Back propagation (SCG) 19 19 1.7544 0.1452
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Figure 6. Learning (convergence) characteristics of the ANN for different learning algorithms used in the analysis for

1000 epoch.
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Figure 7. Three chaotic dynamics produced by both the ANN and the numerical solution of Chua’s circuit for different

initial condition sets.
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Table 2. Correlation coefficients and test errors for each chaotic dynamics produced by the proposed ANN.

Training Algorithm
Test Error (mse) Correlation Coefficient

x̂ ŷ ẑ x̂ ŷ ẑ
Bayesian Regularization (BR) 0.2303 1.7195 0.9189 0.9632 0.2224 0.8976
Levenberg–Marquardt (LM) 0.3413 1.8243 1.1738 0.9449 0.3227 0.8671
Broyden–Fletcher–Goldfarb– Shanno (BFGS) 0.9592 2.8157 2.4834 0.8360 0.1847 0.6891
Conjugate Gradient Back propagation 1.7067 2.8824 3.3284 0.6815 0.0595 0.5443
With Powell-Beale Restarts (CGB)
Scaled Conjugate Gradient Back 1.6759 2.8892 3.2990 0.6884 0.0779 0.5499
propagation (SCG)

It is important to note that the selection criteria of hidden layer neuron numbers depends on some factors,
such as ANN type, training set characteristics and type of application. This topic is still under special attention
of artificial intelligence researchers today.

4.1. A Case Study: Encryption and Decryption Using ANN Based Chaotic Gen-

erator

Cryptology is a discipline that covers many different studies which are about overcoming security and identifica-
tion holes on communication systems. Cryptography is a process which consists of two parts that are called as
encryption and decryption processes. The encryption process can be defined as converting the original message
which is named as plain-text to an inscrutable form which is named as cipher-text by an algorithm with secret
keys. Decryption process is the inverse form of encryption process. The block diagram of a crypto-system is
given in Figure 8. In this figure, a plain-text is encrypted using the secret keys in the transmitter and then
the cipher-text is transmitted throughout an unsecure channel. At the receiver, the cipher-text is decrypted
by the decryption algorithm using the secret keys and the plain-text is obtained again. Cryptanalysts can also
monitor the unsecure channel. In general, obtaining plain-text from cipher-text without secret key has major
priority. Learning the decryption algorithm, learning the key, sometimes learning that the same message is sent
again, part of the key, time the message was sent are also important. Unknown decryption algorithm is the
worst situation for cryptanalysts. Cryptanalysts try to decrypt all cipher-texts without the secret keys and/or

Ã
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Algorithm

Transmitter

Algorithm Algorithm

ğ a m  
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Estimated Text

Cryptanalyst

Receiver
KEY

TargetDecryption
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Source

KEY
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Ilker

Plain-Text

Figure 8. The block diagram of a crypto-system.
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the decryption algorithm. They use different attack algorithms and achieve the estimated texts which is only
similar to the plain text but not exactly the same. If a cryptanalyst achieves the plain-text without having the
secret keys and/or the decryption algorithm, it is easily said that the crypto-system is failed [1-3].

As a case study, a plain-text was encrypted and then obtained cipher-text was decrypted by using the
chaotic dynamics both z and ẑ . It is accepted that the initial conditions which were used in the training phase
of the ANN model and the system parameters are known by both the transmitter and the receiver. The block
diagram of the process is given in Figure 9.

Transmitter

ANN Based
Chaotic Generator

Initial
Conditions  

Time
Control

Unit

Cipher-text
with tail

+ Cipher-text
Plain-text Plain-text

Receiver

ANN Based
Chaotic Generator

Control
Unit

Cipher-text
with tail

Initial
Conditions

Time

_
Cipher-text

Figure 9. The block diagram of ANN based chaotic crypto-system.

In the transmitter, software based control unit decides the values of initial conditions and the ANN based
chaotic generator produces the outputs according to those initial conditions. A gray scaled picture was chosen as
a plain-text. A gray scaled picture, in MATLAB, is in matrix form and has pixels which have integer values and
vary between 0 and 255. The chaotic dynamic ẑ , shown in Figure 7(a), was chosen to encrypt the plain-text.
Because of varying the amplitude of the chaotic dynamic ẑ between -5 and +5, the gray scaled picture was
converted to a column vector and normalized in that interval. The cipher-text is obtained by adding normalized
data to the chaotic dynamic ẑ . A tail which consists of initial conditions, image dimensions, and normalization
parameters, is tied to the cipher-text by the control unit and then the cipher-text with tail is transmitted. In the
decryption phase, the tail is firstly discriminated from the cipher-text and the initial conditions are extracted
from the tail by the control unit. Then, the initial conditions are applied to the ANN based chaotic generator
and the chaotic dynamic ẑ is produced by the generator. Finally the plain-text is obtained by subtracting the
chaotic dynamic ẑ from the cipher-text. The size of cipher-text is equal to the size of plain-text. But tying the
tail to the cipher-text enlarges the size of encrypted data. The size of tail is only 8 bytes.

To make a comparison between the ANN based chaotic generator and the numerical solution of Chua’ s
circuit, the same operations are also executed for the chaotic dynamic z instead of ẑ to encrypt and decrypt a
plain-text.

The image, chosen as plain-text, is shown in Figure 10. This image was encrypted using the chaotic
dynamics z and ẑ and obtained cipher-texts are shown in Figure 11(a) and 11(b) respectively. Those cipher-
texts are in scalar vectors and can be sent to receiver in these forms. If a cryptanalyst knows that the scalar
vectors in channel are images and converts those scalar vectors into image forms, he can only see black blocks
as shown in Figure 11(c) and 11(d). As mentioned before, the normalized image was encrypted with the chaotic
dynamics z and ẑ . If a cryptanalyst knows the normalization parameters and then denormalizes the black
blocks, he can obtain the images which were encrypted using the chaotic dynamics z and ẑ , that are shown in
Figure 11(e) and 11(f) respectively. The images encrypted and then decrypted using the chaotic dynamics z

and ẑ are the same and they are given in Figure 11(g) and 11(h).
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Figure 10. The image chosen as plain-text.
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Figure 11. Cipher-texts encrypted with the chaotic dynamics (a) z and (b) ẑ . The cipher-texts in image forms
encrypted with the chaotic dynamics (c) z and (d) ẑ . Denormalized cipher-texts encrypted with the chaotic dynamics
(e) z and (f) ẑ . Images, decrypted with the chaotic dynamics (g) z and (h) ẑ .
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Let’s suppose that a cryptanalyst determines that the encryption and the decryption processes are based
on chaos and illegally obtains the initial condition set which was used in the encryption process. In this case,
even if he produces the chaotic dynamic z , using the numerical solution of Chua’s circuit with that initial
condition set and decrypts the cipher-text which was encrypted with the ẑ given in Figure 11(b), he can obtain
an estimated-text given in Figure 12.

5. Results and discussion

In analogue chaotic circuits, it is too difficult to regenerate the same chaotic dynamics at different times due
to the fact that the same initial conditions cannot be intentionally defined. Therefore, to produce the same
chaotic dynamics, analogue chaotic circuits have to synchronize with each other. This is a serious problem for
cryptology. The numerical solution of an analogue chaotic circuit for regenerating the same chaotic dynamics at
different times can be offered as an alternative way to overcome the disadvantage of analogue chaotic circuits.
Although the same initial conditions can be intentionally defined by using the numerical solution of an analogue
chaotic circuit, another problem occurs. That is named as fewness of system parameters. The system parameters

236
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of the numerical solution of Chua’s circuit are α , β ,a ,b, c and three initial condition values , x0 , y0 and z0 as
seen from Equation (4) and (5).

Figure 12. The estimated-text.

In this study, different chaotic dynamics were produced by using the numerical solution of Chua’s circuit
for different initial conditions to train the proposed ANN. Different ANN structures which were obtained by
changing the number of hidden layers, the number of neurons in the hidden layers and the transfer functions
in neurons were trained and tested with different learning algorithms, to obtain better performance and faster
convergence with simpler structure. Five learning algorithms, BR, LM, BFGS, CGB, and SCG exhibited better
performance among them. Figure 6 clearly shows that the minimum training error belongs to BR algorithm.
As it is clearly seen from Figure 6, the next solution which is closer to BR is obtained by LM algorithm. Among
the neural models presented here, the worst result is obtained using the SCG algorithm for this particular
application. Table 1 shows the training and test errors from the complete learning algorithms used in the
analysis for the different network configuration mentioned above. The training and test mean square errors of
the network, trained with BR, are 0.0567 and 0.4320 respectively.

In the test phase, it is expected that ANN should produce the outputs with minimum error. Theoretically,
the test error and the correlation coefficients should be 0 and 1 respectively. However, the test errors are greater
than 0 and the correlation coefficients are less than 1 in practice. The test errors and the correlation coefficients
are given in Table 2 for each chaotic dynamic. Figure 7 shows that, although ANN can not sufficiently learn
the chaotic dynamic y , it exhibits a good performance for the chaotic dynamics x and z .

A gray scaled image was encrypted and decrypted using the chaotic dynamic, z and ẑ . The results of
encryption and decryption processes are given in Figure 11. After the decryption process, the image is obtained
without any deformation. The correlation coefficients related to encrypted and decrypted images using z-z,
ẑ − ẑ , z − ẑ and ẑ − z pairs are given in Table 3. The smaller correlation coefficient between two data is, the
less similarity is. So it can be said that the first two rows of the table correspond to the expectations and the
ANN based chaotic generator is as successful as the numerical solution of Chua’s circuit in both encryption and
decryption processes. On the other hand, the last two rows of the table show that the chaotic dynamics z and
ẑ cannot be used instead of each other to decrypt the cipher-text. The situation, in which a plain-text was
encrypted using the chaotic dynamic ẑ and decrypted using the chaotic dynamic z , is verified by Figure 12.
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Table 3. Correlation coefficients of encrypted and decrypted images.

Correlation Coefficient Correlation Coefficient
Between Plain-text and Between Original Plain-text

Cipher-text and Decrypted Plain-text
Encrypted using z and

0.1416 1.0000decrypted using z
Encrypted using ẑ and

0.1620 1.0000decrypted using ẑ

Encrypted using z and
0.1416 0.0434decrypted using ẑ

Encrypted using ẑ and
0.1620 0.0384decrypted using z

The test process of the ANN takes only a few seconds after finding the most suitable network configuration
and the learning algorithm. The real-time calculation time is in the order of microseconds. Therefore the neural
model is very fast after being trained and it requires no complicated mathematical functions. As a comparison, a
performance test between the proposed ANN model and the numerical solution of Chua’s circuit was performed
in MATLAB on a server with AMD Opteron Dual Core 2216HE 3.01HGz CPU and 7.2 GB RAM. Elapsed
times of encryption and decryption processes were measured for different sizes of a gray scaled picture. The
results are given in Table 4. As seen from this table, the proposed ANN model produces the outputs faster than
the numerical solution of Chua’s circuit.

Table 4. The encryption and decryption times of both the ANN and the numerical solution of Chua’s circuit.

File Size (in pixels)
File Size (KB) Encryption Time (seconds) Decryption Time (seconds)

Plain-Text Plain-Text
Cipher-Text

Chua’s Circuit ANN Chua’s Circuit ANNwith tail
64x64 65 � 65 1.109 0.453 1.263 0.577

128x128 257 � 257 1.988 0.531 2.217 0.709
256x256 1025 � 1025 4.668 1.631 5.020 2.068
512x512 4097 � 4097 16.385 4.535 18.103 6.104

Conclusion

In this paper, an ANN based chaotic generator is proposed to overcome the weaknesses of chaotic crypto-
systems. The ANN model, presented in this work, was trained in MATLAB to generate the chaotic dynamics
which are similar to the chaotic dynamics generated by the numerical solution of Chua’s circuit. It is found
that the 4x20x19x3 multilayer perceptron network, trained with Bayesian Regularization (BR) algorithm, is the
most suitable structure to produce chaotic dynamics with minimum error. If a cryptanalyst wants to generate
chaotic dynamics which are the same as the ANN model, he must exactly know the ANN structure, weights
and biases. In other words, to produce same chaotic dynamics a cryptanalyst must determine the number of
neurons, transfer functions in each neuron, the values of 517 weights and 42 biases. Also, the proposed ANN
model does not have any synchronization problem. In addition, the difference between the chaotic dynamics z

and ẑ can be considered as an advantage of the ANN based chaotic generator. Eventually the major weaknesses
of analogue circuit and the numerical solution of chaotic circuit are eliminated with the proposed model.
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