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Abstract

This paper presents a novel approach for fault detection and identification in order to estimate voltage

sag during a fault. One of the best approaches for voltage sag estimation is instantaneous voltage estimation.

The approach uses traditional state estimation where redundant measurements are available. The proposed

method is used to estimate voltage sag performance during a fault. At the fault duration, the grid topology is

changed. In such a case the measurement matrix must be re-determined at the fault duration. The proposed

approach is an efficient method for fault detection and identification which is based on residual analysis and

topology error detection. The performance of the novel approach is tested on an IEEE 14 bus system and

the results are shown.
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1. Introduction

A fault could be a short circuit that causes voltage sag in power systems. Voltage sag is one of the most aspects
of power system quality indices. On the other hand, power system quality is of greater concern to electric
utilities and consumers. According to IEEE standard 1346 voltage sag is a decrease in RMS voltage at the
power frequency for a duration changing from half a cycle to 1 min. Typical voltage sag values are 0.1 to 0.9 pu
[1]. However, any phenomenon that causes an increase in current can be a source of voltage sag. Motor starting,
transformer energizing and sudden load changes are the sources of voltage sag. Voltage sags affect sensitive
electrical equipments. These equipments are computers, electronic equipments, adjustable AC and DC drives,
induction and synchronous motors, contactors and etc [2]. In addition, voltage sag causes customer damage
costs. These costs include damage to product, delays in delivery, damage to equipment and processes and
reduced customer satisfaction [3]. In order to quantify voltage sag severity two methods including monitoring
and stochastic assessment can be used.

There is much research about voltage sag stochastic assessment based on critical distance and fault
positions. The probabilistic nature of stochastic methods makes them suitable for long term estimations, but
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in a specific year, the predicted number of voltage sags can differ substantially from the measurement. In
addition, in some cases, historic data are not available when analyzing a part of the system recently introduced
or modified [4].

Power Quality (PQ) monitoring is necessary to characterize electromagnetic phenomena at a particular
location in a power system. In some cases, the objective of the monitoring is to diagnose power quality problems.
In other cases, monitoring may be used in planning the installation of power quality mitigating devices. In
addition, economic impacts of power quality problems are significant in many load centers. In addition to
resolving equipment disruption, a database of equipment tolerances and sensitivities can be developed from
monitored data. Such a database can provide a basis for developing equipment compatibility specifications and
guidelines for future equipment enhancement [5].

State Estimation (SE) is one of the essential functions in Energy Management Systems (EMS). Nowadays,

in Supervisory Control and Data Acquisition (SCADA) Control Centers (C.C), EMS servers execute real time

state estimation. Weighted Least Square (WLS) state estimation algorithm is used to solve the normal equation
widely.

In order to have linear measurement equations for voltage estimation, line currents and some bus voltages
shall be chosen as the measurements.

Substation Automation (SA) is the first step toward the creation of a highly reliable, self-healing power
system that responds rapidly to real-time events with appropriate actions. This system supports the planning
and asset management necessary for cost-effective operations. Substation automation was not feasible up to a
few years ago. Communication technologies simply were not available to handle the demands imposed by the
complexity of SA requirements. However, communication standards have now been developed to be able to
address many of these demands [6].

Global Positioning System (GPS) is a Wireless Communication Technology for SA. Substation automation

basically consists of implementing Intelligent Electronic Devices (IEDs) using microprocessors to monitor
and control the physical power system devices. Recently all substations are based on IEDs with changes in
measurement architecture [7].

According to the above issues, there is no concern about Wide Area Monitoring (WAM), clock synchro-
nization and real time implementation challenges.

In the voltage sag state estimation procedure, when a fault is occurred, there is one topology error. It
is important to note that the fault status does not change measurement matrix dimensions but changes some
elements of the measurement matrix. The main purpose of the paper is to detect and identify fault location for
time domain voltage sag state estimation.

The remainder of the paper is organized as follows. In section II, fundamental concepts of state estimation
are described. Section III discusses time domain state estimation. In section IV, a fault detection and
identification approach is described, which includes time domain measurement matrix and residual analysis.
Numerical results are shown in section V. Finally, conclusions are noted in section VI.

2. State estimation

State Estimation (SE) was introduced by Gauss and Legendre in the 18 th century. The basic idea was to “fine-

tune” state variables by minimizing the sum of the residual squares. This is the well-known least squares (LS)
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method. The other method is the Weighted Least Square (WLS). The method is used to minimize the weighted

sum of the residual squares. WLS calculate the best estimation of states [8]. In fact, the measurement errors

are assumed to have a known probability density function. Most of the time, Gaussian (normal) distribution
probability density functions with zero mean value and known variance is used. Another objective of SE is
detection, identification and suppression of gross measurement errors [9]. In this paper, the aforementioned
subject is developed to detect fault location due to voltage sag estimation.

Consider the set of measurements given by vector z [10]:

z =
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where hi(x) is the nonlinear function relating ith measurement of the states; xi is the state; m is the number
of measurements; and n is the number of states. Also,x is the system state vector and e is the measurements
errors vector. Equation (1) is called the measurement equation.

Regarding the statistical properties of measurement errors, the following assumptions are made:

E(ei) = 0, i = 1, 2, ..., m (2)

E(eiej) = 0, i = 1, 2, ...,m. (3)

Equations (2) and (3) express that the mean values of measurements errors vectors are zero, and also the
measurement errors are independent. Hence,

Cov(e) = E(e.eT ) = R = diag(σ2
1 , σ

2
2, ..., σ

2
m) (4)

where,σi is standard deviation for measurement i which is computed to reflect the expected accuracy of the
corresponding meter used.

Now, the objective function is defined as follows:

J(x) =
m∑

i=1

(zi − hi(x))2/Rii

= [z − h(x)]TR−1[z − h(x)]
. (5)

Finally, the weighted least squares state estimation leads to an iterative solution of the following equation (called

the Normal Equation (NE)) [10]:

G(xk)Δxk = HT (xk)R−1Δzk, (6)

where H is measurement Jacobian matrix ofh(x), G is Gain matrix and is equal toHT R−1H , k denotes the
iteration index

The residual index is
r = Δz = z − H(x). (7)
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In conventional power system telemetry stations, both active power and reactive power are analogue measure-
ments. If these parameters are chosen as a set of measurements and bus voltages are chosen as states, then the
measurement equation is nonlinear. Decoupled weighted least squares state estimation is introduced to have
linear measurement equation [10]. Also, when line currents and some bus voltages are chosen as state variables,

measurement equation becomes linear [11].

Linearly,
z = Hx + e, (8)

and, in this case, the objective function is

J(x) = [z − Hx]TR−1[z − Hx]. (9)

In order to have a unique solution, linear equation must be completely determined or over determined. Under
such conditions, the system state vector is estimated as [5, 8]

xestimated = G−1HT R−1z. (10)

Network observability analysis must be checked prior to SE. This analysis will be determined if a unique estimate
can be found for the system states [10, 12].

In this paper, according to [12] the network observability analysis is done to determine observability of
the network.

3. Time-domain state estimation

Time-domain state estimation requires components from time domain modeling and some assumptions in a
power system. These assumptions allow the use of single-phase circuit for modeling the power system. If
measurement sets are placed on the lines, the main approach for state estimation in the power system is line or
branch modeling. In the following, we focus on line modeling for time-domain state estimation.

The pi line model is used to show equivalent circuit for a line in a power system. The standard differential
voltage-current relationships for resistor, inductor and capacitor elements can be given by [13]

iRL(t) =
1 + α

2L
Δt

+ (1 + α)R
vRL(t) +

1 − α
2L
Δt

+ (1 + α)R
vRL(t − Δt) +

2L
Δt

− (1 − α)R
2L
Δt

+ (1 + α)R
iRL(t − Δt) (11)

iC(t) =
2C

Δt(1 + α)
vC(t) − 2C

Δt(1 + α)
vC (t − Δt) − 1 − α

1 + α
iC(t − Δt), (12)

where α is the compensating constant factor; vRL(t), iRL(t) are the voltage and current across the series branch;

vC(t), iC(t) are the voltage and current across shunt branch, respectively; and R, L, C are values of resistance,
inductance and capacitance of the line.

Let Xt represents the vector of all bus voltages at time t. Then the measurement equation can be written
as

Zt = im(t) − ih(t) = HXt, (13)

where, im(t) is the vector of all measurement current at time t. It is necessary to calculate H and ih(t) that
are measurement matrix in time domain and history term of components.
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Measurement matrix can be divided into two parts:

H = HRL + HC . (14)

Factor HRL is related to series branch and HC is related to shunt branch. With introducing A as branch-to-node
incidence matrix and M as measurement-to-branch incidence matrix, HRL can be given as

HRL = M.diag(h).A, (15)

where

h(i) =
1 + α

2Li

Δt + (1 + α)Ri

, i = 1, 2, ..., k (16)

where k is the number of network branches and i is the branch number.
If the simplified pi model is used, the capacitor can be neglected in the model. Therefore,

HC = 0ih(t) = ihRL(t) = M.diag(hRL).A.Xt + diag(hhRL).im(t − 1), (17)

in which

hRL(i) =
1 − α

2Li

Δt + (1 + α)Ri

, i = 1, 2, ..., k (18)

hhRL(p) =
2Li

Δt − (1 − α)Ri

2Li

Δt + (1 + α)Ri

. (19)

Here, p is the measurement number, which is placed on line i. It can be drawn out from the measurement set
placement table. For each instance of simulation, SE is running and bus voltages are estimated according to
equation (10).

4. Fault detection and identification approach

SE has typically several functions. One is topology error processing, and can be classified in two categories:
Branch status error and configuration error. When a fault occurs, there is one topology error. It is categorized
as a branch status error. In the fault status, the measurement matrix dimensions are not changed, but some
elements of the measurement matrix are changed. This subject is described as follows.

The measurement matrix at a fault duration is as follows:

Lf = γLkj , Rf = γRkj, Cf = γCkj

H(m, k) =

(
2γCkj

Δt(1 + α)
+

1 + α
2γLkj

Δt + (1 + α)γRkj

)
(20)

H(m, j) = 0. (21)

In deriving the matrix, it is assumed there is a fault on a line connecting bus #k and #j . Figure 1 shows the
fault status on a line.

669



Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

�������

	� 
� ��

	

�����

��

�� ��

Figure 1. Illustration of a fault status on a line.

The proposed approach combines two test methods for fault detection and identification. The idea derives
from the condition that, when there is a fault, there is a single error on network topology at the fault duration.
The selected methods are the largest normalized residual test and residual analysis. They are based on residual
value and residual mean value, respectively.

The largest normalized residual test can be used to devise a test for identifying and detecting a single
error [10]. The test has the following steps:

• Solve WLS and obtain residual vector.
• Compute the normalized residuals as follows:

rN
i =

|ri|√
Ωii

, i = 1, 2, ..., m (22)

where m is the number of measurements and Ω is the residual covariance matrix. IfrN
k > δ , then there is a

fault and δ is chosen as a threshold for fault detection.
It is necessary to say that fault location must be determined for solving SE. In other words, the

measurement matrix at the steady state period is different from the measurement matrix at the fault duration.
In this case, a test method is required to detect and identify the line or branch on which the fault occurs. In
addition, there are some cases for which the largest normalized residual test can not uniquely identify an error.
An example is when the fault location is near a bus including other connected lines.

The proposed approach uses the residual analysis concept to determine fault location and to rebuild
measurement matrix.

The basic point in the fault status is the fact that measurement matrix dimensions are not changed.
Therefore, the relation between measurement matrixes in two statues is described as [1, 14]

Hfault = Hsteady + E, (23)

where, E is the error measurement matrix. In the fault duration, the SE equation is defined as

z = Hfaultx + e = Hsteadyx + Ex + e. (24)

Before the fault detection and identification, the residual vector at the fault duration is given as

r = z − Hsteadyx̂. (25)

Mean and covariance values for residual are expressed as

E(r) = (I − K)Ex (26)
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Cov(r) = (I − K)R, (27)

where

K = HsteadyG
−1HT

steadyR
−1 (28)

denotes the hat matrix.
The relationship between residuals and vector line error is expressed as

r = Tf, (29)

where f is vector line error and T is given by

T = (I − K)M. (30)

Here, M is the measurement-to-line incident matrix.

According to the co-linearity test which is described in [15], the dot product between T and r is

cos θj =
TT

j r

‖Tj‖ ‖r‖
, (31)

where, ‖Tj‖ , ‖r‖ are the largest singular value of Tj , r , respectively.

Line j has a short circuit fault if cos θj is approximately equal to one. For other lines they are less than

one. In this case, the two described methods with power network topology at fault duration can be used to
detect and identify fault as fault indices. In the following section the numerical analysis is presented to justify
the proposed approach.

5. Numerical analysis

IEEE 14-bus test system with 20 lines is used for time domain simulation [16]. The set of measurements based

on the method for observability analysis according to [12] is performed. The method uses triangular factors of
singular, symmetric gain matrix to determine the observable islands of a measurement set. The factorization of
the gain matrix is computed as [12]:

D = L−1GL−T , (32)

where, D is a triangular and diagonal matrix and L is a non singular lower triangular matrix.

D is checked to have zero pivots, if not, the test matrixes (W, C from L) are calculated to obtain
unobservable islands. IEEE 14-bus test system with measurement set is shown in Figure 2. The mentioned
method is done to find a fully observable network. The measurements placement description is illustrated in
the appendix.

As mentioned before, bus voltages are selected as the state variables. In this test system there are 18
measurements, therefore, degree of freedom is 4. Time domain simulations are done with 1 ms time step for a
200 ms simulation period. The fault is occurred in the middle of line 4 at time 80 ms. The fault duration is
assumed to be 2 cycles. The proposed approach is assessed with above assumption. Two desired indices are
measured to determine when they exceed a threshold value.
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Figure 2. IEEE 14-bus test system with measurement set.

Figure 3 shows the normalized residual index for each measurement when there is no fault in the network
and the network is in the steady state conditions. As seen, the threshold value is not crossed and therefore
there is no gross error for each measurement. Also, cosine theta indices for each line are shown in Figure 4. All
indices are under one that indicates no fault on the lines.

Both criteria show that there is no fault on the grid. When fault is occurred on line 4, all residuals are
increased because of error topology due to the short circuit fault. These accretions are illustrated in Figure 5.
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Figure 3. Normalized residual index for each measure-

ment.

Figure 4. Cosine theta index for each Line.
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Start Here Next It is clear that all normalized residual values at the fault status are greater than
normalized residual values at the steady state. These increases are very gross and these errors are as large
as 100% at least. In fact, it is possible that topology errors are detected from measurement errors due to gross
influences.

The measurement errors are neglected in this paper. Generally, normalized residual test determines
topology error in the grid, Cosine theta criterion is used to detect and identify fault zone. Figure 6 shows cosine
theta index for each line. Cosine theta index for line 4 is one. This case confirms validation of the proposed
method.

� � � �  ! # $ " % �� �� �� �� � �! �# �$ �"
�

!�

���

�!�

���

�!�

��'()����*� ��&

�
��
�
',
�-
�.

�
�(
�.
)'
,
/*
.�
0

�� 1'),�

� � � �  ! # $ " % �� �� �� �� � �! �# �$ �" �% ��
�

�&�

�&�

�&�

�& 

�&!

�&#

�&$

�&"

�&%

�


�*� ��&

�
�(
�*
�
�
��
'
/*
.�
0

�� 1'),�

Figure 5. Normalized residual index for each measure-

ment for the fault on line 4.

Figure 6. Cosine theta index for each line at a fault on

line 4.

6. Conclusion

In this paper, an efficient method is applied to detect and identify fault characteristics. These characteristics
include fault location and fault instance which are used to build measurement matrix and to estimate voltage
sag. Topology error function of state estimation is used. The current based model allows a linear mapping
between the measured variable and the states to be estimated. Residuals analyses are used to obtain criteria
threshold. The main advantage of the developed method is the fault detection and identification within just
one step time after fault instance. A time-domain measurement model was considered for the voltage state
estimation. The approach was tested for IEEE 14 bus system.

Appendix

The measurement placement for IEEE 14-bus is illustrated in Table.
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Table. Measurements placement

Measurement # Placement
1 Line 2
2 Line 1
3 Line 7
4 Line 8
5 Line 10
6 Line 13
7 Line 11
8 Line 15
9 Line 14
10 Line 3
11 Line 12
12 Line 17
13 Line 18
14 Line 16
15 Line 6
16 Line 5
17 Line 4
18 Bus1
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