
Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010, c© TÜBİTAK

doi:10.3906/elk-0910-228

Securing fuzzy vault schemes through biometric hashing∗

Cengiz ÖRENCİK, Thomas B. PEDERSEN, Erkay SAVAŞ,
Mehmet KESKİNÖZ

Faculty of Engineering & Natural Sciences, Sabancı University,
İstanbul, 34956, TURKEY

e-mail {cengizo@, pedersen@, erkays@, keskinoz@}sabanciuniv.edu

Abstract

The fuzzy vault scheme is a well-known technique to mitigate privacy, security, and usability related

problems in biometric identification applications. The basic idea is to hide biometric data along with

secret information amongst randomly selected chaff points during the enrollment process. Only the owner

of the biometric data who presents correct biometrics can recover the secret and identify himself. Recent

research, however, has shown that the scheme is vulnerable to certain types of attacks. The recently proposed

“correlation attack”, that allows linking two vaults of the same biometric, pose serious privacy risks that have

not been sufficiently addressed. The primary aim of this work is to remedy those problems by proposing a

framework based on distance preserving hash functions to render the correlation attack inapplicable. We first

give definitions which capture the requirements such hash functions must posses. We then propose a specific

family of hash functions that fulfills these requirements and lends itself to efficient implementation. We

also provide formal proofs that the proposed family of hash functions indeed protects the fuzzy vault against

correlation attacks. We implement a hashed fuzzy vault using fingerprint data and investigate the effects

of the proposed method on the false accept and false reject rates (FAR and FRR, respectively) extensively.

Implementation results suggest that the proposed method provides a complete protection against correlation

attacks at the expense of small degradation in the FRR.

Key Words: Fuzzy vault, Biometrics, Biometric hashing, Fingerprint, Privacy

1. Introduction

Identification for access control and other purposes can be achieved by utilizing three factors: 1) what you

know (e.g. passwords), 2) what you have (e.g. smartcards), and 3) what you are (biometric data identifying a

person). Either these factors can be used alone or any combination of the three can be used together to increase
security and compensate for the weaknesses of one factor. While passwords can be forgotten and smartcards
can be stolen, a biometric is inseparable from an individual and always accessible providing a comparably high

∗Part of this work is presented in SECRYPT 2008 [1]

515

Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

level of security. In addition, it can easily be combined with other factors to increase security further. Biometric
identification, on the other hand, also suffers from two major drawbacks: 1) the noisy nature of the biometric

measurement process and 2) privacy issues due to the fact that biometric data reveals private information about
the individuals which is not intended to be revealed otherwise.

Juels and Sudan [2] proposed the so-called fuzzy vault scheme to overcome these two drawbacks associated
with the usage of biometrics for identification. The main idea in the fuzzy vault scheme is to combine error
correction and secret sharing where the biometric data, together with a secret, defines a codeword of an error
correction code. Given the fingerprint, the codeword can be corrected, and the secret extracted. However, the
secret itself does not reveal anything about the biometric data. If the secret is compromised, one can always
choose another secret to combine with the same biometric.

To extract the secret information for the verification process there are two popular approaches. One
approach, proposed by Clancy et al. [3], is to use a variant of the Reed-Solomon (RS) decoding algorithm [2].
The other approach is to use brute-force, where different subsets of measured minutiae points are used to reveal
the secret polynomial. Uludag et al. [4] successfully apply the brute-force method to the fuzzy vault scheme for
fingerprint biometrics. Although both the brute force decoding and the RS decoding methods reveal the same
secret polynomial, their time complexities are different, which is explored in [1].

In this paper we first address implementation details of the two aforementioned methods for the fuzzy
vault scheme, namely the brute-force and RS decoding methods, and lay out a guideline for implementing the
fuzzy vault scheme efficiently for biometric identification.

It is well-known that the fuzzy vault scheme is vulnerable to so-called “correlation attacks” [5] [6] where
two distinct fuzzy vaults for the same fingerprint can easily be linked. This attack, therefore, poses a serious
security and privacy risk. As a major contribution of this work, we next develop a framework to achieve a
secure implementation of fuzzy vaults under correlation attacks. Specifically, in this framework, we propose a
biometric hash function, and prove that it provides security against the correlation attack.

The contributions of this work can be summarized as follows:

• After we explain the correlation attack in Section 3.1, we propose a framework based on distance preserving
hash function families to protect the fuzzy vault against the attack. The basic idea is to store the hashed
points, instead of the original vault points themselves.

• In the framework we outline the requirements that a suitable family of hash functions fulfill for a provable
protection against the correlation attack. We give three definitions for the properties of a candidate family
of hash functions; namely, robustness, non-linkability, and non-invertability.

• We propose a specific family of hash functions, which preserves distance and fulfills the aforementioned
requirements. The proposed family of hash functions are efficiently computable and suitable for biometric
applications. We also present the security analysis of the family of hash functions and prove that the
correlation attack is inapplicable to the fuzzy vault scheme if the proposed family of hash functions is
used.

• We furthermore study the effects of vault size and hash usage on the security and performance of the
fuzzy vault in terms of false accept and false reject rates as well as on timing of verification stage.

• As a minor contribution, we provide a complete guideline for efficient and secure implementation of fuzzy
vault for biometrics.

516

ÖRENCİK, PEDERSEN, SAVAŞ, KESKİNÖZ: Securing fuzzy vault schemes through biometric hashing,

The most important characteristics of the proposed hash based framework is the fact that it requires
no other secret values to be stored to protect the fuzzy vault. A previous attempt by Nandakumar et al. [7]
is basically a two-factor authentication system where users are required to use secret passwords in addition to
their biometric. While providing a sufficient security against correlation attack, it suffers from the well-known
security issues and inconveniences associated with using passwords:

1. User has to remember a secret password which is frequently forgotten and compromised.

2. Passwords do not provide sufficient security and easily succumb to cryptanalysis. If the password is
compromised, the system becomes vulnerable to correlation attacks.

However, in the proposed scheme neither the user nor the database owner has to remember any secret value.
Hash parameters are chosen randomly and made public as they need to be in a hash-based system. Our security
analysis proves that no feasible attack can compromise the biometric.

The remainder of this paper is organized as follows. For the sake of completeness, Section 2 reviews the
fuzzy vault scheme and explains the details of the brute force and Reed Solomon decoding algorithms [8] used
for reconstructing the secret polynomial hidden in the fuzzy vault. This section also provides a summary of
comparative analysis for the efficiencies of two techniques used for polynomial reconstruction. In Section 3, the
three previously proposed attacks targeted on the fuzzy vault scheme, namely the location based attack [1], the

brute force attack [3], [9] and the correlation attack [5], are revisited. In Section 4, we propose keeping hash
values of the minutia points instead of the minutia points themselves for securing the scheme against correlation
attack. We define the requirements that a hash function satisfy to be used in a secure fuzzy vault scheme.
We also propose a special family of hash functions and present proofs that our proposed hash function family
complies with our definitions (see Appendix for the proofs). Section 5 explores the effects of the vault sizes and
use of the proposed hash function on the performance and security of the fuzzy vault using experimental data.
Section 6 is devoted to our conclusions and the summary of the work.

2. Review of fuzzy vaults from fingerprints

In this section we give a brief outline of the techniques used in the application of the fuzzy vault scheme to
fingerprint biometrics. In the enrollment stage, a fuzzy vault is created by combining a secret with the fingerprint
of the user to form a set of points. The fuzzy vault hides the points created from the fingerprint and the secret
by adding random points to the vault. The points are created in a way that the secret can be obtained if the
right fingerprint is provided during verification. The verification stage consists of two phases: 1) alignment of

the measured fingerprint to the points in the fuzzy vault, and 2) the reconstruction of the secret.

The enrollment and alignment stages and the two most frequently used decoding methods are described
briefly in the following sections. Note that these stages outline our implementation and may differ from other
fuzzy vault implementations.

2.1. Enrollment stage

During the enrollment stage n minutiae points from the fingerprint of the user is presented to the system. Each

minutia point is a point (xi, yi) ∈ Z
2
2w with two w -bit coordinates, which we concatenate to form the 2w -bit

integers xi = xi||yi ∈ Z22w .

517

Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

Now, a 2kw -bit secret key S , used for identification, is divided into k equal length parts, {S1, . . . , Sk} .

From these parts we define the secret polynomial p(x) =
∑k

i=1 Six
i in Zq[x] of degree k − 1 where q is a

prime larger than any 2w -bit number. Since the secret polynomial has degree k − 1, k points that lie on this
polynomial are sufficient to successfully reconstruct the polynomial.

For each of the 2w -bit number xi formed from the concatenation of coordinates of a minutiae point,
the secret polynomial p(x) is evaluated in Zq to define yi = p(xi), for i ∈ {1, . . . , n} . The n resulting points

(xi, yi) ∈ Z
2
q are denoted the genuine points of the fuzzy vault.

Clearly both the minutiae points of the original fingerprint and the secret polynomial can be recovered
from the genuine points in the fuzzy vault. To protect the secret key and the genuine points we pick chaff points

at random from Z
2
q and add them to the fuzzy vault. The chaff points have to be chosen such that their x

coordinates are at distance at least t from xi -coordinates of any of n genuine points. Chaff points are added in
this fashion until the fuzzy vault contains a total of C points (for some C � n). The resulting fuzzy vault with
C points is assumed to be accessible to anyone including an external attacker. Since the attacker cannot tell
the difference between genuine points and chaff points, he cannot easily find either the original minutia points
or the secret key. The block diagram of the original fuzzy vault enrolling scheme is shown in Figure 1.

���������	

����	� �����	��

����	����	��	���
��������	���

���������
������	���

�����	��������
���������	� ��	

Figure 1. Block diagram for enrollment.

Since the polynomial reconstruction methods may return an incorrect polynomial, in the enrollment
phase the implementation in [4] adds a cyclic redundancy check (CRC) of the secret S as a coefficient of the
secret polynomial to verify that the correct polynomial is found in the verification stage. However, in our
implementation we instead check if there are at least k + μ vault points lie on the polynomial, for some μ > 1,
to verify that the correct polynomial is found. Adding redundant information such as the CRC in [4] is likely to
be utilized in exhaustive search attacks to check whether the correct polynomial is constructed. However, since
our method utilizes the already available redundancy (i.e. more points lie on the polynomial than its degree) to
construct the secret polynomial, it does not necessarily deteriorate the strength of the systems. In our tests we
see that both methods give the same False Accept Rate (FAR) and False Reject Rate (FRR) results (Section 5).

2.2. Verification stage

Given the original minutiae points, the genuine points in the fuzzy vault can be found by matching the xi

values in the vault with those of the minutia points. The owner of the fingerprint can always provide the
original minutiae points up to a rotation and translation, and thus find some of the genuine points in the fuzzy
vault. However, due to noise in the measurement process the user may not find all genuine points, and may even
mistake some of the chaff points for genuine points. It is the relationship between polynomial reconstruction
and error correction that allows the authentic user to recover the secret polynomial, and thus the secret key,

518

ÖRENCİK, PEDERSEN, SAVAŞ, KESKİNÖZ: Securing fuzzy vault schemes through biometric hashing,

as long as he presents a majority of the genuine points. For an attacker, on the other hand, it is difficult to
reconstruct the secret polynomial without knowing the original biometric data, since the fuzzy vault contains
much more chaff points than genuine points.

The goal of the verification stage is to reconstruct the secret polynomial from the genuine biometric data,
and thus enable us to recover the secret key S . The recovered secret key is then used for identification. When
a user presents a genuine fingerprint for identification, m ≤ n minutiae points are expected to match the points
in the fuzzy vault. The person does not have to present the same set of minutiae points for each verification
process. This is a necessary feature of biometric authentication since the fingerprint measurement is a noisy
process: in each verification a different set of measured minutiae points will match the points in the fuzzy vault.
The block diagram of the original fuzzy vault verification scheme is shown in Fig 2. In the following sections,
we explain the steps of the verification stage in detail.

���������	

����	�

����	����	��	���
��������	���

 ��	

���������	 !�	��	��

�����	��

"���	�#����

Figure 2. Vault verification.

2.3. Alignment phase

Since a user who wishes to authenticate himself with his fingerprint may inadvertently rotate and translate his
fingerprint at each measurement, the verification process needs to pre-process the fingerprint before applying
the polynomial reconstruction algorithm. The pre-processing tries to align the query fingerprint to the enrolled
fingerprint stored in the fuzzy vault. At the end of the alignment phase, the xi coordinates in the fuzzy vault
are matched with minutiae points from the query fingerprint, and the corresponding fuzzy vault points are
presented to the system for verification. This set will consist of some of the genuine points, but also some chaff
points. This is known as the verification list and when it contains at least k + μ genuine points, the secret
polynomial can be reconstructed.

Aligning two fingerprints is a difficult task and errors in this phase could lead to false rejects. There are
several different approaches for fingerprint alignment [4], but we use alignment by exhaustive search. In this
method, several combinations of translations in x and y coordinates plus rotations of the points of the query
fingerprint are compared with the points in the vault. If a point in the query fingerprint is closer to a fuzzy

vault point than a certain number of pixels1 we say that the two points are matched. This process is repeated
for many different combinations of translations and rotations and the combination with the maximum number
of matching points is the output of the alignment phase.

1The matching is done in the (x, y) -plane of the fingerprints, not in the (x, y) -plane of the fuzzy vault.

519

Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

2.4. Brute force decoding approach

To reconstruct the secret polynomial we need k genuine points. In the brute force approach we try all
combinations of k out of the m matching points. Note that some of the m matching minutiae points will
be chaff points from the fuzzy vault. However, if k genuine points are used during the exhaustive search, the
scheme will be successful.

In the brute force approach, k pairs of (xi, yi) are chosen randomly from the verification list and the

polynomial on which the selected k pairs lie is calculated using Lagrange interpolation [10]. If μ other fuzzy
vault points lie on the same polynomial, the fingerprint is accepted; otherwise it is rejected. If the fingerprint is
rejected, another random set of k pairs are taken and the process is repeated. The maximum number of trials
is set to a high value, after which the program rejects the fingerprint if no polynomial satisfying the condition
is found. The drawback of the brute force approach is high computation complexity when the query fingerprint
is too noisy, causing the verification set to contain less genuine points and more chaff points.

2.5. Reed solomon decoding approach

Using error correcting codes for the implementation of the fuzzy vault is first proposed in [2]. The authors state

that after the matching minutiae points are obtained, it is more efficient to use a Reed-Solomon (RS) decoder
than brute force to reconstruct the secret polynomial. The Reed-Solomon decoders have an error correction

capability of τ = m−k
2 errors. Even though the Guruswami-Sudan list decoding algorithm [11, 12] can correct

errors beyond this limit (τGS =
√

mk), it is not suitable in our case due to efficiency reasons. The best choice is

to use the Berlekamp-Massey (BM) algorithm as explained in [3] since it is fast, easy to implement and widely
studied.

However, details on how to apply the RS decoding method to fuzzy vaults, are given neither in [2]

nor in [3]. These papers mention the decoder, which they name the UNLOCK function, as a black box that
reconstructs the secret polynomial given the m matching points. The lack of detailed description of the method
caused some misunderstanding in the literature; for instance the authors of [13] claim that the Reed-Solomon
decoding is not applicable in the case of the fuzzy vault scheme. In the following we give a description of how
to use the Reed Solomon codes and Reed Solomon decoding methods in the fuzzy vault scheme.

2.5.1. RS decoding with BM algorithm

As explained in the enrollment stage, when we construct the fuzzy vault we evaluate the secret polynomial for
all n minutiae points, i.e. yi = p(xi) for i = 1, . . . n . This can be put into a matrix-vector formulation as
follows: [

y1 y2 . . . yn

]
=

[
p0 p1 . . . pk−1

]
G,

where the matrix G is given as

G =

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1
x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

...
...

...
...

xk−1
1 xk−1

2 . . . xk−1
n

⎞
⎟⎟⎟⎟⎟⎠ .

520

ÖRENCİK, PEDERSEN, SAVAŞ, KESKİNÖZ: Securing fuzzy vault schemes through biometric hashing,

This is indeed a shortened Reed Solomon (RS) encoding with the generator matrix G [8]. It is crucial to
notice that the generator matrix changes for each user, which differ from the conventional application of the RS
encoding method. Since the enrollment stage essentially utilizes the RS encoding, reconstruction of the secret
polynomial in the verification stage can be achieved by employing an RSDecoder.

The codeword to decode in the fuzzy vault scheme is the evaluation of a polynomial of degree k − 1 over
a set of m distinct points in field F . The codeword consists of m pairs (xi, yi) where xi ∈ F is the minutiae

point that matches either a genuine or chaff point in the fuzzy vault. If the codeword satisfies yi �= p(xi) for

less than τ of the given values of i , the decoder returns the secret polynomial P (x) and thus the fingerprint
will be verified. Otherwise, the decoder returns a false polynomial.

The RS decoding with Berlekamp Massey (BM) algorithm takes two vectors (X = [x1, x2, . . . , xm] and

Y = [y1, y2, . . . , ym]) where X is the code used to create the parity check matrix and Y is the codeword with
errors. The method has four major steps :

1. Computation of canonical parity-check matrix.

2. Computation of syndromes.

3. Computation of error locator polynomial and error locations.

4. Computation of secret polynomial.

The details of these steps are explained in [8].

After these steps, the secret polynomial is reconstructed by using the Lagrange interpolation method
with the correct minutiae points if the number of errors does not exceed a security parameter τ . Otherwise,
the function returns a wrong polynomial of degree k − 1. Again we check if more points that lie on the same
polynomial exist. If not, the function is called with fewer number of pairs. This process is repeated a couple
of times with some of the different random pairs being removed from the list. If the algorithm still returns a
wrong polynomial as output after these attempts, then the fingerprint is rejected.

2.6. Computational complexity of polynomial reconstruction

In [1], the computational complexities of the two decoding methods was compared, in order to clarify as to which
method is optimal depending on the parameters of m and k where m is the number of matched points and
k−1 is the degree of the secret polynomial. The complexity of two methods are given in terms of multiplication
and multiplicative inverse operations in Fq .

While one trial of Reed Solomon decoding has 4m2 + m(k2/3) − m(3k + 2) + k2 multiplication and m

inverse operations, Brute Force decoding has l(k2 +5m+k) multiplication operations, where l is the number of
trials needed on the average, which naturally increases with the error in the query fingerprint. Without knowing
the number of trials l in the brute force method it is not easy to compare two methods. Comparison is only
possible with experiments on real and synthetic data, which was presented in our previous work with trade off
curves both for timing and number of required operations [1].

521

Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

3. Attacks on fuzzy vault

Although Juels and Sudan [2] proved that the fuzzy vault scheme satisfies some security properties, it is still
vulnerable to some attacks. The attacks on the fuzzy vault scheme, mostly assume the interception of a vault
from a database. There are several attacks targeted on the fuzzy vault scheme such as location based attack
[1], brute force attack [3], [9] and the correlation attack [5] which can be applied in reasonable amount of time.
Therefore the fuzzy vault scheme is insecure without additional security measures.

In our previous work [1], two modifications to the enrollment stage are proposed in order to strengthen

the fuzzy vault against location based attack and brute force attack. In [1], it is shown that the locations of fake

(chaff) points leak some valuable information and a new chaff point placement technique that prevents that
information leakage is proposed. A novel method for chaff point creation that decreases the success rate of the
brute force attack from 100% to less than 3.3% is also proposed in [1]. That modification can also be applied
to this proposed method with hashing in order to make the vault secure against brute force attack. However,
any method that improves the security of fuzzy vault scheme against the correlation attack, which requires no
secret value other than the biometric information was not proposed in any of the previous works. In this work,
as a remedy against correlation attack, we propose to keep distorted versions of the biometric that preserves the
invariants of the biometric image. The details of this method is explained in Section 4.2. For the completeness
of the work, the correlation attack is given below.

3.1. Correlation attack

Scheirer et al. [5] proposed a class of attack called attack via record multiplicity. The attack assumes that the
attacker intercepts at least two fuzzy vaults that belong to the same user. Note that these vaults may be created
by different secret polynomials and different chaff points but the genuine points should highly overlap since they
are the minutia points of the same fingerprint. Scheirer claimed that correlating these two vaults may reveal
the biometric data (i.e. minutia points). Later, Kholmatov et al. [6] showed that by using this property of the
fuzzy vault scheme, it is possible to link an unknown vault to another vault that is constructed by the same
biometric in a reasonable amount of time with high probability. Kholmatov et al. [6] calculated that given two

matching vaults, the secret polynomial can be revealed 59% of the time. They also showed that for 41% of the
cases, they can link an unknown vault to a set of vaults that contains the matching vault. This attack can be
done in less than 8 minutes according to their tests.

Due to this reason, some additional security measures are necessary for a secure fuzzy vault scheme.
Recently Nandakumar et al. [7] implemented the fuzzy vault scheme by combining it with passwords. This
scheme successfully overcomes the vulnerability of the scheme against correlation attack with a slight increase
in the false reject rates. However, this system is a basically two factor authentication scheme where the user has
to provide both the password and the biometric during authentication and that may be inconvenient in certain
applications.

4. Preventing correlation attacks

In this section, we explain our framework that is based on distance preserving hash function families that can
be used to prevent the correlation attack. In our framework all vault points are hashed and the matching is

522

ÖRENCİK, PEDERSEN, SAVAŞ, KESKİNÖZ: Securing fuzzy vault schemes through biometric hashing,

performed on the hashed vault points. The utmost goal of our framework is to provide correlation resilience:

Definition 1 (Correlation Resilience) Let H be a family of hash-functions. Let an attacker have access
to a fuzzy vault v , and a database of N vaults where exactly one of them is created from the same biometric
information as v , and where all fuzzy vaults are created with the family of hash-functions H . The vault is
correlation resilient if the probability of the attacker can find the matching vault is

P [right] ≤ 1
N − 1

+ ψ,

where ψ is a security parameter.

We first define the requirements that a hash function should satisfy to be used in a secure fuzzy vault
scheme. We then propose a specific family of hash function which satisfies these requirements, and which
overcomes the vulnerability against correlation attack.

4.1. Requirements of the hash function

Due to the correlation attack against fuzzy vault, minutia points should be randomized. One well-known method
for randomization is encryption but this requires safeguarding of the private keys. When using encryption
anyone who can access the key (including a malicious server) can obtain the original fingerprint, and thus do
the matching.

The use of hash values of the minutia points, instead of the minutia points themselves is an efficient
randomization method since minutia points cannot be recovered from their hash values. Furthermore, this
method does not rely on the secrecy of a private key.

Any hash function that is used for biometrics should satisfy the following properties:

1. (Robustness) Verifying a legitimate user should be possible.

2. (Non-Linkability) It should be secure against correlation attack (i.e. it should not be possible to correlate

two vaults created from the same biometric data).

3. (Non-Invertability) It should not be possible to learn the original biometric from the hashed version of it.

In the rest of this paper the following notations will be used. We define a family of hash-functions

H = {h : Zq → Zp2} where q > p2 and represent the hash of a minutia point with h(x, y). The hashed vault

space is denoted as Z
2C
r where r is the smallest prime greater than p2 and there are C points in a vault with

area of r × r . The notation (x, y) and (x′, y′) is used to represent the original minutia coordinates of a vault

point (i.e. before taking the hash value). Mv(w) is a probabilistic function that aligns fuzzy vaults w and v ,
and returns the number of points matched. Matching is performed by using the algorithm explained in 2.3.

Definition 2 (Robustness) For all hash functions h ∈ H , and all points (x, y), (x′, y′) ∈ Zq .

‖(x, y) − (x′, y′)‖ < δ ⇒ ‖h(x, y) − h(x′, y′)‖ < δ (1)

523

Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

Intuitively, given two very close fingerprint images (i.e. one is the noisy version of the other one), the

hash function is robust if their hash values are also very close. In this work, we use Chebyshev distance [14] (also

called infinity norm distance) to measure the distance between two points in a vault which can be expressed
as the greatest of their differences along x and y coordinates. The Chebyshev distance between two vectors a
and b , with standard coordinates ai and bi , respectively, is:

‖a− b‖∞ = max
i

(|ai − bi|). (2)

To define the distance between two vectors in a finite field Zp2 we use a modified Chebyshev distance

which involves modulo operations.

‖a− b‖∞ = max
i

(|ai − bi|p), where

|ai − bi|p = min(|ai mod p − bi mod p|,
p − |ai mod p − bi mod p|)

Note that the modified Chebyshev distance satisfies all the distance axioms with the exception that,
‖a− b‖∞ = 0 if and only if a mod p = b mod p instead of a = b [15].

Robustness guarantees that the legitimate user can recover the secret from a hashed fuzzy vault. To
understand what is needed to protect against the correlation attack consider the following example. The attacker
is given two fuzzy vaults and is asked to guess weather they are made from the same fingerprint, or two different
fingerprints. Let Mv(v′) be the guess of the attacker, where Mv(v′) = 1 if he thinks that the two fuzzy vaults

are made from the same fingerprint, and Mv(v′) = 0 if he thinks that they are made from different fingerprints.

We say that the advantage of the attacker in matching the vaults is |P [Mv(v′) = 1] − P [Mv(w) = 1]| , where
w is a random fuzzy vault. If the advantage is 0, then the attacker cannot tell the matching vault from a
random vault. If the advantage is 1, the attacher will always be able to recognize a match. In general, we do
not restrict the attacker to binary match/no match functions, but to arbitrary functions (i.e. functions which

gives the confidence of two vaults matching). In the general case, as a measure of success for the attacker, we
use statistical distance instead of the simple advantage in the example above.

Definition 3 (Δ Non-Linkability) Let v, v′ ∈ Z
2C
r be two fuzzy-vaults created from the same fingerprint with

corresponding hash-functions h, h′ ∈ H , respectively, and let w be a random fuzzy-vault. Recall that Mv(w)
is a probabilistic function that aligns fuzzy vault w to vault v and returns the number of points matched. The

family of hash-functions H is Δ non-linkable if, for all probabilistic functions Mv : Z
2C
r × Z

2C
r → m, where

m ∈ {0, . . . , C} , the statistical distance between the probability distributions Mv(w) and Mv(v′) is less than Δ :

1
2

C∑
m=0

|P [Mv(w) = m] − P [Mv(v′) = m]| ≤ Δ. (3)

To prevent correlation attacks, a family of hash functions must be Δ non-linkable for some sufficiently
small value of Δ.

When designing a hash function for fuzzy-vaults, definition 3 requires that equation 3 is satisfied for all
possible matching algorithms. Proving this property for all possible matching algorithms may be infeasible. In

524

ÖRENCİK, PEDERSEN, SAVAŞ, KESKİNÖZ: Securing fuzzy vault schemes through biometric hashing,

this case, one may instead try to prove equation 3 for a “large enough” class of matching algorithms. In Section
4.2 we propose a hash function which satisfies equation 3 for a large class of matching algorithms. We also
argue why this class is a sufficient approximation to the full definition of Δ non-linkability.

For non-trivial Δ, a necessary property of a Δ non-linkable hash function is that the expected number of
pre-images of a hashed point is greater than 1—otherwise the unique pre-image of two hashed vaults could easily
be matched. This justifies our use of the term “hash-function.” Besides being necessary for non-linkability, hash
functions have the additional benefit of giving protection of the original fingerprint. To further guarantee this
protection we formally define non-invertability as follows.

Definition 4 (Non-Invertability) For all (x, y) ∈ Zp2 the pre-image of the hash value h(x, y) must not be
unique:

#{(x′, y′)‖h(x′, y′) = h(x, y)} ≥ 2. (4)

Intuitively, a hash function is non-invertible if, for any given hash value v = h(x, y), there is no unique
point in the pre-images of v .

4.2. A family hash functions for secure non-linkable fuzzy vaults

Projecting the coordinates of vault points to a residue class modulo a prime number is a very efficient operation,
and as shown in the following section, it satisfies all the three requirements explained in Section 4.1. In order
to increase the number of possible hash functions, instead of a single prime number, we use two prime numbers
for taking modulo. We define a family of hash functions H = {hp1,p2 : Zq → Zp1×p2}p1,p2<

√
q as

hp1,p2(x, y) =
(

x
y

)
mod(p1, p2), (5)

where we use the notation (x, y)T mod(p1, p2) = (x mod p1, y mod p2).

We usually omit the subscript of the hash function, when primes p1 and p2 are clear from the context.

In this work we choose the primes p1 and p2 between
√

q/2 and
√

q/3, since primes smaller than
√

q/3

produce relatively high FRR values while primes larger than
√

q/2 may cause unique pre-images for hash value

h(x, y), as shown in Theorem 3, and therefore do not satisfy the non-invertability property.

Note that the hash function as it is described in Equation 5 has a potential problem: for all x < p1

and y < p2 , h(x, y) = (x, y). This may make the hash-function linkable. To prevent this problem the minutia
points, i.e. genuine points, are rotated by a small random angle before applying the hash function as shown in
Equation 6. The same random rotation is applied to all minutia points in the vault:

h(xi, yi) = R(x, y)T mod(p1, p2), (6)

where R is a 2 × 2 rotation matrix that rotates the points in the (x, y) plane to add a small distortion
intentionally.

To prevent inversion, the rotation is not stored. Notice that the additional rotation is only necessary
in the enrollment phase, since the hashed fingerprint provided in the verification step will not be stored. The
distortion created by this rotation does not require any modification of the verification phase, since the matching
algorithm already tries to mitigate rotations due to the measurement process.

525

Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

Hashing chaff points together with the minutia points may introduce collusion between vault points since
two points (chaff or genuine) that are initially far apart, may be very close after hashing which will effect the
false accept and false reject rates. To reduce collusion, we first hash the genuine points and later add random
chaff points according to the method proposed in [1] such that x coordinates of the chaff points are at distance

at least t from xi -coordinates of any of n genuine points and they are at distance at least t′ from each other
where t′ > t .

The block diagram of the proposed fuzzy vault enrolling and verification scheme is shown in Figure 3 and
Figure 4.

����	����	��	���
��������	���

���������	

����	�

�����������
��		����$"%

&�������	�
����	�

�����	��������
���������	�

���������
������	���

&����
 ��	

�����	�������	���

Figure 3. Proposed Vault Enrolling.

����	����	��	���
��������	��� &�� ��������	

���������	
#����

&����
 ��	 �����	��

"���	�#����

!������

Figure 4. Proposed Vault Verification.

Note that the proposed verification is different from the original scheme only in the alignment phase,
where the proposed alignment phase first hashes the query points and then aligns them with the vault. Recall
that, in the alignment phase many rotations and translations are applied to the query vault to mitigate the
noise between two measurements as described in Section 2.3. The details of the alignment phase are given in
Algorithm 1.

526

ÖRENCİK, PEDERSEN, SAVAŞ, KESKİNÖZ: Securing fuzzy vault schemes through biometric hashing,

Algorithm 1 Algorithm of the alignment phase.
1: for all rotations and translations
2: Apply the rotation and translation to the query minutia points
3: Hash them with the public hash function
4: Compare the distance with Hashed Vault points
5: if #matched points is larger than maximum matched
6: Update maximum matched and keep this set of points
7: end if
8: end for

There are two very fundamental differences between password driven transformation methods and our
hash driven work in terms of utility and security. From the utility point of view, different from a password based
system [7], user does not need to remember or store a secret in our scheme. The hash function is randomly
generated during the enrollment phase and rotation used in the hash function is deleted after the hashing is
applied; it is not stored in any way. From the security point of view, if the password is compromised, the
fingerprint is also compromised. And it is very well known that the passwords do not provide adequate level of
security. However, in our proposed scheme, the parameters (the prime values used for modulo operation) are
public and no analysis can compromise the fingerprint. Moreover, storing password on a server compromises
security if the server is compromised.

4.3. Property analysis of the proposed hash function

A hash function should satisfy the three properties given in Section 4.1. We claim that the hash function we
proposed in Section 4.2 satisfies these properties.

Theorem 1 (Robustness) The proposed family of hash functions is robust (Definition 2).

Proof See Appendix A.1 for proof.

Ideally speaking, the proof for Δ non-linkability (Definition 3) has to work for all probabilistic functions

Mv : Z
2C
r × Z

2C
r → m . However, the following proof only covers minutia location based matchers such as the

one used in this work (we henceforth refer to this class of matchers as matchers’). Nevertheless, we are confident
that this is sufficient for the security of the scheme since all of the previous works on fingerprint verification,
use matchers either based on similarity between coordinates of minutia points [6] or similarity between relative

positions (angle and distance) of minutia points [16] where both of them are minutia location based matchers.

Before giving the proof of Δ non-linkability, we give two lemmas for the probability mass functions of
Mv : one for two random vaults, and one for two vaults that are created from the same biometric data. These
probability functions are necessary for the proof of Δ non-linkability.

For two hashed vaults made from distinct fingerprints (i.e. two random vaults), the probability that a

point from the query vault matches to a point in the enrolled vault is denoted pc where p1, p2 and p′1, p
′
2 are the

parameters of the hash functions for enrolled and query vaults respectively. We assume that matching of two
points are independent events since the point locations of vaults made from different fingerprints are mutually
independent and behave randomly.

527

Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

Lemma 1 Let two fuzzy vaults, v, w , made from distinct fingerprints be given, and let Mv(w) be the number
of matching points after applying a matcher, then

P [Mv(w) = x] = f(x; C, pc) =
(

C

x

)
(pc)

x (1 − pc)
C−x

, (7)

for x ≥ 0 and pc = C(2δ)2

max(p1p2,p′
1p′

2) .

Proof See Appendix A.2 for proof.

Lemma 2 Let two fuzzy vaults, v, v′ , made from identical fingerprints be given. Let Mv(v′) be the number of

matching points after applying a matcher and let A be the total minutia point area before hashing (e.g. q), then

P [Mv(v′) = x] = f(x; n, pg) =
(

C

x

)
(pg)

x (1 − pg)
C−x ,

where pg is the probability that a point from the query vault matches a point in the enrolled vault, when the

two hashed vaults are made from different measurements of the same fingerprint. Let us assume the worst case
where both hash functions use the same prime values in hashing (i.e. p1 = p′1, p2 = p′2):

pg = pc

(
1 − p1p2n

AC

)
+

p1p2n

AC
.

Proof See Appendix A.3 for proof.

Theorem 2 (Δ Non-Linkability) Assuming that matchers are the best possible matchers, the proposed fam-

ily of hash-functions is Δ Non-Linkable (Definition 3), for

Δ =
p1p2n(1 − pc)C−xpx

c

AC
∫ 1

0 tC−x−1(1 − t)xdt
, (8)

where p1, p2, pc, pg, n, A and C are as defined in Lemma 2 and x is the number which satisfies (pc)
x (1 − pc)

C−x =

(pg)
x (1 − pg)

C−x .

Proof See Appendix A.4 for proof.

Section 4.4 below, shows that Δ is small for the values of the parameters used in real life applications.

Theorem 3 (Non-Invertability) The proposed family of hash-functions is non-invertible (Definition 4).

Proof Recall that

h(x, y) = R
[

x
y

]
mod(p1, p2) (9)

Due to the modulus operation, for all y there exist at least
√

q/p1 ≥ 2 possible pre-images for x and similarly
√

q/p2 ≥ 2 possible pre-images y for fixed x .

528

ÖRENCİK, PEDERSEN, SAVAŞ, KESKİNÖZ: Securing fuzzy vault schemes through biometric hashing,

4.4. Security against correlation attack

The correlation attack suggested by Scheirer et al. [5] depends on identifying the genuine points that are
common in both vaults by matching the xi values in the two vaults as defined in Section 2.1. The matching
of the xi values in the two vaults is done by exhaustive search [6] where the matching algorithm tries many
possible rotations and translations and chooses the one that maximizes the number of matching points in the
two vaults.

In this section we address linking: given a set of fuzzy vaults and a fuzzy vault made from a fingerprint
which is present in the set, can an attacker find the matching fuzzy vaults? This is the attack by Scheirer et al.
[5].

Theorem 4 (Correlation Resilience) Let H be a family of hash-functions satisfying Definition 3. Further-
more, let an attacker have access to a fuzzy vault v , and a database of N vaults where exactly one of them is
created from the same biometric information with v , and where all fuzzy vaults are created with the family of
hash-functions H . The probability that the attacker correctly identifies the matching vault is

P [right] ≤ 1
N − 1

+ ψ.

Proof See Appendix A.5 for proof.

Assume that an attacker captures two fuzzy vaults (v, v′) that are created by using the same biometric
data but with different hash functions. Theorem 2 shows that it is not possible to link the two hashed vaults
created by our proposed hash function from the same biometric data but with different prime values, with a
confidence greater than Δ. For the vault size C = 250, threshold δ = 3 and primes 211 and 199 which is an
optimal case according to our tests, our theoretical Equation 10 gives pc = 0.214. For these values of C and
pc , ε = pg − pc is 0.013. With these parameters, Δ = 0.15 as defined in Theorem 2.

Let N be 2000 and vault size be 250, which are reasonable values for a real life application. The
probability of correctly guessing the matching vault with random guess is 0.0005 and the same probability with
the best possible linking-algorithm is less than 0.001. Since the confidence is sufficiently small and there is no
significant difference between a random guess and using the best possible linking algorithm, the vaults hashed
with the proposed hash function are secure against the correlation attack.

5. Test results

We implement polynomial reconstruction phase with both of two previously discussed approaches: 1) brute

force method and 2) RS decoding.

For the tests we use FVC2002-DB2 and our own database. FVC2002-DB2 is a public domain database
with 100 fingers and 8 fingerprint images for each finger. Only the first two impressions of each finger were
used in our experiments; the first impression was used as the template to encode the vault and the second
impression was used as the query in vault decoding. Our own database has 180 fingers where there are two
fingerprint images for each finger, for a total of 360 fingerprints. Similarly, the first 180 fingerprint images are
used for enrollment and the second 180 images are used for verification of the corresponding fingerprints. Later,
all fingerprints are cross-tested for false accept rates. In the experimental setting bitmap images of 500 × 500

529

Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

pixels are created for each fingerprint. We set w to 9 bits and the secret polynomial is defined in Zq[x] where

q = 262147 which is a 2w bit prime. The codes are developed in either MATLAB or C++ (Microsoft Visual

Studio), depending on the nature of the problem.

The alignment algorithm we use (Algorithm 1) does 12 translations in both x and y coordinates in
range −25 to +25 pixels from the origin of the fingerprint and also does 100 rotations around the origin of the
fingerprint. Note that since the number of rotations and translations are constant, the alignment algorithm is
a O(n) time algorithm where n is the number of minutia points in the query fingerprint.

We investigate mainly two issues; firstly, the effects of the vault sizes on the performance and security of
the fuzzy vault for cases with and without using hash functions, and secondly, matcher results demonstrating
that the correlation attack does not work when the proposed hash function is used.

5.1. Effects of vault sizes and usage of hash function

The false reject rates (FRR) and false accept rates (FAR) are calculated in four settings where different values
for vault size are used for our database of fingerprints. We use vault sizes of 250 and 300 points and fix the
degree of the polynomial used in vault encoding as 9. The minimum distance threshold between a genuine and
a chaff point (t) is fixed as 18 and minimum distance between any two chaff points is taken as 8. For the hash

function, we use primes 211 and 239 for the random modulus couples (p = (p1, p2)). Since the primes are both
8 bit values, q is the smallest 16 bit prime which is q = 65537. We calculate the FAR and FRR results for both
with hashing and without hashing.

The FAR rates is 0% in all settings after cross testing all fingerprint images with different fingers in both
databases.

Table 1. FRR of our work for different databases.

Vault Size
Hashing 250 300
Not Used 2.78% 3.89%

Used 5.55% 7.22%

(a) FRR for our Database

Vault Size
Hashing 250 300
Not Used 10% 14%

Used 13% 17%

(b) FRR for FVC2002-DB2

Table 2. FRR for FVC2002-DB2 in [7]

Polynomial degree
Password 8 10
Not Used 9% 14%

Used 12% 19%

Table 1(a) and Table 1(b) shows the FRRs for different vault sizes and usage of hash function and Table

2 shows the FRRs in the work of Nandakumar et al. [7] for the same database as in Table 1.2(b). The results
clearly demonstrate that as more chaff points are added to the vault, the possibility of a genuine point matching

530

ÖRENCİK, PEDERSEN, SAVAŞ, KESKİNÖZ: Securing fuzzy vault schemes through biometric hashing,

to a chaff point increases resulting in higher FRRs. However, larger vault size results in higher security against
brute force attack. The security impact of vault size was analyzed in [1]. Similarly, both for passwords [7] and
hash functions, when they are used, FRRs increases in a very similar way.

Another issue that requires investigation is the effect of hash usage in the timing of the verification
stage which determines the practicality of the system. The specific family of hash function family used in this
work allows fast computation of hash values of vault points since only single precision arithmetic operations
are needed, which are computed in a single clock cycle on vast majority of microprocessors. Furthermore,
the verification stage timing is dominated by the alignment stage in comparison with which hash computation
timing is negligible. To confirm this claim, we run the verification stage for 30 different fingerprints with two
different sets of hash parameters and found out that hash usage increases the verification timing by about
10% on average. In addition, the experiment reveals that the maximum increase in the timing is 13.3% while
the minimum is only 6.1%. The verification process can be performed sufficiently fast on either hardware or
software platforms, and therefore 10% increase in verification timing is negligible from the point of practical
usage.

5.2. Matcher results for correlation attack

As proven in Lemma 2, the expected number of points matched for two random vaults is almost equal to the
number of points matched for two vaults created from the same fingerprint with different hash functions. The
histograms of the number of points matched for both random vaults and matching vaults are presented in
Figure 5 and Figure 6, where the vault size is 250 and primes are 211 and 199.

'

(

)'

)(

*'

*(

+'

+(

,'

('����()�����(*����(+����(,�����((����(-�����(.����(/����(0����-'�����-)

1�����	����������	�

1�
��
��
��
��
��
��

Figure 5. Histogram for random vaults.

The histograms clearly shows that it is not possible to link two vaults with more than a very small
confidence since the distribution of the number of points is almost the same for matching vaults and random
vaults.

For the parameters used in this tests, our theoretical equation 10 gives pc = 0.214 and pg = is 0.227.
Our theoretical results show that mean value of the number of points matched when both vaults are chosen
randomly is Cpc = 53.5, which complies with our empirical tests shown in Figure 5. Similarly for the case when
two matching vaults are used, theoretical mean value is Cpg = 56.7, which also complies with our empirical
tests shown in Figure 6.

531

Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

'

(

)'

)(

*'

*(

+'

+(

,'

('����()�����(*����(+����(,�����((����(-�����(.����(/����(0����-'�����-)

1�����	����������	�

1�
��
��
��
��
��
�

Figure 6. Histogram for Matching Vaults.

6. Conclusion

In this work, we addressed several issues of the fuzzy vault scheme for biometric identification such as security,
performance, privacy and usability. We first provided a detailed guideline that explains the implementation
steps of secure and efficient fuzzy vaults for the particular case of fingerprints, using two methods: brute force
and Reed-Solomon (RS).

We proposed a modification to the fuzzy vault scheme in which a family of special hash functions is used
to preserve the distances between points in the fuzzy vault. According to the scheme, points in the vault (both

genuine and chaff points) are first hashed and then stored; a subsequent verification performs the matching in
the hash domain. Since the proposed hash function is not invertible, it is computationally infeasible to extract
the biometric and the secret polynomial embedded in the vault without presenting the biometric first.

We defined the properties that a family of hash functions should satisfy and gave intuitive explanations
of these properties. We then proposed a family of hash functions, and gave formal proofs that it satisfies these
definitions. We also presented the security analysis of the modified scheme which showed that the correlation
attack is inapplicable if a family of hash functions which satisfies the proposed definitions is used.

We implemented the proposed scheme for fingerprint biometric identification to investigate the perfor-
mance implications of the scheme on false accept and false reject rates. We observed that biometric identification
can efficiently be performed using hashed vault points and that the false accept rate is 0 for all cases. The pro-
posed scheme is observed to incur a slight degradation in false reject rate which is acceptable in identification
systems and less than other implementations in the literature.

While larger fuzzy vaults (i.e. those with more chaff points) improve the overall security, the adverse
affect of more chaff points on the false reject rate can be observed on the conventional fuzzy vault scheme as
well as on its hashed version. However, the brute force attack in [9] whose complexity depends on vault size can
recover only the hashed minutia points, and therefore the biometric remains secure even after the brute force
attack. Therefore, our framework provides additional security against the brute force attack as well without a
need for a very large vault.

As better algorithms for the verification stage, or alternative families of hash functions, can potentially
improve the false reject rate, we are confident that the proposed framework will be instrumental in making use
of the fuzzy vault scheme in a more secure way.

532

ÖRENCİK, PEDERSEN, SAVAŞ, KESKİNÖZ: Securing fuzzy vault schemes through biometric hashing,

Acknowledgments

This work is partially supported by TÜBİTAK (The Scientific and Technological Research Council of Turkey)

under project number 105E165. We would like to thank TÜBİTAK for the PhD. fellowship supports granted

to Cengiz Örencik. We also thank Berrin Yanıkoğlu and Alisher Kholmatov for bringing the problem to our
attention and their valuable support.

References

[1] C. Orencik, T. B. Pedersen, E. Savas and M. Keskinoz, Improved Fuzzy Vault Scheme for Fingerprint Verification,

in ICETE 2008, International Joint Conference on e-Business and Telecommunications SECRYPT.

[2] Juels and M. Sudan, Fuzzy Vault Scheme, in IEEE International Symposium on Information Theory, p 408, 2002.

[3] C. Clancy, N. Kiyavash and D. Lin, Secure Smartcard - Based Fingerprint Authentication, in ACM Workshop on

biometric methods and applications, (WBMA), 2003.

[4] U. Uludag, S. Pankanti and A. Jain, Fuzzy Vault for Fingerprints, in Proceeding of International Conference on

Audio- and Video-Based Biometric Person Authentication, pp. 310-319, 2005.

[5] W. J. Scheirer and T. E. Boult, Cracking Fuzzy Vaults and Biometric Encryption, in IEEE Biometrics Research

Symposium at the National Biometrics Consortium Conference, 2007.

[6] A. Kholmatov and B. Yanikoglu, Realization of Correlation Attack Against Fuzzy Vault, in Security, Forensics,

Steganography and Watermarking of Multimedia Contents X, Electronic Imaging, 2008.

[7] K. Nandakumar, A. Nagar and A. K. Jain, Hardening Fingerprint Fuzzy Vault using Password, in International

Conference on Biometrics, pp. 927-937, 2007.

[8] Ron M. Roth, Introduction to Coding Theory, Cambridge University Press, 2006.

[9] P. Mihailescu, The fuzzy vault for fingerprints is vulnerable to brute force attack, http://arxiv.org/abs/0708.2974v1,

2007.

[10] Kenneth H. Rosen, Elementary Number Theory and its applications, Pearson Addison Wesley, 2005.

[11] V. Guruswami and M. Sudan, Improved Decoding of Reed-Solomon and Algebraic-Geometric codes, in FOCS 1998,

Symposium on Foundations of Computer Science, 1998.

[12] M. Sudan, Decoding of Reed Solomon Codes Beyond the Error Correction Bound, in Journal of Complexity, pp.

180-193, 1997.

[13] Qiong Li, Zhaoqing Liu and Xiamu Niu, Analysis and Problems on Fuzzy Vault Scheme, in International Conference

on Intelligent Information Hiding and Multimedia, pp. 244-250, 2006.

[14] K. E. Atkinson, An Introduction to Numerical Analysis, John Willey & Sons, 1988.

[15] Wikipedia, Metric (mathematics) — Wikipedia, The Free Encyclopedia, 2009.

533

Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

[16] S. Yang and I. Verbauwhede, Automatic Secure Fingerprint Verification System based on Fuzzy Vault Scheme, in

Proceeding of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 609-612, 2005.

[17] K. Pearson, Tables of Incomplete Beta Functions, 2nd ed., Cambridge University Press, 1968.

APPENDIX

A. Proofs

A.1. Proof of Theorem 1:

Proof Assume (x, y) and (x′, y′) are two points where the Chebyshev distance between them is less than δ .

This implies that |x − x′| < δ and |y − y′| < δ . In particular, δ > |x − x′| ≥ min(|x mod p − x′ mod p|, p −
|x mod p − x′ mod p|) = |x− x′|p , and likewise δ > |y − y′|p . This gives the desired result:

‖h(x, y) − h(x′, y′)‖∞ = max(|x− x′|p, |y − y′|p) < δ

A.2. Proof of Lemma 1
Proof Recall that C is the total number of points in both vaults, and two points, one from each vault, is called
a match if the Chebyshev distance between them is less than δ . As illustrated in Figure 7, the vault points
are distributed in an area of size max(p1p2, p

′
1p

′
2) and a query point matches to a vault point if it is within a

2δ × 2δ area centered at the vault point. The probability that a random point in the query vault match to a
point in the enrolled vault is:

pc =
C(2δ)2

max(p1p2, p′1p
′
2)

. (10)

Figure 7. Hashed vault area and matching range.

The number of matching points has binomial distribution, since we assume that the matching of points
are independent events. Therefore, P [Mv(w) = x] can be calculated by the following equation:

P [Mv(w) = x] =
(

C

x

)
(pc)

x (1− pc)
C−x

,

534

ÖRENCİK, PEDERSEN, SAVAŞ, KESKİNÖZ: Securing fuzzy vault schemes through biometric hashing,

for x ≥ 0.

A.3. Proof of Lemma 2
Proof Recall that n is the number of genuine points in a vault, and that the hashed vault is created by a
random rotation followed by a modulo operation:

(x′
i, y

′
i) = h(xi, yi) = R(xi, yi)T mod(p1, p2).

In the alignment phase, the matcher finds the rotation R and the translation T , which gives the maximum
number of overlapping points in the two hashed vaults. Since p1 and p2 are in the range [

√
q/3,

√
q/2] , given a

minutia point (x, y) there are four equally likely cases for the rotation and translation which will map the hashed

minutia point h(x, y) back to the original point (x, y), where [R(xi, yi)T]x is the x coordinate of R(xi, yi)T

and similarly for y coordinate:

1. 0 ≤ [R(xi, yi)T]x < p1 and 0 ≤ [R(xi, yi)T]y < p2

⇒ (xi, yi)T = R−1(x′
i, y

′
i)

T .

2. p1 ≤ [R(xi, yi)T]x < 2p1 and 0 ≤ [R(xi, yi)T]y < p2

⇒ (xi, yi)T = R−1(x′
i, y

′
i)

T + R−1(p1, 0)T .

3. 0 ≤ [R(xi, yi)T]x < p1 and p2 ≤ [R(xi, yi)T]y < 2p2

⇒ (xi, yi)T = R−1(x′
i, y

′
i)

T + R−1(0, p2)T .

4. p1 ≤ [R(xi, yi)T]x < 2p1 and p2 ≤ [R(xi, yi)T]y < 2p2

⇒ (xi, yi)T = R−1(x′
i, y

′
i)

T + R−1(p1, p2)T .

As illustrated in Figure 8, there are other less probable cases, but since the matcher tries a large number
of rotations and translations and chooses the rotation and translation, which maximizes the number of points
matched, we assumed the worst case (best case for attacker) that matcher finds the rotation which falls in one
of the most possible four cases above.

Figure 8. Vault area before hashing and matching cases.

Let the best rotation R , and translation T be given. We divide the matching points into two sets: the
matching points which are “real matches” (the two points correspond to the same minutia point), and the set

535

Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

of points which are “false matches” (either one of the points is a chaff point, or they are both genuine points,

but correspond to different minutia points).

Notice that, to get a real match, the chosen rotation and translation will fall in one of the four cases

above. Assume the matcher finds the inverse rotation and translation for one of the four cases above (say jth

case), by first applying this rotation and translation, and then taking the modulo of a query point from the jth

case, it matches with the enrolled minutia point. However if the query point is not from the jth case, it requires
a different rotation translation pair than the one applied, so getting a real match is not possible.

Under the assumption that the vault points are uniformly distributed, only p1p2
A

of the points can be

under the same case. Therefore, for any rotation and translation only p1p2
A of the points can match and the

rest of the genuine points behave like chaff points.

Let P [chaff] denote the probability of a query vault point being a chaff point, P [match c] be the

probability that a chaff query point match to a point, P [genuine] denote the probability of a query vault

point being a genuine point, P [match g] be the probability that a genuine query point match to a point. Note
that it is not important whether the matched point is genuine or chaff. The total probability that a point from
the query vault match to a point in the enrolled vault is:

pg = P [chaff]P [match c] + P [genuine]P [match g]

=
C − n

C
pc +

n

C

(p1p2

A
+

(
1 − p1p2

A

)
pc

)

= pc

(
1 − n

C
+

n

C
− np1p2

AC

)
+

np1p2

AC

= pc

(
1 − np1p2

AC

)
+

np1p2

AC
,

P [Mv(v′) = x] = f(x; C, pg) =
(

C

x

)
(pg)

x (1− pg)
C−x

.

A.4. Proof of Theorem 2

Proof Let v, v′ be fuzzy vaults created from identical fingerprints, and let w be a fuzzy vault created from
a different fingerprint. The two probability distributions (Mv(w)) and (Mv(v′)) represents the number of

matched points obtained when a matcher is used to match w and v′ respectively to v .

Recall that due to Lemma 2, the probability that a point from v′ matches a point from v is

pg = pc

(
1 − p1p2n

AC

)
+

p1p2n

AC
.

Let

ε =
p1p2n

AC
(1 − pc),

then
pg = pc + ε.

536

ÖRENCİK, PEDERSEN, SAVAŞ, KESKİNÖZ: Securing fuzzy vault schemes through biometric hashing,

Let T be a constant integer, 0 ≤ p < 0.5, then

(p)x (1 − p)T−x = pT

(
1 − p

p

)T−x

is a monotonically decreasing function for x in the range x = 0 to x = T . Let f1 and f2 be two monotonically
decreasing functions in the range x = 0 to x = T where f1(0) > f2(0) and f1(T) < f2(T). Then there is a

unique value x where f1(x) = f2(x).

Under the assumption that pc, pc + ε < 0.5, there exists a unique value x where

(pc)
x (1 − pc)

C−x = (pc + ε)x (1 − pc − ε)C−x (11)

and
P [Mv(v′) = x] ≤ P [Mv(w) = x], for 0 ≤ x ≤ x,
P [Mv(v′) = x] > P [Mv(w) = x], for x < x ≤ C.

By splitting the sum of the statistical distance into these two cases, we get

1
2

(
C∑

x=0

|P [Mv(v′) = x]− P [Mv(w) = x]|
)

=
1
2

((P [Mv(w) ≤ x] − P [Mv(v′) ≤ x])) +

1
2

((P [Mv(v′) > x]− P [Mv(w) > x]))

=
1
2

(P [Mv(w) ≤ x] − P [Mv(v′) ≤ x]) +

1
2

((1 − P [Mv(v′) ≤ x]) − (1 − P [Mv(w) ≤ x]))

=
1
2
2 (P [Mv(w) ≤ x] − P [Mv(v′) ≤ x]) . (12)

From [17] we get that, for a binomially distributed random variable X ,

P [X ≤ k] = I1−p(C − k, k + 1) =

∫ 1−p

0
tC−k−1(1 − t)kdt∫ 1

0
tC−k−1(1 − t)kdt

.

Using this fact in Equation 12 gives us the relation

1
2

(
C∑

x=0

|P [Mv(v′) = x]− P [Mv(w) = x]|
)

= (P [Mv(w) ≤ x] − P [Mv(v′) ≤ x])

= I1−pc(C − x, x + 1) − I1−pc−ε(C − x, x + 1)

=

∫ 1−pc

1−pc−ε
tC−x−1(1 − t)xdt∫ 1

0
tC−x−1(1 − t)xdt

(13)

537

Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

Note that, since the derivative of (tC−x−1(1 − t)x) is positive,

∂

∂t
(tC−x−1(1 − t)x) = (C − x − 1)tC−x−2(1 − t)x

−xtC−x−1(1 − t)x−1 > 0;

for 1 − pc − ε ≤ t ≤ 1 − pc , the term (tC−x−1(1 − t)x) is monotonically increasing. We can thus upper bound

the integral with the interval length, ε , times the largest value:
∫ 1−pc

1−pc−ε
tC−x−1(1 − t)xdt ≤ ε(1 − pc)C−x−1px

c .

Thus

1
2

(
C∑

x=0

|P [Mv(v′) = x] − P [Mv(w) = x]|
)

≤ ε(1 − pc)C−x−1px
c∫ 1

0
tC−x−1(1 − t)xdt

. (14)

Setting Δ = ε(1−pc)
C−x−1px

c� 1
0 tC−x−1(1−t)xdt

, completes the proof.

A.5. Proof of Theorem 4:

Proof Let v′ denote the vault in the database which is created from the same fingerprint as v . Furthermore,
let match(x, y) be the best possible function an attacker can use to verify if the two vaults x and y match

(match(x, y) = 1 if the attacker thinks that x and y match, and 0 otherwise). With such a function the
attacker tries to match each of the N vaults in the database to the given fuzzy vault v . Of all the vaults that
match, the best the attacker can do is to pick one vault at random, and return it as his guess for the matching
vault. Note that, since function match(x, y) satisfies Definition 3,

1
2

1∑
i=0

|P [match(v, V ′) = i] − P [match(v, W) = i]| ≤ Δ

We assume that
P [match(v, V ′) = 1] ≥ 0.5 ≥ P [match(v, W) = 1], (15)

where V is a random variable representing fuzzy vaults created from the same fingerprint as the vault v , and
W represents random fuzzy vaults. If the assumption does not hold, then the function match performs worse
then a random guess.

Let ‘right’ denote the event of correctly guessing the matching vault, ‘In Set’ denote the event that the
matching vault is one of the vaults which pass the matching algorithm (e.g. the event match(v, v′) = 1) and
‘pick right’ denote the event that the attacker picks the correct vault from the reduced set. Then

P [right] = P [In Set]P [pick right|In Set]. (16)

From Definition 3 we have that Δ ≥ |P [match(v, V ′) = 1]−P [match(v, W) = 1]| , which, by Equation 15, gives

us P [match(v, V ′) = 1] ≤ Δ + P [match(v, W) = 1] . Note that the event ‘In Set’ is exactly the event that

538

ÖRENCİK, PEDERSEN, SAVAŞ, KESKİNÖZ: Securing fuzzy vault schemes through biometric hashing,

match(v, V ′) = 1, so

P [In Set] ≤ (P [match(v, W) = 1] + Δ) ≤ 0.5 + Δ. (17)

Putting Definition 3 and Equation 15 together also tells us that there are an expected (P [match(v, V ′) =

1]− Δ)(N − 1) ≥ (0.5−Δ)(N − 1) vaults wrongly selected as a possible candidate by the matching algorithm.
For the attacker, each of the elements in the candidate list is equally probable to be the correct vault, so
P [pick right|In Set] ≤ 1/((0.5− Δ)(N − 1) + 1). Therefore,

P [right] = P [In Set]P [pick right|In Set]

≤ (0.5 + Δ)
(0.5 − Δ)(N − 1) + 1

=
(0.5− Δ) + 2Δ

(0.5 − Δ)(N − 1) + 1

<
(0.5− Δ)

(0.5 − Δ)(N − 1)
+

2Δ
(0.5 − Δ)(N − 1) + 1

=
1

(N − 1)
+

2Δ
(0.5− Δ)(N − 1) + 1

.

Setting ψ = 2Δ
(0.5−Δ)(N−1)+1

completes the proof.

539

