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doi:10.3906/elk-0906-90

A Robust Method for State Estimation of Power System

with UPFC

Mehrdad Tarafdar HAGH, Mehdi Ahmadi JIRDEHI
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz-IRAN

e-mail: tarafdar@tabrizu.ac.ir, m-ahmadi@tabrizu.ac.ir

Abstract

This paper presents a Least Absolute Value (LAV) state estimator for power system using a new method

called Recursive Least Squares (RLS). Also, a suitable model is used for state estimation of power system

that includes a Unified Power Flow Controller (UPFC). The IEEE 14-bus test system is used to show the

validity of the proposed algorithm in estimation of power system states as well as the states of controllable

parameters of UPFC.
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1. Introduction

Due to the enlargement of interconnected electric power system and increasing the complexity of power system
structure, Energy Management System (EMS) is becoming more critical for modern power system [1–3]. State
estimation plays an important role in EMS and provides a reliable and consistent system data by processing
real time redundant telemetric and pseudo measurements. These measurements typically consist of bus voltage
magnitudes, active and reactive line flows and power injections. The Weighted Least Square (WLS) state

estimation has been widely used in the past for power system state estimation [4]. One criterion called the

Weighted Least Absolute Value (WLAV) is used to improve the robustness of state estimation [5]. The WLAV

estimator is able to reject the bad measurements as long as these are not leverage point method [6, 7]. Recently

the application of the Interior Point (IP) method for WLAV state estimation of the conventional power system

has been presented [8, 9]. Generally, the aim is good estimation of state variables of power system with little
error.

On the other hand, the Flexible AC Transmission System (FACTS) controllers are used increasingly in
many power systems, since they can control the utilization of the power transfer capability, as well as improving
the security and stability of power systems [10, 11]. However, very limited efforts have been made to study
the impact of FACTS controllers on power system state estimation. In order to estimate the state of a power
system containing FACTS controllers, an improved sequential method has been proposed in [12]. However,
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the constraints of these controllers are not considered. The state estimation problem is then solved by using a
solution method based on IP method by considering the constraints of power system and FACTS controller [13].
That will be responded by flat initial guess. Otherwise the inequality function would not be satisfied. Also, if
the control variables associated with the UPFC, initialized by flat guesses, it will lead to a singular coefficient
matrix. Hence, these variables are assigned very small but nonzero values.

In this paper, we propose a new method for solving the state estimation problem of power system
containing UPFC by formulating the problem as a LAV optimization. The RLS method is then used to solve
this problem. The estimator proposed in this paper is based on solving a sequence of L1 -regression problems
(i.e. linearised LAV problems). The RLS method is based on iteratively solving the set of equations that yields
the critical points of the L1 -regression problem.

This paper is organized as follows. The steady-state and power injection model of UPFC including its
operating constraints are given in section 2. In section 3 the LAV state estimator is introduced and in section
4, the proposed method for state estimation is presented. Also, variations in measurement matrix for power
system state estimation with UPFC are shown in section 5. The performance of the proposed state estimation
method is demonstrated by using the IEEE 14-bus test system, which has been modified by means of UPFC.
Simulation results for IEEE test system in section 6 are provided to illustrate the performance of the proposed
implementation. The results show that the estimated states using the proposed algorithm are very close to the
true values, i.e. the state variables of system and control variables of UPFC are estimated properly in this work.

2. Modeling of UPFC in state estimation

2.1. Steady state model of the UPFC

One of the many purposes of using a FACTS device is to reroute power flows by way of controlling the effective
impedance of a line, voltage magnitude of a chosen bus or the phase shift between two buses in the system.
Among the many different types of FACTS devices, this paper concentrates on the UPFC which is capable of
simultaneously controlling the voltage magnitude as well as the active and reactive power flows. The UPFC
converters are assumed lossless in this model. This implies that there is no absorption or generation of active
power by the two converters and the active power demanded by the series converter at its output is supplied
from the AC power system by the shunt converter via the common DC link. The DC link capacitors voltage,
Vdc remains constant. Hence, the active power supplied to the shunt converter Psh must be equal to the active
power demanded by the series converter Pse at the DC link. Then Psh and Pse must be constrained as

Pse + Psh = 0 (1)

This UPFC constraint should be included in the estimation equations.

Steady-state model of the UPFC including the transmission line is shown in Figure 1. This model consists

of one series voltage source V̂se in addition to one shunt voltage source V̂sh and their source impedances Ẑse

and Ẑsh , respectively.
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Figure 1. Steady-state model for the UPFC.

The quantities in Figure 1 are defined as follows:

V̂k and V̂m are the bus voltage phasors at bus k andm , respectively (Vk∠θk , Vm∠θm);

V̂sh and V̂se are the voltage phasors of the shunt and the series voltage sources, respectively;

Îsh and Îse are the current phasors of the shunt and the series voltage sources, respectively;

Ẑsh and Ẑse are the impedance of the shunt and the series voltage sources, respectively;

Ẑline is the impedance of transmission line;

Psh andPse are real the power of the shunt and the series voltage sources, respectively.

The current phasors of the shunt and the series voltage sources are:

Îsh =
(
V̂sh − V̂k

)
· Ŷsh (2)

Îse =
(
V̂k + V̂se − V̂m

)
· Ŷkm, (3)

where Ŷsh = 1
/

Ẑsh and Ŷkm = 1
/

Ẑkm . The apparent power flow through branch k − m and m − k can be

expressed as

Ŝkm = V̂kÎ∗km = Pkm + jQkm (4)

Ŝmk = V̂mÎ∗mk = Pmk + jQmk, (5)

where Îkm = Îse − Îsh and Îmk = −Îse . The apparent powers of the shunt and the series voltage sources are
given by

Ŝsh = V̂shÎ∗sh = Psh + jQsh (6)

Ŝse = V̂seÎ
∗
se = Pse + jQse. (7)

2.2. Power injection model of UPFC

The models of UPFC in power system can be classified into the categories: power injection model, voltage source
model and impedance model. Equations of the power injection model for the UPFC are taken from [14]. Power
injection model is a suitable model in state estimation because it is very simple in terms of implementation
in power system state estimation and can retain the structure of the original system [15]. Therefore, it is
convenient for implementation in existing power system state estimation program. Power injection model of
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UPFC consists of one controllable series injected voltage source and one controllable shunt injected current
source. The equivalent circuit of UPFC placed in the line between bus k and bus m is shown in Figure 2.
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Figure 2. UPFC equivalent circuit.

In Figure 2, Ykm = Gkm + jBkm is the line admittance. The controllable series injected voltage source

and controllable shunt injected current source are defined as V̂se = Vse∠θse and Îsh = V̂k−V̂sh

jXsh
= Ish∠θsh ,

respectively. Let ΔÎk and ΔÎm , denote the additional injection currents to the buses k and m, respectively by
using UPFC. Then

ΔÎk = −
(
Ykm + j bc

2

)
· V̂se + Îsh =

[
−

(
Ykm + j bc

2

)
· (Vse∠θse) + Ish∠θsh

]

ΔÎm = Ykm · V̂se = [Ykm · (Vse∠θse)]
(8)

Also, let ΔŜk = ΔPk + jΔQk and ΔŜm = ΔPm + jΔQm denote the additional injection power with UPFC to
buses k and m , respectively. Then

ΔŜk = V̂k · ΔÎ∗k = (Vk∠θk) ·
[
−

(
Ykm + j bc

2

)
· (Vse∠θse) + Ish∠θsh

]∗

ΔŜm = V̂m · ΔÎ∗m = (Vm∠θm) · [Ykm · (Vse∠θse)]
∗

(9)

Based on the above mentioned model, the power flow can be derived to the relations

ΔPk = [VkIsh cos (θk − θsh)] − VkVse

[
Gkm cos (θk − θse) +

(
Bkm + bc

2

)
sin (θk − θse)

]

ΔQk = [VkIsh sin (θk − θsh)]− VkVse

[
Gkm sin (θk − θse) −

(
Bkm + bc

2

)
cos (θk − θse)

]

ΔPm = VmVse [Gkm cos (θm − θse) + Bkm sin (θm − θse)]

ΔQm = VmVse [Gkm sin (θm − θse) − Bkm cos (θm − θse)]

(10)

Here, θK and θm stand for phase angle of phasors V̂k and V̂m , respectively. The UPFC power injection model
is shown in Figure 3.
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Figure 3. UPFC power injection model.
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3. LAV state estimator

The measurement set and the measurement errors are related by

Zi = hi(X) + ei, i = 1, ..., m, (11)

where, Zi is the i th component of the measurement vector Z (m × 1); hi(.) is the i th component of the vector

h (m × 1) of known non-linear functions; X is the State vector(n × 1) ; ei is the i th component of the error

vectore (m × 1) ; m is the number of measurements; n is the number of state variables.

The LAV state estimator calculates the state vectorX, by solving the following non-linear minimization

problem:

min
X

f (X) = min
X

m∑
i=1

|hi(X) − Zi| (12)

Given an estimate X
(k)
(k:iterationindex) , a better estimate of the system state is obtained by solving the problem

min
ΔX(k)

f
(
X(k) + ΔX(k)

)
= min

ΔX(k)

m∑
i=1

∣∣∣∣∣∣hi

(
X(k)

)
+

n∑
j=1

H(k)
ij ΔX

(k)
j − Zi

∣∣∣∣∣∣, (13)

where

H(k)
ij =

∂hi (X)
∂Xj

∣∣∣∣
(k)

. (14)

On solution of equation (13) via the RLS method, the new iteration is computed as

X(k+1) = X(K) + ΔX(k). (15)

This process is repeated until the following convergence criterion is met:
∥∥ΔX(k)

∥∥
1

1 +
∥∥X(k)

∥∥
1

≤ tolLAV , (16)

where ‖‖1 stands for the L1 norm.

The starting point is initialized by setting all bus voltage magnitudes to 1 p.u. and all bus voltage phase
angles to zero radians. The phase angle at the reference bus (slack bus) is fixed to zero radians during all

iterations (bus number one is chosen as the reference bus in our test system).

Note that the LAV estimator can be extended to the WLAV estimator by simply assigning different
weights to the measurement residuals in equation (12).

4. The proposed state estimation algorithm (RLS method)

The RLS iterative method is used to compute the solution of the equation (13). To simplify the notations, the

iteration superscript k in (13) is ignored and this equation is rewritten as

min
ΔX

f (ΔX) = min
ΔX

m∑
i=1

∣∣∣∣∣∣ri −
n∑

j=1

HijΔXj

∣∣∣∣∣∣, (17)

575



Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010

where ri is the residual of ith measurement and is defined as

ri = Zi − hi (X) . (18)

The RLS method finds the critical points of (17) by simply using elementary calculus. Hence, the critical points
are thus found as

∂f

∂Δxk
=

m∑
i=1

ri −
n∑

j=1
HijΔxj

∣∣∣∣∣ri −
n∑

j=1

HijΔxj

∣∣∣∣∣
(−Hik) = 0, k = 1, ..., n. (19)

If the notation

ei (ΔX) =

∣∣∣∣∣∣ri −
n∑

j=1

HijΔxj

∣∣∣∣∣∣ (20)

is introduced for the deviations, we can rewrite equation (19) as

m∑
i=1

Hikri

ei (ΔX)
=

m∑
i=1

n∑
j=1

HikHij

ei (ΔX)
ΔXj, k = 1, ..., n. (21)

Now, if EΔX (m × m) and r (m × 1)denote the diagonal matrix containing the elements of ei (ΔX) on the

diagonal and measurement residual vector containing the elements ofri , respectively, we can write equation (21)
in matrix form as

HT E−1
ΔXr = HT E−1

ΔXHΔX. (22)

Equation (22) can be rearranged by multiplying both sides by the inverse of HT E−1
ΔXH. So, we have

ΔX =
(
HT E−1

ΔXH
)−1

HT E−1
ΔXr. (23)

The iterations terminate when the following criterion is satisfied:

∥∥ΔX(k+1) − ΔX(k)
∥∥

1

1 +
∥∥ΔX(k)

∥∥
1

≤ tolRLS , (24)

where tol RLS is a small number that stands for the permissible error. The RLS algorithm is initialized by

setting ΔX(0) = 0.

The complete LAV algorithm which makes use of the RLS method to solve the state estimation problem
is presented as a flowchart in Figure 4. The flowchart shows two loops. In the outer loop, the jacobian matrix H
and the measurement residual vector r are computed and the RLS method is executed. The inner loop updates
the correction of the state vector ΔX according to inequality (24).
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Figure 4. Complete LAV algorithm employing the RLS method.

5. Measurement matrix for power system state estimation with

UPFC

In order to state estimation of a power system containing UPFC, the measurement equations for the nodal
injected powers of the UPFC buses should be modified as

P U
k = P ◦

k + ΔPk

QU
k = Q◦

k + ΔQk

P U
m = P ◦

m + ΔPm

QU
m = Q◦

m + ΔQm

(25)

Where, ΔPk , ΔQk , ΔPm and ΔQm are defined in equation (10); the superscript ”U” denotes the injected
power with UPFC; and the superscript “◦” denotes the injected power without UPFC. Other measurement
equations remain unchanged.
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The linearized system model based on Newton-Raphson algorithm, written in matrix form is

[
ΔP U

ΔQU

]
=

[
MU F U

GU NU

] [
Δθ
ΔV

]
. (26)

Δθ and ΔV are vectors of incremental changes in nodal voltages. M, F, G and N denote the basic elements
in the Jacobian matrix and correspond to partial derivatives of the real and the reactive powers with respect
to the phase angles and the magnitudes of the nodal voltages

M =
∂P

∂θ
, F =

∂P

∂V
, G =

∂Q

∂θ
, N =

∂Q

∂V
. (27)

The jacobian matrix for the nodal injected power from a UPFC located between bus k and bus m should
be modified. Based on equation (10), the following additional elements of the jacobian matrix owing to the
injections of the UPFC at bus k and bus m , between where the UPFC is installed, can be derived as follows
for bus k when :

MU
kk = M◦

kk + ΔMkk = ∂Pk

∂θk
+ ∂ΔPk

∂θk

F U
kk = F ◦

kk + ΔFkk = ∂Pk

∂Vk
+ ∂ΔPk

∂Vk

GU
kk = G◦

kk + ΔGkk = ∂Qk

∂θk
+ ∂ΔQk

∂θk

NU
kk = N◦

kk + ΔNkk = ∂Qk

∂Vk
+ ∂ΔQk

∂Vk

(28)

which can be rewritten as

MU
kk = M◦

kk − VkIsh sin (θk − θsh) + VkVse

[
Gkm sin (θk − θse) −

(
Bkm + bc

2

)
cos (θk − θse)

]

F U
kk = F ◦

kk + Ish cos (θk − θsh) − Vse

[
Gkm cos (θk − θse) +

(
Bkm + bc

2

)
sin (θk − θse)

]

GU
kk = G◦

kk + VkIsh cos (θk − θsh) − VkVse

[
Gkm cos (θk − θse) +

(
Bkm + bc

2

)
sin (θk − θse)

]

NU
kk = N◦

kk + Ish sin (θk − θsh) − Vse

[
Gkm sin (θk − θse) −

(
Bkm + bc

2

)
cos (θk − θse)

]

(29)

When k �= m ,

MU
km = M◦

km + ΔMkm = ∂Pk

∂θm
+ ∂ΔPk

∂θm
= M◦

km

F U
km = F ◦

km + ΔFkm = ∂Pk

∂Vm
+ ∂ΔPk

∂Vm
= F ◦

km

GU
km = G◦

km + ΔGkm = ∂Qk

∂θm
+ ∂ΔQk

∂θm
= G◦

km

NU
km = N◦

km + ΔNkm = ∂Qk

∂Vm
+ ∂ΔQk

∂Vm
= N◦

km

(30)

The elements in the jacobian matrix remain unchanged.
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Also, for bus m = k ,

MU
mm = M◦

mm + ΔMmm = ∂Pm

∂θm
+ ∂ΔPm

∂θm

F U
mm = F ◦

mm + ΔFmm = ∂Pm

∂Vm
+ ∂ΔPm

∂Vm

GU
mm = G◦

mm + ΔGmm = ∂Qm

∂θm
+ ∂ΔQm

∂θm

NU
mm = N◦

mm + ΔNmm = ∂Qm

∂Vm
+ ∂ΔQm

∂Vm

(31)

From which we can write following equations:

MU
mm = M◦

mm − VmVse [Gkm sin (θm − θse) − Bkm cos (θm − θse)]

F U
mm = F ◦

mm + Vse [Gkm cos (θm − θse) + Bkm sin (θm − θse)]

GU
mm = G◦

mm + VmVse [Gkm cos (θm − θse) + Bkm cos (θm − θse)]

NU
mm = N◦

mm + Vse [Gkm sin (θm − θse) − Bkm cos (θm − θse)]

(32)

When m �= k ,

MU
mk = M◦

mk + ΔMmk = ∂Pm

∂θk
+ ∂ΔPm

∂θk
= M◦

mk

F U
mk = F ◦

mk + ΔFmk = ∂Pm

∂Vk
+ ∂ΔPm

∂Vk
= F ◦

mk

GU
mk = G◦

mk + ΔGmk = ∂Qm

∂θk
+ ∂ΔQm

∂θk
= G◦

mk

NU
mk = N◦

mk + ΔNmk = ∂Qm

∂Vk
+ ∂ΔQm

∂Vk
= N◦

mk

(33)

6. Simulation results

In this section, a power system embedded with UPFC is used to test effectiveness of the LAV state estimation
algorithm under application of the proposed RLS method. The solution accuracy and computational efficiency
of the proposed method are verified by the test results and compared with those obtained from traditional state
estimation (WLS) method. The data for testing the modified state estimation are obtained using the results

from power flow analysis. For all simulations, the tolerance used to define convergence (i.e. LAV and RLS

convergence) is 10−4 .

The IEEE 14-bus system with a UPFC installed in the line 6-12 is shown in Figure 5.
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Figure 5. IEEE 14-bus system with UPFC (G denotes generators and C for synchronous condensers).

Also, measurements which are assumed to be available for this power system are listed in Table 1. The
measurement set consists of two voltages, 12 power injections and 32 flow measurements. Gaussian errors with
zero mean value are added to the measurements in all the simulations. It should be noted that there are enough
measurements to make the network and the UPFC parameters observable. The state estimation algorithm has
been developed using MATLAB software.

Table 1. Measurement data for the IEEE 14-bus system.

BUS VOLTAGE MEASUREMENTS
BUS VOLTAGE BUS VOLTAGE

1 1.0683 2 1.0448
3 1.0063 6 1.0725
8 1.0900

FLOW MEASUREMENTS
BRANCH P Q BRANCH P Q

1-2 1.5706 -0.1745 2-3 0.7399 0.0594
4-7 0.2756 -0.1400 6-11 0.0642 0.0825
6-12 0.1906 0.0226 7-8 0.0013 -0.2039
7-9 0.2800 0.1573 9-7 -0.2799 -0.1473
9-14 0.0808 0.0017 12-6 -0.1925 -0.0257
12-13 0.1206 0.0194 13-14 0.0694 0.0422

INJECTION MEASUREMENTS
BUS P Q BUS P Q

3 -0.9416 0.0101 5 -0.0963 -0.0508
6 -0.1188 -0.0404 8 -0.0017 0.2099
9 -0.2884 -0.1012 10 -0.0939 -0.0756
11 -0.0347 -0.0161 12 -0.0726 -0.0066
13 -0.1330 -0.0684

Table 2 shows the state estimation results with two state estimator, i.e. WLS traditional state estimator
and proposed LAV state estimator by applying the RLS method. From Table 2, it is noted that the proposed
method estimates state variables with more accuracy and little error in comparison with WLS method.
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Table 2. State estimation results.

Bus no.
True states WLS method Proposed method (RLS)

V (p.u.) θ (◦) V (p.u.) θ (◦) V (p.u.) θ (◦)
1 1.063 0 1.0621 0 1.0629 0
2 1.048 -4.961 1.0432 -4.957 1.0477 -4.9608
3 1.013 -12.744 1.010 -12.7503 1.0124 -12.7439
4 1.024 -10.511 1.0210 -10.523 1.0236 -10.5089
5 1.032 -9.1010 1.0298 -9.0961 1.0315 -9.1007
6 1.070 -15.205 1.0663 -15.1907 1.0693 -15.2011
7 1.054 -13.568 1.0510 -13.5769 1.0531 -13.5687
8 1.088 -13.584 1.0831 -13.5903 1.0863 -13.5815
9 1.038 -15.180 1.0365 -15.1792 1.0376 -15.1792
10 1.035 -15.458 1.0332 -15.4671 1.0359 -15.4565
11 1.049 -15.453 1.0433 -15.4601 1.0493 -15.4493
12 1.081 -14.454 1.0792 -14.4492 1.0799 -14.4490
13 1.053 -15.452 1.050 -15.4479 1.0537 -15.4479
14 1.028 -16.342 1.0212 -16.3538 1.0279 -16.3379

For better comparison, it is possible to examine the deviation of the estimated states from the true state
values. Normally, it is possible to use normalized error, NE, to assess the accuracy of the estimated state values
as follows:

NE =
‖xtrue − xestimated‖2

‖xtrue‖2

. (34)

The NE values which are obtained from the simulation results by applying the WLS and RLS methods are
shown in Table 3.

Table 3. NE values for state variables from WLS and RLS methods.

WLS method Proposed method
NEvoltages 0.0035 0.0008

NEphaseangles 0.0006 0.0002

As it is shown in Table 3, the proposed method gives less NE values in comparison with WLS method
and also it shows that the estimated states using the proposed method are more close to the true state values.
Furthermore, UPFC control variables in IEEE 14-bus system estimated by RLS method are shown in Table
4 and they are compared with UPFC control variables estimated by IP method [13]. This table shows that
Pse + Psh

∼= 0, so there is no real power exchange between UPFC and the power system.

Table 4. Estimated values for UPFC control variables in IEEE 14-bus system.

RLS method IP method [13]
UPFC control variables SERIES SOURCE SHUNT SOURCE SERIES SOURCE SHUNT SOURCE

V 0.0771 1.0905 0.077 1.090
θ (◦) 44.0199 -15.2127 44.08 -15.22
P 0.0056 -0.0055 0.0056 -0.0056
Q 0.0127 0.4388 0.0127 0.4378
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7. Conclusion

This paper presents a new approach for power system state estimation containing UPFC using the LAV criterion.
The proposed approach implements the LAV estimator using the RLS method. Based on the conventional power
system state estimation model, this paper uses the model of state estimation containing UPFC, called power
injection model. Simulations are carried out on IEEE 14-bus test system to illustrate the effectiveness of the
proposed state estimator. The simulation results indicate that the proposed method yields good estimation of
the power system states and UPFC control variables.
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