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Abstract

The direct discrete time control of Port Controlled Hamiltonian Systems (PCHS) in the sense of energy

shaping and damping injection is considered. In order to give a direct discrete time design method for PCHS,

firstly an appropriate discrete gradient is proposed, which enables the derivation of a discrete time equation

corresponding to the discrete time counterpart of Hamiltonian Systems. Using this proposed discrete-time

model, the discrete-time counterpart of Passivity Based Control (PBC) technique is developed for n-degrees-

of-freedom mechanical systems. The discrete-time control rules which correspond to the energy shaping and

damping assignment are obtained directly using the discrete time model of the desired system and the discrete

time model of the open loop systems. To illustrate the effectiveness of the proposed method, two non-separable

and under actuated examples are investigated and the simulation results are given.
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1. Introduction

The port-controlled Hamiltonian (PCH) approach has been versatile not only for modeling of physical systems

but also for control of a wide class of nonlinear systems [1, 2]. The PCH approach has been considered mostly
for nonlinear systems especially when the systems have electrical and mechanical sub-systems which have to
be considered together. Furthermore, the passivity-based control (PBC) is a powerful design technique for
stabilizing nonlinear systems and especially for set point regulation problem both in Euler-Lagrange systems
and PCH systems [3, 4].

In continuous-time context, the PBC design is completed in two-steps; first the energy shaping control
rule ues(t) is designed to assign the desired energy function as the total energy of the system, second, the

damping injection control rule udi(t) is designed to achieve asymptotic stability at desired equilibrium point,
which corresponds to an isolated and strict minimum of the desired energy function. One can find the details
of the design methodology in [5] and references therein.
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On the other hand, technological advancements in digital processors, the widespread use of computer
controlled systems in engineering practice are crucially in need of a theory to analysis and design sampled-data
systems and techniques to obtain discrete-time model of non-linear systems. A framework on the issue of the
stabilization of sampled-data non linear systems using their approximate discrete time models can be found in
[6].

In control literature, to the best of our knowledge, number of works utilizing the discrete-time models of
Hamiltonian systems for control applications are limited [7–9]. In these works, in order to obtain the discrete-
time model, Euler method is used and as mentioned by the authors, “the Euler model is not Hamiltonian-
conserving, but better preserves the Hamiltonian structure of the plant.”

In this study, a gradient based method for deriving a discrete-time counterpart of continuous Hamiltonian
systems is proposed and a stability analysis for both separable and non-separable case is done considering the
energy interactions. Later the discrete-time complement of PBC technique is developed for an n-degrees-
of-freedom mechanical system using this discrete-time counterpart of continuous Hamiltonian systems. The
discrete-time control rules ues(k) andudi(k), which correspond to the energy shaping and damping injection,
respectively, are derived directly using the discrete time model of the desired system and the discrete time model
of the open loop system.

To illustrate the effectiveness of the proposed method, two non-separable examples are investigated and
the simulation results are given. Throughout the this paper (for only the under-actuated case) it is assumed that
the desired continuous time closed loop system is known. One can find the method of the direct discrete time
controller design for fully actuated Hamiltonian systems in [10]. It should be mentioned that there are various
control laws obtained using different approaches based on Lyapunov theory, feedback linearization, sliding mode
control etc., aside from the passivity-based technique considered here, for the stabilization of the underactuated
systems in continuous time context. Since the many underactuated systems are not feedback linearizable [11],
the feedback controller design methods proposed in related literature are more complicated than passivity based
technique.

2. Prelimineries

Consider the continuous-time Hamiltonian systems given in standard coordinates,

[
q̇
ṗ

]
= J

[
∇qH(q, p)
∇pH(q, p)

]
+

[
0

G(q)

]
u

y(t) = GT (q)∇pH(q, p)

(1)

where (q, p) ∈ X ⊂ �2n is an 2n-dimensional manifold, y ∈ �m is system output, u ∈ �m is the control input,

G(q) ∈ �nxm is input force matrix and J is the standard skew-symmetric matrix, namely

J =
[

0 In

−In 0

]

The notation ∇(•)H is used to denote the gradient vector of a scalar function H(q, p) with respect to (.).

Furthermore, H : �2n → � is the Hamiltonian function of the system or the energy function of the system in
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the form

H(q, p) = K(q, p) + V (q) =
1
2
pT M−1(q)p + V (q) (2)

where V (q) and K(q, p) are potential and kinetic energy terms, respectively, andM(q) = M(q)T > 0 is the

generalized inertia matrix. If M(q) = M ∈ �nxn , i.e. a constant matrix, the system is called a separable
Hamiltonian system, and if m=n the system is said to be fully actuated.

In order to solve the stabilization problem for Hamiltonian systems the IDA-PBC design method was
developed by Ortega et al., [5]. The main idea in this method was to design a stabilizing controller which assigns
a desired energy function

Hd(q, p) = Kd(q, p) + Vd(q) =
1
2
pT M−1

d (q)p + Vd(q) (3)

which has an isolated equilibrium point (q∗, 0) of the closed system. It is easily observed that this problem
can be solved by assigning only desired potential energy function for fully actuated Hamiltonian systems. The
stabilization problem for Hamiltonian systems for the under actuated case is known as a challenging problem
since it needs the appropriate choice of the desired energy function and also assignment of a new interconnection
matrix. In literature, the desired system is considered as[

q̇
ṗ

]
= (Jd − Rd)

[
∇qHd

∇pHd

]
, Hd(q, p) =

1
2
pT Md(q)−1p + Vd(q) (4)

Jd =
[

0 M−1Md

−MdM−1 J2

]
, Rd =

[
0 0
0 GKvGT

]

where J2(q, p) = −JT
2 (q, p) , Rd(q, p) = RT

d (q, p),Kv = KT
v ≥ 0. The controller ues (t) is obtained as a

solution to the equation[
0 In

−In 0

] [
∇qH
∇pH

]
+

[
0

G(q)

]
ues =

[
0 M−1Md

−MdM−1 J2

] [
∇qHd

∇pHd

]
(5)

Note that for separable Hamiltonian systems, the parameter J2 can be set to zero [12]. In case the matrix G(q)

is full column rank, it should be constructed such that the Md (q) and Vd (q) holds the constraint

G⊥ {
∇qH − Md(q)M−1(q)∇qHd + J2(q, p)M−1

d (q)p
}

= 0 (6)

or the equivalent constraints

G⊥(q)
{
∇q(pT M−1(q)p) − Md(q)M−1(q)∇q(pT M−1

d p) + 2J2(q, p)M−1
d (q)p

}
= 0 (7)

G⊥(q)
{
∇V − Md(q)M−1(q)∇Vd

}
= 0, (8)

with G⊥ a full rank left annihilator of G . If the PDE s’ (7) and (8) are solvable, the energy shaping controller
is derived as

ues(t) = (GT G)−1GT
{
∇qH − Md(q)M−1(q)∇qHd + J2(q,p)∇pHd

}
(9)

Since the resulting closed loop system under this control rule is also a Hamiltonian system, the damping injection
control rule, which yields an asymptotically stable system is obtained as

udi(t) = −KvGT∇pHd , Kv > 0 (10)
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3. Main results

In this section, first a discrete-time counterpart of continuous Hamiltonian systems with input is derived using
the concept of the discrete gradient. To obtain this result, the discrete gradient definition given in [13, 14] and
restated below will be considered.

Definition 1 : Let H(x), be a differentiable scalar function in x ∈ �n ; then ∇̄H(xk+1, xk) is a discrete
gradient of H if it is continuous in x and,

∇̄TH(xk+1, xk) [xk+1 − xk] = H(xk+1) − H(xk)
∇̄H(xk, xk) = ∇H(xk)

(11)

where xk = k Δ t , xk+1 = (k + 1)Δ t = xk + Δ t. �
It should be noted that the main results of this study will be derived under the assumption that there

exists a discrete gradient, i.e. ∇̄H(xk+1, xk) , x = {q, p} ∈ �2n which satisfies the conditions in Definition 1,
exactly. A detailed stability discussion will be given later, considering the energy relation when the conditions
in Definition 1 are not precisely satisfied.

Approximating to derivatives of state variables (1) by Forward Euler with sampling period Ts

q̇ =
qk+1 − qk

Ts
, ṗ =

pk+1 − pk

Ts
(12)

and replacing the gradient term in (1) with the discrete gradient ∇̄H(xk+1, xk) , x = {q, p} ∈ �2n the gradient-

based discrete-time description of the system (1) can be obtained as follows

[
qk+1 − qk

pk+1 − pk

]
= Ts J

[
∇̄qH
∇̄pH

]
+ Ts

[
0

G(qk)

]
u, H(q, p) =

1
2
pT M(q)−1p + V (q). (13)

Furthermore, the similar expressions can also be obtained for the discrete-time description of the desired system
as [

qk+1 − qk

pk+1 − pk

]
= Ts(Jd − Rd)

[
∇̄qHd

∇̄pHd

]
, Hd(q, p) =

1
2
pT Md(q)−1p + Vd(q) (14)

Jd =
[

0 M−1Md

−MdM−1 J2

]
, Rd =

[
0 0
0 GKvG

T

]

If the right hand side of (13) is equated to the right hand side of (14), the discrete time control rule responsible
for energy shaping is obtained as follows in terms of discrete gradients,

ues (k) = (GT G)−1GT
{
∇̄qH − Md(qk)M−1(qk)∇̄qHd + J2(qk,pk) ∇̄pHd

}
(15)

and for the resulting closed-loop Hamiltonian system the damping injection control rule can be written as

udi (k) = −KvGT ∇̄pHd (16)

It should be noted that these discrete time control rules (15) and (16) have been derived under the assumption
that the desired continuous time closed loop system is given.
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In the sequel, the following discrete gradient definition that is inspired from the mean value theorem and
the first condition given in Definition 1 will be used.

Definition 2: Consider a differentiable function in x given as H(x) = 1/2xT Z(x)x and its gradient given

in the form of∇H(x) = Q(x)x , then the discrete gradient of a H(x) is defined as

∇̄H(x) = Q̂(xk+1, xk)
[
xk+1 + xk

2

]
(17)

where,

Q̂(xk+1, xk) = [Q(xk+1) + Q(xk)]/2 (18)

The discrete gradient definition given here which is based on midpoint is slightly different than the one introduced
by Gonzalez [13]. If Z(x) is constant matrix, then it can be easily shown that, the discrete gradient given in
Definition 2 exactly satisfies both of the conditions given in Definition 1. However, in general it does not satisfy
the first condition of Definition 1, precisely.

To give the stabilizability discussion for this approximate case, consider the continuous-time Hamiltonian
systems with dissipation and input

ẋ(t) = [J(x) − R(x)]∇H(x) + G(x)u(t) (19)

where x ∈ �n denotes the states, u ∈ �m is the control input of the system and J(x) = −JT (x) , R(x) =

RT (x) ≥ 0, whenR(x) > 0 , u(t) = 0, and H(x) has a local (global) strict minimum at x = x∗ ; then this system

has a local (global) asymptotically stable equilibrium at point x ∗ , and the following inequality holds [1]:

Ḣ(t) = ∇T H(x) [J(x) − R(x)]∇H(x) < 0 (20)

On the other hand, the analogy between continuous and discrete cases would give rise to a similar energy
relation as the one in (20) for the discrete case,

∇̄TH [xk+1 − xk] = Ts ∇̄T H(x) [J(xk) − R(xk)] ∇̄H(x) (21)

After some algebraic manipulations, the following energy relation is obtained for the discrete time description
of the Hamiltonian systems

H(xk+1) − H(xk)
Ts

= ∇̄T H [J(xk) − R(xk)] ∇̄H + ε(xk+1, xk) (22)

This relation implies that the discrete time system creates an extra energy or extra dissipation according to
the sign of ε(xk+1, xk) ∈ � . Obviously, for Ts → 0 this extra term tends to zero, i.e.ε(xk+1, xk) → 0. As a
consequence of the above analysis the following Remark can be given on the stabilizability property.

Remark : When the discrete gradient given in Definition 2 is used to derive the control rules given in
(15) and (16), to stabilize the sampled-data Hamiltonian system, the extra term does not effect stabilizability

condition if ε(xk+1, xk) < 0. On the other hand, if ε(xk+1, xk) > 0 the control rules should be designed

considering this fact, especially when slow sampling is used. As it can be obviously followed from (22), the
stabilizability condition of continuous Hamiltonian system under the discrete-time control rules remains same,
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i.e. stability can be achieved by adding an extra dissipation. Moreover, since u (t) = ues (t) + udi (t) given

with (9) and (10) is an Asymptotically Stabilizing (AS) controller in continuous time setting, the discrete time
control rules have the properties

lim
Ts→0

ues(kTs) → ues(t) , lim
Ts→0

udi(kTs) → udi(t)

Practically, AS property of the control rules given in (15) and (16) are guaranteed [6].

In order to obtain the discrete time control rules (15) and (16), we have to construct discrete gradient of

H(q, p). Recall that

H(q, p) = K(q, p) + V (q) =
1
2
pT M−1(q)p + V (q) (23)

and assume

∇H(q, p) =
[

Vgr(q) S(q, p)
0 M−1(q)

][
q
p

]
= Q(q, p)

[
q
p

]

S(q, p) =

⎡
⎢⎢⎢⎢⎢⎣

[
pT ∂ M−1(q)

∂ q1

]
[
pT ∂M−1(q)

∂ q2

]
[
pT ∂ M−1(q)

∂ qn

]

⎤
⎥⎥⎥⎥⎥⎦

(24)

in which the matrices Vgr(q) are described by the relation

∇V (q) = Vgr(q) q (25)

then the discrete gradient expression is obtained as

∇̄H(q, p) = Φ(k + 1, k)
[

qk+1 + qk

pk+1 + pk

]
(26)

where Φ(k + 1, k) = 1
4

(Q(qk, pk) + Q(qk+1, pk+1)).

Since the desired energy function also has same structure with (23), the corresponding expressions for
discrete-gradient of the desired energy function can be similarly obtained as

∇̄Hd(q, p) = Φd(k + 1, k)
[

qk+1 + qk

pk+1 + pk

]
(27)

where Φd(k + 1, k) = 1
4 (Qd(qk, pk) + Qd(qk+1, pk+1)) and ∇Hd(q, p) = Qd(q, p)

[
q
p

]

Therefore, the discrete-time control rules ues(k) andudi(k) given in (15) and (16), respectively, which
correspond to the energy shaping and damping injection respectively have been designed directly using the
discrete time model of the desired system and the discrete time model of the open loop systems.
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4. Examples

In the literature, there are various studies on IDA-PBC control method for under-actuated systems [12, 15–8].
In these studies, some classes of admissible desired systems for the considered Hamiltonian systems are given in
continuous time setting. In this paper, two well-known underactuated Hamiltonian systems —Cart Pendulum
and Ball and Beam systems—are considered in discrete time. In the examples to avoid non-causality, we employ
the approximations

∇̄H(qk+1, pk+1, qk, pk) ≈ ∇̄H(qk, pk, qk−1, pk−1)

∇̄Hd(qk+1, pk+1, qk, pk) ≈ ∇̄Hd(qk, pk, qk−1, pk−1)
(28)

for the discrete gradient. One has to consider that the computational complexity of the control rule using this
discrete gradient expression is nearly the same as the computational complexity of the emulation controller; this
property might provide an important advantage especially in industrial applications. Furthermore, it should be
emphasized that the emulation controller makes the closed loop system unstable in both examples for sampling
period that are used in direct discrete control rules proposed here.

Example 1: Pendulum on a Cart

The dynamic equation of the pendulum on a cart that is shown in Figure 1 are given as

M =
[

1 b cos(q1)
b cos(q1) c

]
, V (q) = a cos(q1) (29)

G = e2, a =
g

l
, b =

1
l
, c =

M + m

ml2

in [15], with n = 2, m = 1, where q1 is the pendulum angle with the upright vertical, q2 is the cart position, m

is the mass of the pendulum, l is the length of the pendulum, M is the mass of the cart and g is acceleration
due to gravity. The equilibrium to be stabilized is the upward position of the pendulum with the cart placed in
any desired position, which corresponds to q1∗ = 0and any arbitraryq2∗

As presented in main result section, the discrete-time energy shaping control rule and the damping
injection control rule have been obtained as

ues (k) = (GT G)−1GT
{
∇̄qH − Md(qk)M−1(qk)∇̄qHd + J2(qk,pk) ∇̄pHd

}
udi (k) = −KvGT ∇̄pHd

for the discrete gradient terms in these control rules, the expressions given in (26) and (27) are utilized. On the

other hand, the Hd(q, p) and J2(qk,pk) terms in these expressions are solutions of the continuous-time design

method described in [16], which will be explained briefly in the sequel. The construction of Md , Vd and Jd are
completed after a coordinate transformation and the relationships between the new coordinate system and the
original coordinate system are as in [15]:

T = M , S = ∇q (T p̃) , p = T (q) p̃

Md = T M̃dT
T , Vd = Ṽd

J2 (q, p) = T J̃2

(
q, T−1p

)
TT + S

(
q, T−1p

)
M−1T M̃dT

T − T M̃dTT M−1ST
(
q, T−1p

) (30)
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Figure 1. The cart and pendulum system modeled.

where T is the coordinate transformation matrix which is taken as T = M for this system and M̃d , Ṽd and J̃d

are the new design parameters in the new coordinates. When M̃d and J̃d are take the form

M̃d =
[

kb2

3 cos3 (q1) −kb
2 cos2 (q1)

−kb
2 cos2 (q1) k cos q1 + m0

22

]
, J̃2 =

(
p̃T M̃−1

d

[
α1 (q)
α2 (q)

] ) [
0 1
−1 0

]
(31)

with the free parameter m0
22 ≥ 0, then Md , Jd can be generated using (30). Here, the free functions α1(q)

and α2(q) are taken as in [16]:

α1 = −k2b3 cos4(q1) sin(q1)/12, α2 = k2b2 cos3(q1) sin(q1)/12 (32)

with the free parameter k > 0. Thus, the positivity of M̃d for q1 ∈ (−π/2, π/2) is guaranteed [15, 16].

Moreover, the desired potential energy function Ṽd is taken as in [15],

Ṽd =
3a

kb2 cos2 q1
+

Kp

2

[
q2 − q2∗ +

3
b

ln (sec q1 + tan q1) +
6m0

22

kb
tan q1

]2

(33)

with Kp > 0 arbitrary and q2∗ the cart position to be stabilized.

In simulations, the system parameters are taken as g = 9.81ms−2 , l = 1 m , M = 5 kg , m = 1 kg ,

and the discrete time controller design parameters are chosen as Kv = 0.5,Kp = 1.0, k = 0.1, m0
22 = 0.002.

The simulations are carried out for the sampling period Ts = 0.01s , the initial conditions (q(0), p(0)) =

(π/4, −0.1, 0.1, 0.5) and the desired cart position q2∗ = 20. The simulation results are presented in Figure 2
and 3 which illustrate time domain responses under the direct discrete-time control and the continuous-time
control together for comparison. The Figure 4 and the Figure 5 exhibit the control input versus time and phase
portrait of the system, respectively.
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Figure 2. A graph of cart position as a function of time. Figure 3. The pendulum angle as a function of time.

�		

��	

�		

�	

	


�	


�		


��	


�		
	 � �	 �� �	

������������

�
��

��
�!
�"
�#
� 

!

��

��������
����������

��

�	

��

�	

�

	


�

	��

����� ��

��
��
�
�


	�� 
	�� 
	�� 	 	�� 	�� 	�� 	��

��������

����������

Figure 4. Evolution of the amplitude of the discrete and

continuous control signals over time.

Figure 5. The phase diagram showing the evolution of

q1 and q2 .

Example 2: Ball and Beam

Let’s consider the ball and beam system that is shown in Figure 6 whose Hamiltonian model is defined
in [12] with

M =
[

1 0
0 L2 + q2

1

]
, V (q) = gq1 sin (q2) , G =

[
0 1

]T (34)

where q1 is the ball position, q2 the angle of the beam and L is the beam length.
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��

��

�

Figure 6. Diagram of the modeled ball and beam system.

The control objective is to stabilize the ball and beam in its rest position q1∗ = q2∗ = 0. To design the
discrete time controller, the desired continuous time system proposed in [12] will be used. The matrix Md and
Jd and the desired potential energy function Vd completely describe the closed loop dynamics, as follows:

Md =
(
L2 + q2

1

) [ √
2

L2+q2
1

1

1
√

2 (L2 + q2
1)

]
, J2 (q, p) =

[
0 j (p, q)

−j (p, q) 0

]

Vd (q) = g (1 − cos (q2)) + Φ (z (q))

(35)

where j = q1

(
p1 −

√
2

L2+q2
1
p2

)
, Φ (z) = Kp

2 z2 and z (q) Δ= q2 − arcsin h
(

q1
L

)/√
2.

In simulations, the discrete time controller design parameters are chosen as Kv = 50, Kp = 1.0, k = 0.1

for the system parameters g = 9.81ms−2 and L = 10 m . Figures 7–10 illustrate the results of the simulation
for the sampling period Ts = 0.01s , the initial conditions (q(0), p(0)) = (10.0, 0.0, 0.0, 0.0) and the desired ball
positionq1∗ = 0. The Figure 7 and 8 demonstrate the time domain responses under the discrete-time control
and the continuous-time control together for comparison of results. The control input versus time and the phase
portrait of the system are shown in the Figure 9 and the Figure 10, respectively.
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Figure 7. Evolution of the ball position as a function of

time.

Figure 8. Evolution of the beam angle as a function of

time.

922
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Figure 9. Evolution of the discrete and continuous con-

trol signals over time.

Figure 10. Phase diagram showing the evolution of q1

and q2 .

The simulation results given in this paper show that the discrete control rule generated via the method
proposed here can be used instead of the continuous control rule, since the closed loop systems under the discrete
control rule and the continuous control rule have almost same behavior as seen from Figures 2–4 of cart and
pendulum system and Figures 7–9 of ball and beam system. It should be pointed out that the emulations of
the continuous controllers have destabilized the system in both examples.

5. Conclusions

In order to design the direct discrete time control for the continuous Hamiltonian systems, a gradient based
method has been presented. Moreover, stability analysis of the proposed method is completed considering the
energy interactions. The discrete-time complement of PBC technique has been derived for n-DOF mechanical
system using this method. The discrete-time control rules which correspond to the energy shaping and damping
injection have been obtained directly using the discrete time model of the desired system and the discrete time
model of the open loop systems. It should be noted that the desired continuous time closed loop system is
known. One can find the method of the direct discrete time controller design for fully actuated Hamiltonian
systems in [10].

To analyze the effectiveness of the proposed method, two non-separable and underactuated examples are
considered and the simulations have been done. These results reveal that the direct discrete time controller
design method proposed in this study yields a good performance for sampled data Hamiltonian systems since
the emulation of the continuous controllers have destabilized the systems.
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