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Abstract

In this paper, we present a novel approach to strengthen Particle Swarm Optimization (PSO). PSO

is a population-based metaheuristic that takes advantage of individual memory and social cooperation in a

swarm. It has been applied to a variety of optimization problems because of its simplicity and fast convergence.

However, straightforward application of PSO suffers from premature convergence and lack of intensification

around the local best locations. To rectify these problems, we modify update procedure for the best particle in

the swarm and propose a simple and random moving strategy. We perform a Reduced Variable Neighborhood

Search (RVNS) based local search around the particle, as well. The resulting strengthened PSO (StPSO)

algorithm not only has superior exploration and exploitation mechanisms but also provides a dynamical

balance between them. Experimental analysis of StPSO is performed on continuous function optimization

problems and a discrete problem, Orienteering Problem. Its performance is quite robust and consistent for

all problem types; discrete or continuous, unimodal or multimodal. StPSO either reproduces the best known

solution or provides a competitive solution for each problem instance. So, it is a valuable tool producing

promising solutions for all problem types.

Key Words: Particle Swarm Optimization, Reduced Variable Neighborhood Search, continuous function

optimization, Orienteering Problem, premature convergence, local search.

1. Introduction

Metaheuristics are general frameworks commonly used for solving hard optimization problems. To examine
a search space systematically, they employ intelligent and powerful heuristic mechanisms for both exploration
and exploitation. Amongst several metaheuristics using various search philosophies, ones providing dynamic
balance between exploration and exploitation, usually deliver better performance. If exploration is the governing
feature of a metaheuristic, it may perform a vague examination on the search space and generally misses good
solutions. On the contrary, if exploitation is dominant, the entire search space may not be explored and
premature convergence to a local optimum is possible.
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Particle Swarm Optimization (PSO) is a metaheuristic introduced by Kennedy and Eberhart [1]. PSO
is inspired of the behaviors of social models like bird flocking or fish schooling and is based on individual
improvement and social cooperation. In PSO, a population of particles (swarm) flies over a multidimensional
search space representing candidate solutions. During their search journey determined by their current tendency,
personal experience and swarm’s experience, particles are expected to explore the whole search space and to
tend towards the optimal solution.

PSO is initially proposed for continuous nonlinear optimization problems. Later it becomes quite popular
and is applied to a wide range of optimization problems due to rapid swarm convergence and simplicity in its
conceptual features and implementation [2][3]. Although rapid convergence is a desirable advantage, it may

result in a severe premature convergence problem, as well [4][5]. The swarm may converge to a local solution
and may not escape from it to explore the search space thoroughly. Moreover, PSO has a shortcoming in finding
the best solution around a local neighborhood [6][7].

Several modifications on the standard PSO algorithm are proposed to rectify abovementioned drawbacks.
Most of these modifications concern only on either exploration or exploitation mechanism and merely correct the
deficiencies partially. They locate good solutions for some of the problem types but fail to produce competitive
results for others. For instance, while the methods concentrated on exploration mechanism improve the solution
quality for multimodal continuous function optimization problems, they typically generate inferior solutions for
unimodal problems.

In this paper, a Strengthened PSO (StPSO) algorithm with improved exploration and exploitation
mechanisms is proposed. In StPSO, the general flow of the PSO algorithm is preserved. However, among
the PSO iterations, the search strategy is temporarily modified only for the particle (the pioneering-particle)
which achieves or enhances the best solution. For the pioneering-particles, Reduced Variable Neighborhood
Search (RVNS) is employed. The solutions obtained by RVNS do not affect swarm’s experience in order to find
promising search areas afterwards and not to hinder exploration. To improve exploration further and to prevent
premature convergence, the pioneering-particles continue their search journey with random velocities and their
previous experience.

The primary advantage of StPSO is its applicability to many different types of optimization problems
with satisfactory performance. To support this claim, we experimented StPSO on both continuous and discrete
problems. Results for the continuous problems indicate that our approach improves the search capability of the
standard PSO algorithm. StPSO produces comparable solutions for both unimodal and multimodal functions
while other similar PSO variants deliver poor solutions for either unimodal or multimodal functions. Moreover,
our approach achieves the best known solutions for almost all instances of the Orienteering Problem (OP) which
is a discrete NP-hard problem.

Besides proposing a promising and valuable tool for solving different types of problems (continuous or

discrete / unimodal or multimodal) satisfactorily, there are two auxiliary contributions of this paper; Firstly,

we present the first successful PSO based algorithm for OP (preliminary results are presented in [8]). IS-PSO
which is derived from StPSO, reproduces the best known solutions for all benchmark problems. Secondly, we
propose that RVNS with dynamic neighborhoods is a good alternative for a subsidiary local search.

The remainder of this paper is organized in seven sections: Sections 2 and 3 explains the standard PSO
algorithm and its variants, respectively. Section 4 gives details of StPSO. Experimental problem sets and results
are given in Sections 5 and 6, respectively. Finally, Section 7 contains the discussion and concluding remarks.
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2. Particle swarm optimization

Particle Swarm Optimization (PSO) is a population-based method in which a swarm includes n individuals
called particles. Each particle has a d -dimensional position vector representing a candidate solution and a
d -dimensional velocity vector expressing the current tendency of the particle during its search journey. Initial
swarm can be constructed randomly or by using some predetermined values. At each step, the velocity of each
particle is re-evaluated based on the particle’s inertia as well as the social interaction (swarm’s experience) and
personal experience of the particle. The experience of each particle is usually captured by its local best position
(pbest). The experience of the swarm is captured by the global best position (gbest). In the course of several
iterations, particles make use of this experience and are supposed to move towards the optimum position.
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Figure 1. The pseudo-code of the standard PSO algorithm.

Pseudo-code of the standard PSO algorithm is illustrated in Figure 1. Optimization is achieved in the
course of several iterations of update-evaluate steps. During the update step (line 10) at iteration t , the velocity

and the position vector of each particle are calculated by using the equations (1) and (2). In these equations,

vt
i,j and pt

i,j are the velocity and the position values of the jth dimension (1 ≤ j ≤ d) of the ith particle

(1 ≤ i ≤ n) at iteration t , respectively. The parameters c1 and c2 are coefficients of learning factors, which
are the weights for contributions of personal experience and social interaction. The stochastic behavior of PSO
is achieved by random numbers rand 1 and rand 2 which are positive numbers generally uniformly distributed
in [0, 1].

vt
i,j = vt−1

i,j + c1rand1(pbest
t−1
i,j − pt−1

i,j ) + c2rand2(gbest
t−1
j − pt−1

i,j ) (1)

pt
i,j = pt−1

i,j + vt−1
i,j (2)

After the update step, the fitness function value is calculated (line 11) for each particle based on its position

(the candidate solution represented by the particle.) The local best position, pbest of each particle (line 12)

and the global best position, gbest of the swarm (line 13) are updated if the candidate solution is better than
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pbest or gbest, respectively. The stopping condition (line 14) of the update-evaluate iterations is usually the
attainment of a maximum number of iterations or a maximum number of iterations between two improvements.

3. Related works on PSO

Since PSO is introduced, it has been adapted to solve several optimization problems. Meanwhile some short-
comings in the standard PSO algorithm are observed for various problem domains and/or objective functions.
For example, for multimodal problems, the PSO algorithm is generally not able to perform exploration satis-
factorily because of premature convergence [4][9]. Solutions obtained using the standard PSO algorithm are
not satisfactory for unimodal problems where exploitation is important, as well. Since PSO is not guaran-
teed to converge to local optima [7], solutions are usually improved by using fine tuned local search methods

[6][10][11][12]. So, neither exploration nor exploitation mechanism in the standard PSO algorithm is adequate
for different problem types.

To improve search efficiency and rectify the deficiencies in the standard algorithm, researches proposed
several modifications to PSO. Some of these modifications are classified in Table 1. These modifications typically
attack to either exploration or exploitation weakness and applied to PSO internally or externally. Internal
modifications are moderate adjustments which do not change the heuristic approach in PSO but strengthen
them by introducing new components and/or parameters. We call major modifications which introduce new
heuristic methods in PSO as external. The heuristic methods are usually barrowed from other metaheuristics
that makes the algorithm hybrid.

Table 1. Summary of the literature.

Exploitation Exploration
Inertia weighted PSO [13] PSO with neighborhood topologies

[5][16][17] [18]
Internal Constriction PSO [14][37] Unified PSO [19]
Improvement Guaranteed Convergence PSO [7] Fully Informed PSO [20]

Fitness-distance ratio based PSO [15] Comprehensive Learning PSO [4]
External PSO with SA [21], PSO-ACO [11] Mutated PSO [22]
Improvement PSO with VNS [12], DEPSO [24], NMPSO [6] Variable Neighborhood PSO [26]

4. StPSO: Strengthened particle swarm optimization

Pseudo-code of the StPSO algorithm is illustrated in Figure 2. Main focus of our modifications is on pioneering-
particles which achieves or enhances the swarm’s experience. These particles are either converged or potentially
converged. They are processed in two steps: Firstly, an external local search is initiated for each pioneering-
particle (line 11). This step strengthens exploitation mechanism in PSO. Secondly, at the same iteration a
random velocity is assigned to each pioneering-particle in order to force the particle to continue exploration
(line 13). In this way, the exploration mechanism of PSO is improved and premature convergence is avoided.

4.1. Local Search: RVNS

Reduce Variable Neighborhood Search (RVNS) is employed in StPSO as a local search method. RVNS is a

variation of the Variable Neighborhood Search (VNS) which is initially introduced as an optimization method
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for combinatorial optimization problems [27]. In VNS, solution space is searched with a systematic change of
neighborhood. It has two main steps named LocalSearch and Shake. VNS becomes RVNS if LocalSearch step
is removed. RVNS is usually preferred as a general optimization method for problems where exhaustive local
search is expensive [28].
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Figure 2. The Strengthened PSO algorithm.

The pseudo-code of RVNS is given in Figure 3, where Nk (line 2) represents k th neighborhood structure

Nk (s) represents the set of solutions in the k th neighborhood of the solution s. Starting from a solution and

the first neighborhood (s and N1 , respectively), during each iteration of the inner loop, a random solutions s’

is selected from the current neighborhood (line 7). If s’ is better than s, it replaces s and the search continues

with the first neighborhood (line 8-10). Otherwise, the algorithm switches to the next neighborhood structure

(line 12). If all neighborhood structures are exhausted, the inner loop is initiated all over again starting from
the first neighborhood. The outer loop is repeated until a stopping condition is met. The maximum CPU time,
the maximum number of iterations or the maximum number of iterations between two improvements can be
used as a stopping condition.

Both the choice and the order of neighborhood structures are critical for the performance of the RVNS
algorithm. If neighbor hoods are large, the algorithm explores almost entire solution space quickly with big
jumps. On the other hand, narrow neighborhood sizes lead to small footsteps which in turn results in fast
exploitation ability. Generally, neighborhoods are ordered from the smallest to the largest.

In StPSO, RVNS may take advantage of the distance between the pioneering-particle and its closest
neighbor. At early stages of PSO, the neighborhoods are large since the neighbors of the pioneering-particle are
not very close by. So, RVNS helps in exploration. Later, as many particles in the swarm get attracted towards
better solutions, the neighborhood size tapers. At that point, RVNS performs a fine-tuned local search around
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the swarm’s experience. As a result, RVNS may support both exploration and exploitation mechanisms of PSO
by adjusting its behavior dynamically.

1 Procedure RVNS_LocalSearch(position p)
2 Define neighborhood structures Nk (k=1,...,kmax)
3 Use position of p as initial solution s
4 while stopping condition is not met do

5 k ← 1
6 while k ≤ kmax do
7 s ← Shake(s), s ∈ Nk(s)
8 if (Fitness( )<Fitness(s))

9   s ←
10   k ← 1
11  else
12 k ← k+1
13  end-while
14 end-while
15 End-Procedure

Figure 3. The RVNS algorithm.

In many studies, a local search is incorporated in the PSO algorithm. For example, a local search is
employed for all particles at each iteration in PSOwithSA and after every four iterations in DEPSO. In NM-
PSO, a local search is applied to one third of particles and in PSOwithVNS a local search is employed for only
the global best position at each iteration.

In PSOwithSA and DEPSO, Simulated Annealing and Differential Evaluation are the central search
method, respectively. PSO is only used to generate promising initial solutions. However, in StPSO, PSO is not
passive but actively improve the current best solution, and RVNS is employed for faster local search. Moreover,
application of local search to all particle positions at each iteration is a very expensive approach for larger size
problems.

In order to decrease local search cost, in PSOwithVNS, the local search (VNS) is employed only for the
global best position at each iteration. However, VNS is applied several times to the same position if the global
best does not change through iterations. The possibility of PSO to change the global best position is very low
since PSO has to produce better solution than a solution generated by a detailed local search method. Thus,
VNS is the dominant part in PSOwithVNS, as well. On the other hand, in StPSO, the local search (RVNS)
is applied to the pioneering-particles which achieve or enhance the global best. At an iteration, there may be
several pioneering-particles or none. So, the local search is employed moderately when it is necessary. Moreover,
the result of RVNS affects only the pioneering-particle’s own experience and position and does not affect the
global best solution. In this way, dissemination of knowledge about a good position within the swarm slows
down. For any particle, the possibility of being a pioneering-particle during subsequent PSO iterations is not
decreased.

4.2. Random moving strategy

In the second part of our modifications, a separate velocity update procedure is applied to the pioneering-
particles. A random velocity vector which is uniformly distributed within the interval [-Vmax ,Vmin ] is assigned
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to the particle. Note that, the position and the local experience of each pioneering-particle are just updated
after the local search. During the same iteration, the position of the particle is recalculated using its new
velocity. The experience of the particle and swarm’s experience are updated based on the new position, as well,
but it is not very likely. In this way, instead of possible convergence, the particle jumps to a completely different
solution and continue its search with its past experience.

Various random moving strategies are employed to prevent premature convergence in previous studies.
In GCPSO, a random velocity term is appended into the velocity update formula. This new formula is used
only for the global best particle. Similarly in DEPSO, random positions in the neighborhood of the global best
position are assigned to some particles based on their local experience. In these algorithms, random moving
strategies only perturb the particles but do not move them far away. So, random moving strategy enhances
the exploitation mechanisms in GCPSO and DEPSO. On the other hand, it is used to improve the exploration
mechanism in StPSO as in VNPSO.

In VNPSO, random moving strategy is applied to awake “lazy” particles. Lazy particles are determined
by a predefined threshold velocity value and in one iteration all lazy particles are relocated to random places.
Although two level thresholds are used, it is still predetermined. However, in StPSO, the pioneering-particles
are determined dynamically disregarding the velocity values.

To summarize, external local search (first modification) in StPSO improves exploitation mechanism and

velocity re-initialization (second modification) improves exploration mechanism in the standard PSO algorithm.
Two modifications together make PSO strengthened. Moreover, StPSO provides a dynamic balance between
exploration and exploitation which is essential to obtain enhanced solutions for many optimization problems.

5. Test problems

We experimented StPSO on both continuous and discrete problems to demonstrate its applicability to various
problem domains.

5.1. Continuous function optimization problems

Six continuous benchmark functions which have been used in various PSO studies are experimented. They are
categorized into two groups: unimodal (f1 and f2) and multimodal (f3 – f6). The optimum of all problems is
located at the origin. All functions with their properties are presented in Table 2.

5.1.1. Problem representation

Position vector of a particle directly represents the solution of the function optimization problems. The fitness
value of a particle is obtained by applying the function to its position vector.

5.1.2. RVNS neighborhood structures

For the function optimization problems, d -dimensional balls are used as neighborhood structures. Neighbor-
hoods are determined dynamically by using a method similar to local search area determination in [29] . The

distance ( l) between the position of the pioneering-particle and the nearest particle in the swarm is used in the

1101



Turk J Elec Eng & Comp Sci, Vol.18, No.6, 2010

calculation of the neighborhood radius. For the first neighborhood structure, the distance is multiplied by a
low quotient (q1) in order to search around closed by neighborhood. The radius of the second neighborhood

is calculated by multiplying the distance by a high quotient (q2) so, a larger neighborhood is examined. The
quotients, q1 and q2 are two additional parameters of our method which are determined through experimental
evaluation.

Table 2. Benchmark functions for continuous optimization.

Name Formula Number of Search
Dimensions Domain

Sphere (f1) f(x) =
d∑

i=1

x2
i 30 [-100,100]d

Rosenbrock (f2) f(x) =
d−1∑
i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2) 30 [-30,30]d

Griewank (f3) f(x) = 1
4000

d∑
i=1

x2
i −

d∏
i=1

cos( xi√
i
) + 1 30 [-600,600]d

Rastrigin (f4) f(x) =
d∑

i=1

(x2
i − 10 cos(2πxi) + 10) 30 [-5.12,5.12]d

Schwefel (f5) f(x) = 418.9829d+
d∑

i=1

xi sin(
√

|xi|) 30 [-500,500]d

Ackley (f6)
f(x) = −20 exp(−0.2

√
1
n

d∑
i=1

x2
i )−

exp( 1
n

d∑
i=1

cos(2πxi)) + 20 + e

30 [-30,30]d

5.2. Orienteering problem

The Orienteering Problem (OP) is a subset selection version of the well-known Traveling Salesman Problem
with profits. The objective of the Orienteering Problem is to construct a path beginning at a starting point and
ending at a destination point that maximizes the total profit without violating prescribed limits. The problem
is inspired from and named after an outdoor sport usually played on mountains or forest areas. OP is used to
model many practical problems such as inventory routing, postal delivery, customer or vehicle assignment and
production scheduling.

The Orienteering Problem can be described in detail as follows: Let G = (X , E) be a graph where X

denotes the set of control points and E denotes the set of edges between the nodes in X . Each node xi in X

(0≤ i ≤ d+1) has a score and the scores of x0 (the starting point) and xd+1 (the destination point) are zero.
Each edge between x i and xj has a cost associated with it. The objective of OP is to find an acyclic path from

x0 to xd+1 that maximizes the total score of the nodes on the path without violating a cost constraint (e.g.,

the total cost of the edges on the path should be less than a specified limit, Tmax) Because of this limitation,

the path does not necessarily visit all control points. Golden et al. prove that OP is in NP-hard [30]. The

mathematical model of OP can be found in [31].

Several metaheuristic including genetic algorithm [32], ant colony [33], and variable neighborhood search

[34] are used to solve OP. A comprehensive survey of methods used for OP is presented in [34]. The algorithms

are tested for 63 benchmark problems: Problems with 32 (dataset1 includes 16 problems) 21 (dataset2 includes
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11 problems), 33 (dataset3 includes 20 problems) control points are provided by Tsiligirides [35] and problems

with 32 (dataset 4 includes 16 problems) control points are provided by Chao [36].

5.2.1. Problem Representation

Since PSO is developed for continuous problems, some adaptations are required for discrete problems. There are
two popular approaches: One is to incorporate and extra conversion process to transform a continuous position
vector to the corresponding permutation vector. In this way, all operators and components of the standard
PSO remain unchanged. The algorithm always switches between two different search domains, continuous
search space and discrete solution space. The second approach is to convert all operators and components of
the PSO in order to perform discrete processing. Although, there is a consistency between solution space and
algorithm’s search domain, the adaptation is more challenging (several operators and components should be

redefined)

We employ the first approach; the position of each particle is a d -dimensional vector. The continuous
position vector transformed to a permutation vector in order to find OP solution. We use the smallest position
value (SPV) rule [12] for this transformation. The SPV rule works as follows: Assume that pi is the value at
index i in the position vector. After sorting the values in the position vector, the index of pi becomes j . In
the permutation represented by the position vector, the value at the index i is j. An example of the SPV rule
is given in Figure 4.
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����� � � 	 


����� ��
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����������� ������ 	 
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Figure 4. An example of the smallest position value (SPV) rule.

By the nature of OP, a candidate solution may not include all the control points. So, the permutation
vector is not used as a candidate solution directly. The solution is obtained by using the permutation vector as
follows: Starting from the first control point in the permutation vector, the control points are inserted between
the starting point and the destination point, one by one, until the prescribed cost limit is exceeded.

5.2.2. RVNS neighborhood structures

For the Orienteering Problem, Insert and Exchange neighborhood structures are used in the RVNS algorithm.
These structures can be implemented easily on permutation based solutions. Insert neighborhood performs an
insertion of a control point chosen randomly from the permutation in front of another randomly chosen control
point. Exchange is used to explore new solutions in a little further vicinity of a solution. In this neighborhood,
two randomly selected control points are swapped.
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6. Experimental results

To observe effects of the proposed modifications, we perform experimental analysis on StPSO and its two sub-
variants. One sub-variant which only assigns a random velocity to the pioneering-particle without performing the
local search is called as Diversification Strengthened PSO (DS-PSO). Particles in DS-PSO tend to perform more
exploration than exploitation since they are not allowed to stay around good positions. The other sub-variant
which conducts only RVNS for pioneering-particles is called as Intensification Strengthened PSO (IS-PSO).

Experiments are performed on an Intel P4 2.8 GHz PC with 1 GB of memory. All PSO and RVNS
parameters and their values are listed in Table 3. The GBEST model is used in which all particles are considered
to find global best value in the swarm. Number of replication is 10 for OP and 30 for the function optimization
problems. For both types of problems, initial positions are generated randomly using uniform distribution in
search domain. During the search process, neither position nor velocity vectors are allowed to get value outside
of their range. If the calculated value is out of the range, a random value is used.

Table 3. Parameter settings for StPSO.

PSO Function Optimization Problems  Orienteering Problem 

Swarm Size 40 20 

      Stopping Condition  
     (function evaluation) 

200,000 100,000 

w 0.9-0.4 0.9-0.4 

c1-c2 
c1=c2 f1 f2 f3 f4 f5 f6 

IwPSO 2.0 2.0 2.0 2.0 2.0 2.0 

The others 1.1 1.1 1.1 2.0 2.0 2.0  

2.0 

Velocity range 
Rastrigin:[-0.5,+0.5] 
The others:[-4,+4] ,  

[-d,+d] 

Position range refer to Table 2 [-d,+d] 

RVNS Function Optimization  Orienteering Problem 

# of Neighborhoods  2 2 

d-dim. balls with ( lq ×1 ) where q1=0.2 Insert        Neighborhood 
       Structures d-dim. balls with ( lq ×2 ) where q2=0.5 Exchange 

Stopping Condition 5×d iteration or 30 times  
back-to-back no improvements dd × iteration 

We report our experimental analysis for OP and the continuous optimization problems in two parts. In
the first part, the aim is to present effects of the proposed modifications over a standard PSO variant, inertia
weighted PSO (IwPSO). The analysis is performed based on the number of fitness function evaluations (Eval.),

the time spent (CPU) until the best solution is found and the quality of the best solution (Fitness). The results

are presented for the repetition yielding the best solution (Best), for the repetition yielding the worst solution

(Worst), for the repetition yielding the median solution (Median) and averaged over all repetitions (Mean). In
the second part, we compare our results with the results in several previous studies.
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6.1. Results for continuous function optimization problems

The performance comparison of our algorithms with IwPSO is presented in Tables 4, 5 and Figures 5, 6.
The graphs in the figures illustrate the convergence behavior of Median. The results for unimodal function
optimization problems (see Table 4) indicate the impact of exploitation mechanism in our algorithm. Since the

algorithms (IwPSO, IS-PSO, and StPSO) except DS-PSO have inherited or imported exploitation mechanisms,
their results are better than DS-PSO for Spherical. IS-PSO with its strengthened exploitation mechanism
achieves faster improvement (check the CPU times) and enhances average results of IwPSO almost 200 order
of magnitude for Spherical. It takes less time to terminate since a local search is substantially faster in search
operation than a PSO algorithm. For Rosenbrock, IS-PSO produces the best fitness in Best category; however
StPSO outperforms IS-PSO based on other performance measures. The dynamic balance between exploration
and exploitation pays off for Rosenbrock. Effects of the premature convergence problem are not observed (see

Figure 5).

Table 4. Performance of IwPSO, IS-PSO, DS-PSO and St-PSO for 30-D unimodal problems.

IwPSO IS-PSO DS-PSO StPSO
Fitness Eval. CPU Fitness Eval. CPU Fitness Eval. CPU Fitness Eval. CPU

Mean 7.93E-102 199,993.1 100.68 2.14E-322 199,610.2 61.83 1.68E-41 199,954.7 100.30 5.44E-194 199,725.8 72.94
Best 1.24E-107 199,960.0 98.52 0.00E+00 197,921.0 60.61 5.92E-44 199,760.0 99.63 1.87E-217 198,846.0 70.55

Median 3.44E-104 200,000.0 99.75 1.01E-323 199,736.0 61.51 4.80E-42 199,960.0 99.72 1.19E-206 199,792.0 72.64
Worst 1.55E-100 200,000.0 101.75 5.42E-321 200,000.0 64.19 1.65E-40 200,000.0 103.77 1.41E-192 200,000.0 81.56
Std dv. 2.91E-101 15.38 2.22 ∼ 0.00E+00 520.8 0.95 3.57E-41 61.0 1.18 ∼ 0.00E+00 297.8 2.10
a) Spherical Function

IwPSO IS-PSO DS-PSO StPSO
Fitness Eval. CPU Fitness Eval. CPU Fitness Eval. CPU Fitness Eval. CPU

Mean 2.75E+01 164,038.7 80.31 6.69E+00 199,999.5 59.40 1.12E+01 200,000.0 102.59 7.90E-01 200,000.0 26.41
Best 3.52E-03 99,000.0 48.36 2.79E-13 199,985.0 54.19 1.19E-02 200,000.0 99.60 7.54E-05 200,000.0 23.28

Median 2.13E+01 165,100.0 80.66 8.30E+00 200,000.0 59.66 1.08E+01 200,000.0 101.04 1.86E-01 200,000.0 26.42
Worst 7.69E+01 200,000.0 98.35 1.32E+01 200,000.0 64.88 5.74E+01 200,000.0 103.88 4.12E+00 200,000.0 33.31
Std dv. 2.41E+01 31,955.5 15.62 4.50E+00 2.7 2.84 1.06E+01 0.0 3.97 1.49E+00 0.0 2.04
b) Rosenbrock Function
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Figure 5. Change in median fitness value (logarithmic scale) of the IwPSO, IS-PSO, DS-PSO and StPSO for unimodal

function optimization problems over 200.000 function evaluations (FEC: Function Evaluation Count).

Results for the multimodal functions are illustrated in Table 5 and Figure 6. The results support the
hypothesis that IwPSO has a premature convergence problem for multimodal functions. For most of the
repetitions, the IwPSO converges and provides almost no improvement after the first 50,000-60,000 evaluations.
We attack to this problem by our modifications. Both DS-PSO and StPSO do not have such a problem, they
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continue to produce better solutions until the termination at 200,000 function evaluations. Moreover, they
perform better than IwPSO for almost all performance measures.

Table 5 Performance of IwPSO, IS-PSO, DS-PSO and St-PSO for 30-D multimodal problems.

IwPSO IS-PSO DS-PSO StPSO
Fitness Eval. CPU Fitness Eval. CPU Fitness Eval. CPU Fitness Eval. CPU

Mean 5.63E-02 64,754.7 32.69 9.27E-03 26,161.2 5.58 1.24E-02 88,153.3 44.65 1.15E-02 82,993.4 15.54
Best 0.00E+00 38,880.0 19.27 1.11E-16 13,842.0 3.99 0.00E+00 59,240.0 30.02 0.00E+00 27,421.0 4.94

Median 2.22E-02 48,840.0 24.39 7.40E-03 14,687.0 4.54 7.40E-03 72,200.0 37.33 8.63E-03 65,877.0 8.86
Worst 6.52E-01 177,760.0 88.19 4.18E-02 183,273.0 20.17 7.11E-02 184,680.0 93.08 5.86E-02 189,979.0 62.59
Std dv. 1.18E-01 37,873.7 18.94 1.11E-02 40,010.7 3.75 1.55E-02 34,628.7 17.46 1.29E-02 48,604.1 13.87
a) Griewank Function

IwPSO IS-PSO DS-PSO StPSO
Fitness Eval. CPU Fitness Eval. CPU Fitness Eval. CPU Fitness Eval. CPU

Mean 1.28E+00 77,018.7 40.79 1.69E+00 62,837.8 19.06 1.88E-14 180,545.3 96.10 7.55E-15 99,263.7 31.34
Best 7.55E-15 37,200.0 19.86 7.55E-15 30,989.0 11.26 1.47E-14 150,880.0 78.02 7.55E-15 62,917.0 19.94

Median 1.50E+00 68,120.0 36.87 1.78E+00 51,269.0 17.39 2.00E-14 180,560.0 96.58 7.55E-15 92,020.5 28.46
Worst 2.74E+00 200,000.0 106.76 2.74E+00 194,276.0 52.82 2.89E-14 199,600.0 105.46 7.55E-15 152,282.0 47.56
Std dv. 8.71E-01 39,601.9 20.98 7.08E-01 38,469.2 9.29 4.08E-15 12,417.3 6.56 3.21E-30 25,199.0 7.14
b) Ackley Function

IwPSO IS-PSO DS-PSO StPSO
Fitness Eval. CPU Fitness Eval. CPU Fitness Eval. CPU Fitness Eval. CPU

Mean 1.65E+03 89,937.1 47.52 2.15E+03 78,818.3 22.68 5.23E+02 199,458.7 106.41 3.40E+02 187,467.6 59.14
Best 8.29E+02 47,320.0 24.83 1.36E+03 37,822.0 12.00 1.18E+02 192,200.0 102.16 1.18E+02 151,980.0 49.50

Median 1.72E+03 81,060.0 42.71 2.00E+03 66,025.0 19.91 4.76E+02 199,820.0 106.15 3.55E+02 190,289.5 58.69
Worst 2.65E+03 175,680.0 93.14 3.36E+03 155,819.0 47.83 1.07E+03 200,000.0 115.62 5.92E+02 200,000.0 75.54
Std dv. 4.09E+02 35,195.9 18.53 5.56E+02 38,003.2 9.39 2.82E+02 1,404.0 2.97 1.42E+02 13,718.8 6.02
c) Schwefel Function

IwPSO IS-PSO DS-PSO StPSO
Fitness Eval. CPU Fitness Eval. CPU Fitness Eval. CPU Fitness Eval. CPU

Mean 4.92E+01 82,636.0 48.94 4.28E+01 110,841.9 37.15 2.48E+00 199,762.7 101.38 2.35E+00 199,863.5 99.10
Best 2.79E+01 34,920.0 20.47 1.69E+01 35,540.0 13.44 1.26E-10 196,760.0 99.50 1.26E-10 198,960.0 96.61

Median 4.88E+01 71,060.0 42.13 4.08E+01 107,651.5 34.99 1.50E+00 199,960.0 100.86 1.00E+00 199,960.0 98.92
Worst 8.36E+01 170,040.0 100.73 7.26E+01 199,893.0 67.74 1.49E+01 200,000.0 103.47 1.49E+01 200,000.0 101.17
Std dv. 1.27E+01 36,111.3 21.40 1.39E+01 47,810.4 15.43 2.98E+00 611.7 1.43 2.95E+00 229.7 0.80
d) Rastrigin Function
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Figure 6. Change in median fitness value (logarithmic scale) of the IwPSO, IS-PSO, DS-PSO and StPSO for multimodal

function optimization problems over 200.000 function evaluations (FEC: Function Evaluation Count).
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The optimal solution is found for Griewank in some repetitions. While the optimal solution is obtained
in 5 repetitions using IwPSO, this number is more than 10 for DS-PSO and StPSO. From the corresponding
graph for Griewank it is possible to conclude incorrectly that after a number of evaluations, StPSO can not
further improve the best solution found so far. However, this is mainly because the optimal solution has already
been found for most of the repetitions.

For the remaining three multimodal problems (Ackley, Schwefel and Rastrigin) behavior of the algorithms
are quite similar. DS-PSO starts to provide better solutions than IwPSO after approximately 10,000 function
evaluations. During early iterations in the search, with the effect of re-initiation which hinders exploitation
mechanism, DS-PSO is not much successful. However, the premature convergence problem of IwPSO becomes
significant later and DS-PSO outperforms IwPSO. On the other hand, StPSO is almost always more successful
than others in finding better solutions in a shorter time.

In the second part of experimental analysis for the function optimization problems, we compare mean
and standard deviation of solutions obtained by StPSO with the results obtained by several other algorithms in
Table 6. The termination criteria for all algorithms are the same (200,000 evaluations) and results for the other
algorithms are taken from the references that are given in Table 6. In this table, “# of success” fields present
the comparisons with the other algorithms. The value “a + b -” means that, among the algorithms listed in the
table, the number of algorithms better than our algorithm is b and the number of algorithms worse than our
algorithm is a .

Although our algorithms do not always produce the best solutions, the results are comparable and close to
the best solutions for all problems either unimodal or multimodal. On the other hand, while GCPSO, conPSO,
and FDRPSO are more suitable for the unimodal problems, MPSO, UPSO, FIPSO, and CLPSO are better
for the multimodal problems. The success rates of the algorithms in Table 7 presents a clear evidence for this
claim.

6.2. Results for the orienteering problem

The performance comparison of our algorithms on the Orienteering Problem with IwPSO is presented in Table
8. The results in the table are average values over 63 instances of OP in four datasets. While IwPSO is the
fastest method, it produces the lowest average score. Performance of the DS-PSO is better than the IwPSO
with large function evaluation count and execution time. When local search method is embedded, in IS-PSO
and StPSO, better solutions are obtained. While IS-PSO finds the best known solutions for all problems, StPSO
fails to produce the best known solutions for only three problem instances (for Tmax=60 in dataset1 2.2% gap,

for Tmax=80 and Tmax=85 in dataset3 1.4% gap and 1.3% gap, respectively) in 100.000 evaluation.

The best results obtained by IS-PSO are compared with the best results obtained by following algorithms
in Tables 9-12:

• CGW: Heuristic algorithm [36] (experimented on datasets 1, 2, 3, 4);

• GA: Genetic algorithm [35] (experimented on datasets 1, 2, 3, 4);

• ACO: Ant colony optimization [33] (experimented on datasets 1, 2, 3, 4);

• VNS: Variable neighborhood search [34] (experimented on datasets 1, 2, 3, 4);

• ARPSO: Attractive and repulsive PSO [37] (experimented on dataset 2);

• GLS: Guided local search [38] (experimented on datasets 1, 2, 3).
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Table 6. Performance of IS-PSO, DS-PSO and St-PSO against the previous studies for function optimization problems.

Unimodal Multimodal
   Spherical  Rosenbrock Griewank Ackley Rastrigin Schwefel 

PSO-w [4] 9.78E-30
(2.50E-29)

2.93E+01
(2.51E+01)

8.13E-03
(7.16E-03)

3.94E-14
(1.12E+00)

2.80E+01
(7.70E+00)

1.10E+03
(2.56E+02)

ConPSO [4] 5.88E-100
(5.40E-100)

1.11E+01
(1.81E+00)

2.06E-02
(1.90E-02)

1.12E+00
(8.65E-01)

5.62E+01
(9.76E+00)

3.78E+03
(6.02E+02)

GCPSO-g [5] 3.00E-161
(1.00E-161)

1.29E-02
(2.50E-02)

1.62E-02
(2.20E-02)

2.02E+00
(1.31E+00)

7.19E+01
(1.86E+01)

4.54E+03
(7.06E+02)

FDRPSO [4] 4.88E-102
 (1.53E-101) 

5.39E+00
(1.76E+00)

1.01E-02
(1.23E-02)

2.84E-14
(4.10E-01)

2.84E+01
(8.71E+00)

3.61E+03
(3.06E+02)

Exploitation
 improved 

 algorithms

NM-PSO [6] - 2.00E-02
(6.00E-04)

1.52E-02
(9.90E-03)

3.15E-06
(8.10E-07)

7.08E-11
(4.11E-11)

-

PSO-w-l  [4] 5.35E-100
(4.41E-13)

2.39E+01
(3.07E+00)

5.91E-03
(6.69E-03)

9.10E-08
(8.11E-08)

2.72E+01
(7.58E+00)

1.53E+03
(3.00E+02)

ConPSO-l [4] 7.7E-54
(1.59E-53)

1.71E+01
(9.16E-01)

5.91E-03
(8.70E-03)

5.33E-15
(1.87E-15)

4.53E+00
(1.17E+01)

3.78E+03
(5.37E+02)

GCPSO-l  [5] 3.00E-93
(2.00E-92)

6.50E-01
(5.30E-01)

3.90E-03
(7.50E-03)

2.79E-01
(2.80E-01)

6.12E+01
(1.54E+01)

4.76E+03
(5.09E+02)

GCPSO-v [5] 6.00E-119
(3.00E-118)

1.80E-01
(9.70E-02)

1.04E-02
(1.45E-02)

6.82E-01
(8.26E-01)

5.58E+01
(1.45E+01)

4.50E+03
(7.07E+02)

MPSO-g  [22] - - 2.53E-02
(2.24E-02)

0.00E+00
(0.00E+00)

4.69E+01
(1.15E+01)

1.50E+03
(3.04E+02)

MPSO-l  [22] - - 1.40E-03
(4.7E-03)

0.00E+00
(0.00E+00)

3.00E+00
(3.82E+00)

1.83E+03
(1.92E+02)

UPSO     [4] 4.17E-87
 (3.15E-87) 

1.51E+01
(8.14E-01)

1.66E-03
(3.07E-03)

1.22E-15
(3.16E-15)

6.59E+01
(1.22E+01)

4.84E+03
(4.76E+02)

FIPSO   [4] 2.69E-12
(6.84E-13)

2.45E+01
(2.19E-01)

1.16E-06
(1.87E-06)

4.81E-07
(9.17E-08)

7.30E+01
(1.24E+01)

2.05E+03
(9.58E+02)

Exploration
improved  

algorithms

CLPSO  [4] 4.46E-14
(1.73E-14)

2.10E+01
(2.98E+00)

3.14E-10
(4.64E-10)

0.00E+00
(0.00E+00)

4.85E-10
(3.63E-10)

1.27E-12
(8.79E-13)

1.68E-41 1.12E+01 1.24E-02 1.88E-14 2.48E+00 5.23E+02 DS-PSO 
(4.16E-42) (1.06E+01) (1.55E-02) (4.08E-15) (2.98E+00) (2.82E+02) 

# of success 2+ 9- 7+  5- 6+ 8- 9+ 5- 12+ 2- 12+ 1- 
2.14E-322 6.69E+00 9.27E-03 1.69E+00 4.28E+01 2.15E+03 IS-PSO 
(~0.00E+0) (4.50E+00) (1.11E-02) (7.08E-01) (1.39E+01) (5.56E+02) 

# of success 11+ 0- 8+  4- 7+ 7- 2+ 12- 8+ 6- 8+ 5- 
5.45E-194 9.60E+00 1.15E-02 7.55E-15 2.35E+00 3.40E+02 StPSO
(~0.00E+0) (3.31E+00) (1.29E-02) (3.21E-30) (2.95E+00) (1.42E+02) 

Our  
algorithms

# of success 11+ 0- 7+  5- 6+ 8- 9 + 5- 12+ 2- 12+ 1- 

Table 7. Success percentage of the algorithms against the other algorithms for unimodal and multimodal function

optimization problems.

GCPSO-g CLPSO DS-PSO IS-PSO StPSO
Unimodal Multimodal Unimodal Multimodal Unimodal Multimodal Unimodal Multimodal Unimodal Multimodal
21+ 2- 5+ 50- 4+ 19- 52+ 1- 9+ 14- 37+ 18- 19+ 4- 23+ 30- 18+ 5- 37+ 18-
91% 9% 17% 98% 39% 70% 83% 43% 78% 70%
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Table 8. Performance of IwPSO, DS-PSO, IS-PSO and StPSO application for Orienteering Problem: The average

results for 63 problems based on Fitness, Function Evaluaton Count and CPU.

IwPSO IS-PSO DS-PSO StPSO
Fitness Eval CPU Fitness Eval CPU Fitness Eval CPU Fitness Eval CPU

Mean 195.37 2,339.3 1.28 319.59 28,674.0 4.2 258.73 34,364.3 16.06 319.42 30,029.1 4.39
Best 234.68 160.9 0.11 322.14 5,173.7 0.77 286.06 4,102.3 2.01 321.75 4,855.2 0.72

Worst 99.04 15,311.5 7.78 314.52 65,837.4 9.58 231.91 83,142.9 38.56 313.25 68,566.5 9.94
Std Dv. 40.94 5,085.1 2.57 2.84 21,009.4 3.06 17.43 27,657.3 12.79 3.10 22,074.5 3.19

Table 9. Performance of IS-PSO for dataset 1 (32 nodes and 16 instances ).

GLS
Fitness IS-PSO Fitness IS-PSO 

Eval
IS-PSO 

CPU
Tmax Optimum  Best Best Worst Mean StDev Mean Mean 

15 45 45 45 45 45.0 0.00 7087.5 0.97 
20 65 55 65 65 65.0 0.00 21080.8 2.90
25 90 90 90 90 90.0 0.00 39325.2 5.46
30 110 80 110 110 110.0 0.00 12348 1.73 
35 135 135 135 130 134.5 1.58 32941.9 4.67
40 155 145 155 150 152.5 2.64 35581.5 5.11
46 175 175 175 175 175.0 0.00 16838.2 2.43
50 190 180 190 185 189.0 2.11 26626.8 3.93
55 205 200 205 200 200.5 1.58 32946.2 4.88
60 225 220 225 215 219.0 3.16 40177.4 6.03
65 240 240 240 230 237.5 3.54 49970.5 7.55
70 260 260 260 245 256.0 4.59 41242.1 6.24
73 265 265 265 260 263.5 2.42 39257 5.98 
75 270 270 270 265 269.0 2.11 39253.8 6.03
80 280 280 280 275 279.0 2.11 30939.5 4.79
85 285 285 285 285 285.0 0.00 48237.9 7.54

Average 187.19 182.81 187.19 182.81 185.66 1.61 32115.89 4.77 

Note that, the results obtained by VNS and ACO are not listed on the tables since their best scores
(fitness) are completely same with the best known scores obtained by IS-PSO for all problem instances. IS-

PSO is superior for 14 problem instances (shaded in Tables 9-12) in datasets 1, 2 and 3 compared to recently
published GLS. It produces better results than ARPSO, GA and CGW for several problem instances, as well.

IS-PSO and StPSO are also compared in detail with VNS which is one of the algorithms producing
the best known results for all problem instances for OP. Termination criteria of both algorithms are 100,000
evaluations. Average of the best results over all problem instances in datasets 1, 2, 3, and 4 are presented in
Table 13. While fitness values are comparable, the fitness evaluation count is twice in VNS. So, our method
achieves similar results by evaluating less candidate solutions. Our algorithms are slower than VNS based on
the CPU time. This can be attributed to the use of SPV rule for all particles at each iteration in our algorithms
and population-based nature of PSO.
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Table 10. Performance of IS-PSO for dataset 2 (21 nodes and 11 instances ).

ARPSO
Fitness 

GLS
Fitness 

IS-PSO Fitness   IS-PSO 
Eval

IS-
PSO
CPU

Tmax  Optimum Best Best Best Worst Mean   StDev Mean  Mean 
15 120 120 120 120 120 120.0 0.00 1664 0.17 
20 200 200 200 200 180 198.0 6.32 11838 1.25 
23 210 200 210 210 210 210.0 0.00 15640 1.65 
25 230 210 230 230 230 230.0 0.00 5032.3 0.53 
27 230 230 220 230 220 227.0 4.83 3333.2 0.35 
30 265 230 260 265 260 263.0 2.58 19161.3 2.02 
32 300 260 300 300 290 298.0 4.22 20170.8 2.15 
35 320 295 305 320 310 318.0 4.22 21387.9 2.29 
38 360 340 360 360 350 356.0 4.59 40787.9 4.39 
40 395 365 380 395 370 390.5 8.64 24208.2 2.62 
45 450 440 450 450 440 449.0 3.16 11596.8 1.27 

Average 280.00 262.73 275.91 280.00 270.91 278.14 3.51 15892.76 1.70 

Table 11. Performance of IS-PSO for dataset 3 (33 nodes and 20 instances ).

GLS
Fitness IS-PSO Fitness Eval CPU 

Tmax  Optimum  Best  Best  Worst Mean  StDev Mean Mean 
15 170 170 170 170 170 0.00 7689.9 1.09 
20 200 200 200 190 198 4.22 29934.2 4.30 
25 260 250 260 250 254 5.16 10835.8 1.56 
30 320 310 320 320 320 0.00 19080.9 2.77 
35 390 390 390 390 390 0.00 41231.5 6.10 
40 430 430 430 420 428 4.22 41256.8 6.18 
45 470 470 470 460 467 4.83 28839.1 4.35 
50 520 520 520 500 511 8.76 43167.8 6.56 
55 550 540 550 540 549 3.16 29064.7 4.46 
60 580 570 580 570 579 3.16 38885.3 6.00 
65 610 610 610 600 609 3.16 32128.8 5.02 
70 640 630 640 620 634 6.99 35642.3 5.57 
75 670 670 670 650 665 8.50 36011.7 5.71 
80 710 710 710 680 696 6.99 60554.3 9.60 
85 740 740 740 710 722 7.89 28893.2 4.62 
90 770 770 770 750 757 8.23 36602.9 5.89 
95 790 790 790 780 789 3.16 44714.4 7.26 

100 800 800 800 790 797 4.83 35628.8 5.84 
105 800 800 800 800 800 0.00 15964.1 2.63 
110 800 800 800 800 800 0.00 5829.8 0.95 

Average 561.00 558.50 561.00 549.5 556.75 4.16 31097.82 4.82 
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Table 12. Performance of IS-PSO for dataset 4 (32 nodes and 16 instances, corrected ).

CGW 
Fitness 

GA
Fitness IS-PSO Fitness Eval CPU 

Tmax  Best Best Best Worst  Mean  StDev Mean Mean 
15 45 45 45 45 45 0.00 4955.7 0.68 
20 65 65 65 65 65 0.00 18602.8 2.55 
25 90 90 90 85 89.5 1.58 24112.7 3.35 
30 110 110 110 110 110 0.00 14090 1.96 
35 135 135 135 130 133 2.58 33114.4 4.67 
40 155 155 155 150 154 2.11 26450.4 3.80 
46 175 175 175 175 175 0.00 22738.7 3.29 
50 190 190 190 190 190 0.00 47918.5 7.05 
55 205 205 205 200 201 2.11 20949.3 3.11 
60 220 225 225 215 219 3.16 42010.4 6.33 
65 240 240 240 230 238 3.50 46330.2 6.96 
70 260 260 260 255 257 2.58 49678.8 7.54 
73 265 265 265 255 262 3.50 45513.8 6.89 
75 275 270 275 265 270 4.08 36691.3 5.61 
80 280 280 280 270 277 3.50 36597.2 5.65 
85 285 285 285 280 283.5 2.42 26077 4.09 

Average 187.19 187.19 187.5 182.5 185.56 1.94 30989.45 4.6 

Table 13. Comparison of StPSO, IS-PSO and VNS results averaged over problems in datasets 1, 2, 3 and 4.

StPSO ISPSO VNS
Fitness CPU Eval Fitness CPU Eval Fitness CPU Eval
Best Mean Mean Best Mean Mean Best Mean Mean

(Std.Dev.) (Std.Dev.) (Std.Dev.)
Dataset1 186.88 (2.13 ) 4.72 31,812.16 187.19 (1.61 ) 4.77 32,115.89 187.19 (2.73) 0.92 62,624.36
Dataset2 280.00 (3.78) 2.12 19,839.67 280.00 (3.51) 1.70 15,892.76 280.00 (2.49) 1.09 38,681.41
Dataset3 560.00 (4.43) 5.22 33,438.54 561.00 (4.16) 4.82 31,097.82 561.00 (6.04) 0.88 52,096.07
Dataset4 187.50 (1.94) 4.60 30,989.45 187.50 (1.94) 4.60 30,989.45 187.50 (2.82) 0.91 60,933.15

7. Conclusion

In this paper, the StPSO algorithm is presented. The algorithm improves both exploration and exploitation
mechanisms of PSO in order to solve well-known drawbacks of PSO such as premature convergence and
insufficient intensification around the local optima. StPSO preserves the general flow of the PSO algorithm
but the search strategy is temporarily modified for the pioneering-particles. An external local search is
performed around each pioneering-particle using RVNS in order to improve the exploitation capability. To
improve exploration mechanism and to prevent premature convergence, velocity of the pioneering-particle is
updated randomly. So, the pioneering-particle continues its search journey from a different position in the
following iterations.

StPSO and its two subversions (IS-PSO and DS-PSO) are experimented on the both continuous and
discrete problems. Results for the continuous functions indicate that StPSO improves search ability of the
standard PSO for both unimodal and multimodal problems. It achieves either the best or competitive solutions
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compared to other similar PSO variants. Moreover, our approach achieves the best known solutions for several
instances of the Orienteering Problem by evaluating less candidate solutions in the search space. All these
results support our claim that StPSO is a promising general tool producing satisfactory results for both discrete
and continuous problems.
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