
Turk J Elec Eng & Comp Sci, Vol.18, No.6, 2010, c© TÜBİTAK
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Abstract

In this article we present an analysis for task models having random resource needs and different arrival

patterns. In hard real-time environments like avionic systems or nuclear reactors, the inputs to the system

are obtained from real world by using sensors. And it is highly possible for a task to have different resource

needs for each period according to these changing conditions of real world. We made an analysis of schedulers

for task models having random resources in each period. Since feasibility tests for usual task models are just

limited to some specific schedulers and arrival patterns, we made our analysis using different preemptive

schedulers with different arrival patterns. Another issue that this paper presents is that for task sets having

processor utilization factors of below 100%, a new scheduler assigns more resource values to the tasks than

they originally have by extending and shrinking the resource values. This provides a better utilization of the

resources as well as providing all the tasks to finish in their timing constraints and never assigning lower

resource values than the initial resources for all tasks. We exposed a dynamic priority driven scheduling

scheme that implements the newly developed Steady Scheme with Bounded Utilization for changing resources

and simulated to reach the results depicted.

Key Words: Scheduling, real-time scheduler, task arrival patterns, simulation, dynamic priority, random

resource, resource modification

1. Introduction

Scheduling concept is being analyzed thoroughly in the last decades since it applies to hard real-time envi-
ronments and expects more efficiency and stability from the algorithms used. As the algorithms designed for
scheduling are used basically on real world sensor-based controller systems, we need to know what behaviors
we will face when that kind of a real world situations happen [1]. There are many analysis and comparison

works done on the behaviors of the algorithms in different situations with some assumptions [2–4]. Lots of
techniques are used for real-time scheduling of tasks which can have either periodic, aperiodic or some other
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arrival patterns. These techniques are distinguished according to their way of thinking in order to solve some
specific problems. So this makes different algorithms superior to each other from different aspects and under
different conditions.

In real-time systems, every cycle in the scheduling process includes the processes of data gathering by
sensor systems, processing those data, having and transmitting a control signal according to the results obtained
from these data, test process and fault tolerance if included [5–8]. The most optimal scheduling obtained either
statically or dynamically and sequencing of these processes realization time have vital importance for efficient
and proper working of hard real-time systems.

Schedulers for hard real-time systems struggle with the constraint of expecting the tasks to accomplish at
the right time while assigning resources to tasks under some policies. So, a real-time system needs an efficient
algorithm to process all the time-critical tasks on time and to achieve a lower bound for the miss or loss rate
for tasks when proceeding through time not to lose much information about the given issue. All these things
clarify the timing constraint of the aforementioned systems.

As well as satisfying the timing constraints, the scheduling methods also arrange the sharing of resources
along the procedures or tasks to be done. They determine which task to run and when to run a new task
according to the schedulers used. In a non-idling system, algorithms should be efficient enough for minimizing
processor idling providing a better utilization. The admission control process which decides the tasks to be
processed or not should be planned so well not to have a rejection or late completion for mission-critic tasks.

In this work, the behaviors of the scheduling algorithms under some certain conditions, like tasks having
random resources in each period and having different arrival patterns, are analyzed and the superiorities of the
existing methods under different conditions are examined. A resource modification scheme, which increments or
decrements the resource values of the task set according to the momentary loads and tasks needs to accomplish
the simulation period, is put forward.

The existing scheme and the motivation of this work will be explained in Section 2. The scheme of
changing resources and task set generation are investigated in Section 3, the results of changing resource
conditions for dynamic schedulers and suggested methods are given with the simulation results later in Section
4 followed by the conclusion in Section 5.

2. Motivation and related works

The studies on scheduling algorithms consider some certain conditions, analyze the behaviors of the algorithms
under these conditions, expose the superiorities of each one and suggest a better scheduler under those certain
conditions [3, 4, 9].

When comparing the scheduling algorithms, the works generally take the resource parameter as an input
that never changes during execution and make their research on a specific arrival pattern.

To have a better idea about the behaviors of the algorithms under different conditions, we focused on
dynamic, preemptive algorithms and tasks with changing resources in each activation with periodic arrival
patterns having some different effective delays between two wake-up times.

2.1. Parameters

The basic methods to schedule real-time tasks are founded on the task priority which is to determine the
behavior that the scheduler will use when tasks come into execution with the need for processor sources which
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is named preemption. Preemption is the basic issue of dynamic priority driven scheduling. To have a better
idea about the runtime overhead of the algorithms, context switch (exchange of the shared resources between

tasks) parameter is another important issue that should be taken into consideration.

2.2. Arrival patterns

Tasks have arrival patterns which describe the way the tasks are activated. An aperiodic task is only activated
once in the system that ends up with a unique execution while a periodic task is activated many times and
the delay between two activations is a fixed one. A Poisson process task is activated many times like periodic
tasks and the only difference is that the delay between two activations is not fixed but it is random. The
randomization rule used to generate these delays is an exponential one (Poisson process). A sporadic task is a
task which is activated many times with the minimal delay between two successive activations.

2.3. Task model

A task is a sequential job that is invoked with some frequency and result in a single execution of the instance
at a time, handled by a given scheduler. So, we can say a task is an infinite number of instances.

Each periodic task Ti , considered as an infinite sequence of jobs Ti,k , (k = 1, 2, ...), includes the
parameters

Ti,k = (Ri, Di, Pi), (1)

where Ri, Di, Pi respectively represent Resource, relative Deadline (note that absolute deadline is equal to

the release time of the instance plus the relative deadline) and Period. The execution of the kth request of

task Ti , which occurs at time (k − 1) ∗ Pi (assuming that no offset delay exists), must finish before or at time

(k − 1) ∗ Pi + Di , knowing that the deadlines are considered to be hard which means deadline failure is fatal
for the system.

Each task also has a start time (release time), the time when the task arrives in the system, parameter
which is exactly for the first activation in the schedule.

2.4. Scheduling algorithms

As the scheduling concept emerged, the main scheme was founded on timeline scheduling. At that time most
critical control applications were developed using offline table-driven approach (timeline scheduling), according

to which the timeline is divided into slots of fixed length (minor cycle) and tasks are statically allocated in each

slot based on their rates and execution requirements [10]. The schedule is constructed up to the least common

multiple of all periods (called hyper-period, base period or major cycle) and stored in a table. At runtime, tasks
are dispatched according to the table and synchronized by a timer at the beginning of each minor cycle. This
scheme is improved for dynamic situations by using a priority-based approach, according to which each task is
assigned a priority (which can be fixed or dynamic) and the schedule is generated online based on the current
priority value.

Priority based algorithms come out with the static priority driven scheduling scheme of Rate Monotonic
(RM) [11–14] and the dynamic priority driven scheduling schemes of Earliest Deadline First (EDF) [1, 11] and
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Least Laxity First (LLF) [1, 15, 16] which are the base methods for task scheduling. A general comparison and
the preemption rule for the algorithms are as follows.

Static priority driven scheduling scheme of RM algorithm results with a scheduling parameter that
does not support the instantaneous and dynamically changing situations. The most significant property of the
RM algorithm is that you can specify the critical set of tasks that should not fail anytime. But it has the
disadvantage of a narrow schedulable bound of 69% and 88% for the average case [12].

The algorithm works according to the index of tasks periods. The task with the minimum period gets
the higher priority.

Static Priority: Return (Task with the Minimum Period)

Dynamic priority driven scheduling scheme of EDF and LLF algorithms overcome the difficulty
for responding dynamic changes in the system parameters. And the schedulable bound for tasks is 100%. An
important deficiency of the algorithms is the inability for specifying the critical tasks that should never fail.
When a transient overload appears in the system, you cannot be sure whether a critical task will be omitted or
not. And the runtime overheads for these algorithms are more than that of the static priority driven scheduling
schemes [1].

EDF algorithm assigns priorities according to the deadline queue which works as the task with the
earliest deadline always gets the higher priority.

Dynamic Priority:
Start (Release) Time of Task
+ [(Task Activation Number - 1) ∗ Task Period]
+ Deadline of Task

Return (Task with Minimum Dynamic Priority)

LLF algorithm assigns priorities considering the time parameter that the task can be delayed which is
named laxity. It assigns higher priority to the task with the smallest laxity value.

Dynamic Deadline:
Start (Release) Time of Task
+ [(Task Activation Number - 1)∗ Task Period]
+ Deadline of Task

Laxity: Dynamic Deadline - Rest of Resource Need for Task
Return (Task with Minimum Laxity)

2.5. Assumptions

We shall consider the problem of scheduling a set T = {T1, T2, ...} of n periodic tasks on a single processor
in presence of the hard real-time constraints. Tasks are assumed independent, meaning that tasks do not have
precedence constraints and each task has the parameters defined by equation (1).

We have conducted a deeper analysis on dynamic priority driven scheduling algorithms of EDF and LLF
and tried to reveal the behaviors of these two algorithms under following conditions:

1. Given a task set, each task in the task set has varying resource needs for each activation. And the behaviors
of the algorithms under this condition are analyzed.

2. Behaviors of the algorithms under different arrival patterns of periodic, sporadic and Poisson delays are
analyzed.
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3. We make use of schedulability and WCET (Worst Case Execution Time) parameters, and we mention
about the feasibility of the algorithms.

4. We consider both algorithms as preemptive. We make use of the preemption and context switch number
as parameters.

5. To fulfill the requirement of random resources in each period, we made a random array generation scheme
between determined lower and upper bounds.

3. Resource modification and task set generation

A very important feature in scheduling theory is being able to satisfy changing dynamic situations and needs of
the system. Because the resource parameter is defined statically for each task in a task set, there’s no chance
to assign more or less time for tasks having the need for resource modification. We have designed a scheduler
which is able to change the resource at each period, assigning random resources which are generated considering
the workload of the system.

The aims in developing such a system are:

- To have a flexible and dynamic scheduler which is able to satisfy the changing resource needs of the system
and

- To be able to analyze the behaviors of the algorithms.

We made our analysis according to the successive topics:

1) Comparing the basic dynamic schedulers of EDF and LLF under:

a) Changing resource needs considering the parameters of;

- Schedulability (SCH),

- Preemption (PR),

- Context Switch (CS),

- Worst Case Execution Time (WCET).

b) Comparing these results with the task sets having static resources.

2) Making all these tests with periodic task sets as well as tasks with other arrival patterns of sporadic and
Poisson delays.

3) Task sets used in the experiments are generated considering the total utilization in the system.

The definitions and the computation of the parameters that we used in our system are as follows.

The Hyper Period (Base Period) (HP ) parameter is defined as a cycle such as the arrival pattern

of a periodic tasks set recurs similarly [17]. It is;

HP = LCM{Pi}, (2)

where (1 ≤ i ≤ n).
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The Processor Utilization (U ) is the fraction of processor time spent in the execution of the task set

[11].

U =
n∑

1

(Ri/Pi) (3)

The necessary condition for the feasibility of any task set is that U ≤ 1.

The Workload (W (t)) of a system is; given a critical instant (si) at time 0 (i ∈ [1, n], si = 0) the

amount of processing time requested by all instances whose release times are in the interval [0, t] [18].

W (t) =
n∑

1

(HP/Pi) ∗ Ri (4)

Processor Availability (B(t)) is the available time in the base period for a specific task in a task set
considering the other tasks resource needs in the base period. Formula is;

B(t) = HP − CT − W (t) (5)

where CT is Current Time and means a critical instant.
Resource Need (Wrk(t)) in the base period is the specified task’s need for the processor, considering

the tasks activation number and assuming that the task has completed the running activation.

Wrk(t) = (HP/Pi) ∗ Ri − Pi ∗ Task Activation Number(i), (6)

3.1. Task set generation

We have generated a suitable task set for testing the behaviors of the algorithms. To be able to make these tests
sensible, we generated our task set by considering some works done on the choice of task sets, beginning with
the selection of the test interval, which we mentioned as a hyper period. For some special cases, a feasibility
check is conducted. The feasibility check of a system means to simulate the system in some feasibility interval,
i.e. a finite interval, to ensure that no deadline is missed; and if there is only these requests in this interval, all
deadlines in this interval will be met [19]. The method gives the idea that, for better scheduling simulation, and
not to widen the work area, it is better to keep the hyper period and the simulation of the task set small. So,
in order to reduce the simulation duration and to be able to make a judicious choice of the periods for the tasks
we have chosen our task periods having harmonic relations which can make full utilization even for a static
scheduler and provide a smaller hyper period [20].

Our task set T = {T1, T2, T3, T4} is as follows with the parameters of resource, deadline and period.

As seen from Table 1, deadlines are relative [21] and equal to the periods of the tasks that have harmonic

relations with the periods of 4, 8, 16, 32. This makes the hyper period as HP = LCM{4, 8, 16, 32} = 32 and
provides a flexible simulation environment, as in 32 units of time we can make one pattern of arrival for all tasks
and have all tasks request for access to the system at the hyper period. At time 32, T1 should be activated for
HP/P1 = 32/4 = 8 times while T2 for 32/8 = 4, T3 for 32/16 = 2 and T4 for 32/32 = 1 time.

We also considered the processor utilization (U) parameter having the initial load of U = 1/4 + 3/8 +

3/16 + 5/32 = 0.96875, which is near maximum utilization (100%).
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Table 1. Task set with periods having harmonic relations.

Name Resource Deadline Period 

1T  1 4 4 

2T  3 8 8 

3T  3 16 16 

4T  5 32 32 

When assigning random resource values to tasks after the execution of one period, we keep the following
and reach the results shown in Table 2:

1. Compute the minimum processor utilization with all tasks having resource value of 1 and compute the
maximum resource value that can be assigned to the tasks, each having 25% processor utilization.

2. Obtain a random value for the first task (between 1 and a quarter of the task period, to have a maximum

processor load of 25% for the first task).

3. Obtain a random value for the second task (between 1 and a quarter of the period of the second task plus

the unused resource, if exist, from the first task).

4. Keep applying rule 3 to the successive tasks.

Table 2. Minimum and maximum values of task resources.

Task Period Min U  (Min) Max U  (Max) 

1T  4 1 0.25 1 0.25 

2T  8 1 0.125 2 0.25 

3T  16 1 0.0625 4 0.25 

4T  32 1 0.03125 8 0.25 

Total Utilization 0.46875  1.00 

Assigned random resources (RR) to tasks are computed according to the following formulas:

RR1 = Rand (Min1, Max1);
RR2 = Rand (Min2, Max2 + abs (Max1 - RR1));
RR3 = Rand (Min3, Max3 + abs (Max1 - RR1) +abs (Max2 - RR2));
RR4 = Rand (Min4, Max4 + abs (Max1 - RR1) + abs (Max2-RR2) + abs (Max3 - RR3)).

This scheme gives the processor utilization between minimum utilization of 46.875% and 100%, with the
average utilization of 85% in our simulations and the resource value of T1 is unchanged.
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4. Methods and simulations

Our rule for resource modification operates during the simulation and at each period when the task executes
all the units of its resource, but one. And, when the remainder of the resource for a task equals 1, the scheduler
assigns a new resource to the task, as per the rules defined above.

For the dynamic priority driven scheduling algorithms of EDF and LLF, we constructed our simulations
based on successive schemes:

• EDF with random resource on periodic, sporadic and Poisson tasks;

• EDF with static resource on periodic, sporadic and Poisson tasks;

• LLF with random resource on periodic, sporadic and Poisson tasks;

• LLF with static resource on periodic, sporadic and Poisson tasks.

The results we get with these schemes are shown in Table 3–Table 6, showing the average values we got from
the simulations as per the scheme sequence above.

Table 3. Results of EDF with Random Resource on periodic, sporadic and Poisson tasks.

Alg Type: Random Resource 

Arr Pt Periodic Sporadic Poisson 

E
ar

li
es

t 
D

ea
d l

in
e 

Fi
rs

t 

Param SCH CS PR SCH CS PR SCH CS PR 

Res 20% 23 3.2 40% 21.5 3.7 30% 22.1 4.2 

1T  1 1.5 2.2 

2T
 

8.9 9 10.7 

3T
 

9.6 9 12.1 

A
ve

ra
ge

 W
ce

t 

4T  23.4 17.1 26.4 

On looking at these results, we make following inferences:

1) Both algorithms are unstable with the changing resources, and the total schedulability of the system
is lower for all arrival patterns because of the worst case execution time values of each task is worse than those
under static resource conditions. We can add the overhead of computations to assign newer resource values to
tasks. The context switch and preemption numbers are slightly reduced but there is not a significant change
overall.

2) EDF algorithm works better than the LLF algorithm under Poisson Task arrivals. This situation is
not changed under random resource need conditions, as seen from Table 4 and Table 6 with schedulability rates
of 30% and 0%.
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Table 4. Results of EDF with Static Resource on periodic, sporadic, Poisson tasks.

Alg Type: Static Resource 

Arr Periodic Sporadic Poisson 

Param SCH CS PR SCH CS PR SCH CS PR 

Res 100% 31 2 100% 28 6.6 30% 24.7 7.2 

1T  1 1 1 

2T  4 4 8 

3T  8 7.7 19.2 

E
ar

li
es

t D
ea

dl
in

e 
F i

rs
t 

A
ve

ra
ge

 W
ce

t 

4T  31 19.4 36.7 

Table 5. Results of LLF with Random Resource on periodic, sporadic and Poisson tasks.

Alg Type: Random Resource 

Arr  Periodic Sporadic Poisson 

Param SCH CS PR SCH CS PR SCH CS PR 

Res 20% 25 3.8 20% 21.9 3.2 20% 22.7 7.7 

1T  1 1.3 1.7 

2T  9.9 8.9 10.4 

3T  9.6 9.6 14.3 

L
ea

st
 L

ax
it

y 
Fi

rs
t 

A
ve

ra
ge

 W
ce

t 

4T  23.3 17.4 24.2 

3) As we tried to understand the reason why schedulability lowers under random resource need conditions,
we ended up with the reason that one or two tasks, despite their often higher priority, became stuck and did not
complete within the time and resources allocated: under static resource conditions one can know beforehand if
the tasks will fail or not considering the total utilization of the system, while this cannot be guessed for random
resource need conditions.
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Table 6. Results of LLF with Static Resource on Periodic, Sporadic, Poisson Tasks.

Alg Type: Static Resource 

Arr Pt Periodic Sporadic Poisson 

Param SCH CS PR SCH CS PR SCH CS PR 

Res 100% 35 6 100% 27.6 5.7 0% 24.7 6.6 

1T  1 1 1 

2T  4 4 8.5 

3T  14 8 21.8 

L
ea

st
 L

ax
ity

 F
ir

st
 

A
ve

ra
ge

 W
ce

t 

4T  31 22.1 33.5 

To overcome these issues and make the random resource condition a predictable one we developed a new
scheduler, one able to provide steady scheduling schemes with bounded processor utilizations as well as able to
make better use of resources by incrementing the total processor load without deadline misses.

4.1. Scheduler providing steady and bounded utilization with resource modifica-

tion

Our scheduler provides a “Steady and Bounded Utilization with Resource Modification” (SBU) and is applied
together with the EDF and LLF dynamic priority driven scheduling algorithms.

It works algorithmically as follows.
Parameters:

Ti(i ∈ [1, n]), HP, U, W (t), B(t), Wrk(t), RoR(RestofResource)

Algorithm:

For all tasks in the task set
For tasks having resources greater than 1
If Rest of Resource (RoR) for a task equals to 1

If the Resource Need (Wrk (t)) for the task is greater than 0
If the Available (Idle) Time (B(t)) is greater than or equals to Resource Need

If [Processor Availability (B(t)) - Resource Need (Wrk (t))] is
greater than half of the Resource Need
Increment Ri

Else
Ri remains the same

Else If the Available (Idle) Time (B(t)) is smaller than Resource Need
Decrement Rn (n is the other tasks in the task set) until they reach back
to their initial values

End all

1124



SAMET, DUMAN: Behaviors of real-time schedulers under resource modification...,

We consider the Processor Availability for each task between the simulation time and the simulation
range. If the Available Time is suitable for a task to increment (1.5 times more than the Resource Need) the
resource allocated to the task is incremented. And if we end up with a situation that the available time is
not enough for that task to accomplish, the resource incrementation made for other tasks in the task set are
taken back and decremented to provide more available time for the task which is about to finish its activation.
When we applied this algorithm to the task sets with utilizations less than 1, we got the results that processor
utilization extends and shrinks according to the dynamic situations as we mentioned. We remark the fact that
the task resources never fall under the initial resource values, and the decrementation is made just for the
incremented resources.

The results with the same task set are shown in Table 7 and Table 8.

Table 7. Results of EDF with SBU on Periodic, Sporadic, Poisson Tasks.

Alg Steady And Bounded Utilization 

Arr Periodic Sporadic Poisson 

Param SCH CS PR SCH CS PR SCH CS PR 

Res 100% 63 4 90% 52.4 10.6 10% 50.2 9.4 

1T  1 2.4 3 

2T  4 5.1 14.4 

3T  8 8 25.3 

E
ar

li
es

t D
e a

dl
i n

e 
Fi

rs
t 

A
v e

r a
ge

 W
ce

t 

4T  31 24.2 41.7 

If we analyze these newer results for the new scheduler, we can make following inferences:

1) The schedulability is much better than that of random resource scheduler under periodic and sporadic

tasks. The schedulability values for SBU with EDF are 100% and 90% under periodic and sporadic tasks,
respectively. This schedulability rate is much better considering the schedulability rates of 20% and 40% under
periodic and sporadic task arrival patterns respectively for Random Resource Scheduler. The results for Poisson
Task arrivals are 10% to 30% for “SBU with EDF” and “Random Resource with EDF,” respectively. When we
consider values for LLF algorithm, the results are 100% and 80% under periodic and sporadic arrival patterns
which are much better than the results of 20% and 20% for the same sequence with Random Resource Scheduler.
As seen from the results, for Poisson Task arrival pattern, no improvements are obtained as the schedulability
rates of 0% to 20% for “SBU with LLF” and “Random Resource with LLF,” respectively.

2) EDF and LLF algorithms with SBU Scheduler do not solve the lower schedulability problem under
Poisson Task arrivals.
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3) We can make the inference that our scheduler works well under Random Resource conditions, taking
the schedulability of the system to higher rates by extending and shrinking the task resources.

Table 8. Results of LLF with SBU on Periodic, Sporadic, Poisson Tasks.

Alg Steady And Bounded Utilization 

Arr Periodic Sporadic Poisson 

Param SCH CS PR SCH CS PR SCH CS PR 

Res 100% 74 14 80% 52.7 12.7 0% 74 28.9 

1T  1 3.6 3.1 

2T  6 5 15.1 

3T  15 9 24.2 

L
ea

st
 L

ax
it

y 
Fi

rs
t 

A
ve

ra
ge

 W
ce

t 

4T  31 20.4 37.7 

Another important property of our scheduler is that it provides a better utilization by utilizing the unused
time in the scheduling scheme. For a better explanation of this issue, we have chosen a task set having a total
processor utilization of 75%. Task set is seen in Table 9.

Table 9. Tasks set for testing utilization incrementation parameter for SBU.

Task Period Resource Utilization 

1T  4 1 0.25 

2T  8 2 0.25 

3T  16 2 0.125 

4T  32 4 0.125 

Total Utilization 0.75 

The hyper period for this task set is 32 (LCM(4, 8, 16, 32)) and we used a simulation range of 0—128,
which is 4 times greater than the hyper period.

With EDF applied to this task set we had the total processor utilization of 75% and schedulability rate
of 100%, but we have 25% of the processor resources unused meaning that 32 units of time in 128 time units
which are our simulation time range.
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We wanted to get the total processor utilization to some values greater than existing algorithms while
providing the same schedulability rate. As seen from Table 10, Figure 1 and Figure 2; with our scheduler we
managed to accomplish the issues we wanted. We got to the results of the same schedulability rates (100%) for

each simulation while providing a total processor utilization of more than 90% in each algorithm and for each
simulation range which is much better than the existing algorithms processor utilization.

Table 10. Resource and utilization incrementation by SBU applied to dynamic priority driven scheduling algorithms of

EDF and LLF.

SI M  I D  U  C S  P R  S I M  I D  U  C S  P R  

3 2  2  9 3 .7  1 8  4  3 2  2  9 3 .7  1 8  4  

6 4  3  9 5 .3  3 4  5  6 4  3  9 5 .3  3 9  7  

1 2 8  5  9 6 .1  6 6  7  1 2 8  5  9 6 .1  7 5  1 0  

2 5 6  1 0  9 6 .1  1 2 7  9  2 5 6  1 0  9 6 .1  1 4 4  11  

E
D

F
 S

B
U

 

5 1 2  1 8  9 6 .5  2 5 5  1 7  

 

L
L

F
 S

B
U

 
5 1 2  1 8  9 6 .5  2 8 8  1 9  

S I M  I D  U  C S  P R  S I M  I D  U  C S  P R  

3 2  8  7 5 .0  1 8  4  3 2  8  7 5 .0  1 8  4  

6 4  1 6  7 5 .0  3 6  8  6 4  1 6  7 5 .0  3 6  8  

1 2 8  3 2  7 5 .0  7 2  1 6  1 2 8  3 2  7 5 .0  7 2  1 6  

2 5 6  6 4  7 5 .0  1 4 4  3 2  2 5 6  6 4  7 5 .0  1 4 4  3 2  

E
D

F
 

5 1 2  1 2 8  7 5 .0  2 8 8  6 4  

 

L
L

F
 

5 1 2  1 2 8  7 5 .0  2 8 8  6 4  
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Figure 1. Processor idle time and utilization for the algorithm SBU with the dynamic priority driven scheduling

algorithms of EDF and LLF (Note that both algorithms end up with the same results).
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Figure 2. Processor idle time and utilization for the dynamic priority driven scheduling algorithms of EDF and LLF

(Note that both algorithms end up with the same results).

5. Conclusions

The dynamic situations that we come across in hard, real-time systems are the ones we need to cope with. To
understand the needs of the dynamic systems we have to consider all the parameters and try to respond to the
requests of the real world. In our work we made our research on resource issue and tried to answer the resource
modification requests of the real world systems. Generating a reasonable task set and applying the random
resource issue to the dynamic priority driven scheduling algorithms of EDF and LLF we got the result that the
system is unstable under random resource conditions and has lower schedulability.

To overcome that issue and to have a better utilization for systems which are not highly loaded (meaning

that having processor utilization below 1.00) we developed a resource modification scheme providing a steady

and bounded utilization for the task set. We accomplished to provide a better utilization (over 90%) and 100%

schedulability with the dynamic schedulers of EDF and LLF which provide only the initial utilization (if the

initial utilization is 75% as in the example, that load does not change with time) with the same schedulability
rate.

Our proposed scheme provides a better utilization by extending and shrinking the resource parameter
according to the system workload which is calculated in each cycle, calculating the idle time in the scheduling
scheme and comparing that with the task’s need for completing its activations before deadline. This provides all
the tasks to finish before deadline and our scheme never assigns a lower resource value than the initial resources
for all tasks.
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