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Abstract

Understanding and comparison of different drug delivery formulations are based on pharmacokinetic

parameters (PKP) such as area under curve, maximum concentration, and time to reach maximum concen-

tration. Accurate estimation of PKP is of critical importance in capturing drug absorption and elimination

characteristics and in reaching bioequivalence decisions. Since PKP are estimated from a limited number of

samples, the timing of the samples directly influences the accuracy of estimation. Optimization of the sam-

pling times may not only increase the accuracy of PKP estimation, but also reduce the number of samples

to be drawn, which in turn lessens the inconvenience to the subjects and the cost of the study. In this study,

as an alternative to conventional piece-wise linear approximation, we proposed cubic spline approximation to

the time-concentration curve and also introduced a global optimality criterion that focuses on the closeness

of all the pharmacokinetic parameter estimators to their true values simultaneously. By minimizing the cri-

terion function over sampling times and watching the regulatory practice/guidance for sample collection, we

designed optimal sampling times that can be used in pharmacokinetic studies. We demonstrated that using

our approach it is possible to obtain more accurate estimates of PKP with fewer samples.

Key Words: Pharmacokinetic parameters, optimal sampling time design, spline approximation, sequential

quadratic programming

1. Introduction

Drug delivery is studied by means of distinctive pharmacokinetic parameters (PKP) such as area under the curve

(AUC), maximum blood or plasma concentration (Cmax), and the time to reach the maximum concentration

(tmax) [1, 2]. After drug administration, subjects are monitored for a while to draw a certain number of blood

samples and construct an approximate concentration-time curve (CTC). Since only a limited number of blood
samples can be drawn and the estimation of PKP relies on the corresponding approximation to CTC, a judicious
selection of sampling times will increase the accuracy of PKP estimation. Furthermore, optimization of sampling
times may offer a smaller set of optimal sampling times with which PKP can be estimated accurately.
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The literature on the issue of optimal sampling in PK is somewhat limited. Chang and Wong [3], and

Kong and Gonin [4] suggested an optimal sampling time design procedures to improve the accuracy of AUC
estimation only. They used sequential quadratic programming method to minimize the area between the actual
CTC and its trapezoidal approximation.

Atkinson et al. [5] introduced an ED-optimal design, where E refers to expectation and D refers to the

determinant of the Fisher’s information matrix (FIM). D’Argenio [6] considered the issue of optimal sampling
in the context of estimation of the compartmental model parameters such as the absorption and elimination
rate constants, ka and ke , and the apparent volume of distribution, V . He suggested a sequential design that
used results from previous subjects to determine the optimal sampling times for the next subject. Tod and
Rocchisani [7] have compared different optimization strategies that can be used to obtain optimal sampling
time design to accurately estimate PK model parameters. They concluded that, compared to ED-optimal
design, EID (expectation of determinant of the inverse of FIM) and API (expectation of logarithm of the

determinant of FIM) optimal designs may increase the accuracy and precision of the PK model parameter
estimates. Random and gradient-search based algorithms are used to determine the optimal sampling times,
however this study mostly focused on the estimation of underlying model parameters (i.e. ka , ke , and V ), not

on the PK parameters used to reach BE decisions (i.e. AUC, Cmax , and tmax).

In this study, we use a first order model for drug distribution and assume that either the model parameters
or their distributions are known. We first introduce a cubic spline approximation based method for PK parameter
estimation, as an alternative to the conventional piecewise linear approximation. Previously, properties of
spline approximation were investigated in the context of AUC estimation only [8]. Secondly, using these
improved estimates, we define a generalized optimality criterion that simultaneously takes the accuracy of
spline approximation based estimation of all the three PK parameters into account. We then minimize this
criterion function, using sequential quadratic programming, to obtain the optimal sampling times.

2. Methods

2.1. One-compartmental model

The optimization methodology developed in this study focuses on a one-compartmental model with first order
absorption. In this drug distribution model, the CTC is given as

C(t) =
Dka

V (ka − ke)
(
e−ket − e−kat

)
; ka > ke > 0; D, V > 0; 0 ≤ t < ∞, (1)

where C(t) is the concentration, t is the time in hours (h), D is the dose administered, V is the apparent
volume of distribution, and ka and ke are the absorption and elimination rate constants respectively. In general,
ka , ke , and V are random variables that vary with study subjects and D is fixed and known. Following Kong
and Gonin (4), we will assume the following example values for D and model parameters: D = 400 mg, V =

40 L, ka = 0.2 h−1 , and ke = 0.1 h−1 . The AUC from 0 to ∞ can be obtained by integrating C(t), from 0

to ∞ , which gives AUC(0 −∞) = D/(V ke) = 100. Similarly, tmax and Cmax can be obtained from equation
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(1) as

tmax =
ln

(
ka

ke

)
(ka − ke)

= 6.93, (2)

and

Cmax = C (tmax) =
Dka

V (ka − ke)
(
e−ketmax − e−katmax

)
=

D

V

(
ke

ka

) ke
ka−ke

= 5 (3)

According to this model, if ka is sufficiently larger than ke , the concentration for t > tmax can be approximated

as C(t) ∼= Cmaxe
−ke(t−tmax). Then, the half-life or t1/2 , defined as the time after tmax at which the concentration

drops to half Cmax , i.e. C
(
tmax + t1/2

)
= Cmax

2
, is given by

t1/2
∼= ln (2)

ke
= 6.93 (4)

The t1/2 is important in determining the extent of the sampling period. Sampling should be continued until the

remaining area beyond the last sampling time, that we call as the final time Tf , is negligible. A sampling interval

up to three or four half-lives after tmax is considered sufficient and truncated AUC values are now acceptable
to regulatory agencies. For our example values, tmax +3t1/2 = 27.73 h. Due to practical considerations, we will

assume that Tf = 24 h and focus on estimating AUC from 0 to 24 h. For the given values, this value is

AUC (0 − 24) =

24∫
0

C (t) dt = 82.68 (5)

2.2. Point estimators for PK parameters

We denote the set of parameters used in BE studies with θ , that is, θ = (AUC Cmax tmax)t . We consider

estimating θ from the measurements of concentration C(t) at a given set of sampling times t1 , t2 , . . . , tN .

We assume that there is a default sample at t0 = 0 with C(t0) = 0. We further assume that the last sample
is taken at the final time, i.e. tN = Tf . We will call the point estimators for AUC , Cmax , and tmax as

AÛC , Ĉmax, and t̂max, respectively, so that θ̂ =
(
AÛC Ĉmax t̂max

)t

. Conventionally, i.e. based on a piecewise

linear approximation to CTC, the AUC from 0 to tn is calculated by using the trapezoidal approximation

as AÛC (0 − tN ) =
N∑

i=1

(Ci+Ci−1)(ti−ti−1)
2

. The Ĉmax , and t̂max are simply the maximum of the observed

concentrations and the time at which the maximum is attained.
We introduce the estimators for AUC, Cmax , and tmax based on a cubic spline approximation to CTC.

The approximation is constructed using patches of cubic polynomials [9–11]:

Ĉi (t) =
3∑

k=0

aik (t − ti)
k
, (6)

where aik are the polynomial coefficients, on the ith subinterval ti−1 ≤ t < ti; i = 1, 2, ...,N. While putting
the patches together to obtain the composite approximation or spline interpolation over the entire interval,
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a provision can be made to blend the pieces smoothly, so that the approximation has several continuous
derivatives at the break points. Cubic splines became very popular in function approximation since cubic
polynomials represent a good tradeoff between the flexibility and complexity and it is possible to obtain two
continuous derivatives at the break points. We will call the cubic spline interpolation (CSI) for C(t) as S(t);

that is, S(t) = Ĉi(t) for t ∈ [ti−1, ti), i = 1, 2, ..., N, where Ĉi (t) is given by Equation (6). A matrix equation
expressing all of the continuity conditions at the break points is solved to obtain the polynomial coefficients.

To form a CSI for C(t), we have added two extra points at times 2Tf = 48 h and 3Tf = 72 h to make

sure that the CSI approximates the C(t) accurately beyond 24 h as well. Since we assume that the model and

its parameters are known apriori, the C(t) is known at any time and therefore such a modification is feasible.

We can also provide the slopes at the end points (0 and 72 h), since the derivative of the C(t) is also available

at any time. Figure 1 clearly demonstrates the advantages introduced by these extra conditions/provisions,

where we investigate the behavior of different CSIs over the time interval [0 100] h. The left end point is always

at 0. The solid lines are the actual C(t), whereas the dashed and dotted lines are the CSIs obtained with and

without the end-point-slopes respectively. The C(t) and CSIs were evaluated at times separated by 0.5 h, from

0 to 100, i.e. t = 0 (0.5) 100 h. In the top panel, the right end point is at 24 h and the breaks are at 0 and
13 h. In the middle panel, the right end point is at 48 h and the breaks are at 0, 13 and 24 h. In the bottom
panel, the right end point is at 72 h and the breaks are at 0, 13, 24, and 48h. As we note, the CSI obtained
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Figure 1. Demonstration of the effects of using extra break points and end point slopes in cubic spline approximation.
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with the end points at 0 and 72 h and end-point-slopes provides the best approximation. The approximation
corresponding to these conditions (the dashed line in the bottom panel) is almost indistinguishable from the

exact curve (the solid line).

In the optimization runs that will be covered subsequently, after the CSI is constructed using the extra

conditions discussed, the AÛC (0-24) is obtained by integrating the CSI from 0 to 24 as

AÛC (0 − 24) =

24∫
0

S (t) dt =
N∑

i=1

ti∫
ti−1

Ĉi (t) dt, (7)

Since Ĉi (t)s are cubic polynomials, the integrals in Equation (7). can easily evaluated. To obtain Ĉmax and

t̂max, we have used a fine time grid where the interval [0. . . 24] h was divided into equally spaced subintervals of

length 1 min each, i.e. the time grid was ts = 0 (1/60) 24 h. Therefore, the point estimators for the remaining
two PK parameters of interest are given as

Ĉmax = max{C (ts)} , (8)

t̂max = arg max
ts

{C (ts)} . (9)

2.3. Obtaining optimal sampling times: global optimality criterion and optimiza-

tion

Given N , the number of samples to be taken, and all the parameters that describe the CTC, we would like
to select the sampling times t1 , t2 , . . . ,tN , such that the estimates of PK parameters will be as close to the
actual PK parameters as possible. We will discuss the issue of determining an appropriate or optimal value for
N later.

Optimization of sampling times should involve criterion function that indicates how accurate AUC(0-24),
Cmax and tmax can be estimated from a given set of sampling times. We propose the following global optimality
criterion (GOC) function that employs “Euclidian norm” as a measure of closeness of the estimated values to
actual values:

GOC (t1, t2, ..., tN) =
∥∥∥θ̂ − θ

∥∥∥2

=
(
AÛC (0 − 24) − AUC (0 − 24)

)2

+
(
Ĉmax − Cmax

)2

+
(
t̂max − tmax

)2
.

Here, the actual values of PK parameters, i.e. AUC (0-24), Cmax and tmax , are respectively given by equations

5, 3, and 2, and the estimators AÛC (0-24) , Ĉmax, and t̂maxare respectively given by equations 7, 8, and 9.
The optimal sampling times can be found by minimizing the GOC with respect to t1 , t2 , . . . ,tN . However,
this optimization problem is not a trivial one because of several reasons:

i) There are the following constraints due to the natural ordering of the sampling times:

0 < t1 < t2 < ... < tN−1 < tN = Tf (10)

ii) Optimization techniques have already been developed to deal with this kind of constrained nonlinear
optimization or “nonlinear programming” problem. The underlying assumptions for these techniques are that
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the function to be minimized is continuous, i.e. differentiable with respect to all of its arguments and that only
a local minimum can be returned.

iii) Depending on the randomly chosen initial point in the N -dimensional space of sampling times,
optimization algorithms may not converge to a solution, in which case selecting another random point or
changing algorithms’ tolerances may be necessary.

We note that Ĉmax , and t̂maxmay introduce discontinuities in the GOC, which may adversely affect the
optimization. In Figure 2, we demonstrate such a case where there are three samples: t2 and t3 are fixed at
12.85 and 24, respectively, so that t1 can vary from t0 = 0 up to t2 due to the constraint given by Equation
(10). The upper panel shows the CTC obtained by using our example values. C(t) attains level 4 at t ≈
3.25 and t ≈ 12.85. As shown in the middle panel, the Ĉmax (t1, t2 = 12.85, t3 = 24) stays flat at 4 as t1 varies

from 0 to 3.25, after that it follows C(t) up to t2 . Therefore Ĉmax is discontinuous around t = 3.25. In the

lower panel, we observe the behavior of t̂max (t1, t2 = 12.85, t3 = 24) as t1 varies from 0 to 12.85. Till time 3.25,

the t̂max stays at t2 where the maximum is attained, after which it follows t1 up to t2 . Similar to Ĉmax , t̂max

is also discontinuous around t = 3.25 . Although there exist such discontinuities, we have not run into any
convergence problems during the optimization runs. This indicates that there were no discontinuities near the
solutions. However, even if convergence is achieved, the solution returned is not guaranteed to be the global
minimum. To deal with this complication, we have run optimization algorithm with several different random
initial points and selected the solution that offers the minimum value for the GOC as the optimal solution.
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Figure 2. Demonstration of discontinuity inĈmax , and t̂max.

We have carried out the optimization using fmincon routine [12] of the MATLABTM (The MathWorks

Inc., Natick, MA) Optimization Toolbox. This routine implements a sequential quadratic programming method
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where a quadratic programming subproblem is solved at each iteration. An estimate of the Hessian of the
Lagrangian is updated at each iteration using the well-known Broyden-Fletcher-Goldfarb-Shanno formula [13,

14]. We have chosen this gradient-based technique for the optimization of GOC over other techniques like

Nedler-Meads simplex [15] or adaptive random search [16] because of its speed advantage.

We decomposed the constraints given by Equation (10) into the following “linear inequality” and “lower

and upper bound” constraints as follows: ti+1−ti > 0.1, i = 1, 2, ..., N−2; tN > Tf (linear inequality constraints)

and 0 < ti < Tf , i = 1, 2,..., N (lower and upper bound constraints). Setting the constraints this way ensures

that i) the tN lands exactly on Tf = 24 during the optimization, as there are two competing constraints

on tN , tN ≥ Tf by the inequality constraints and tN ≤ Tf by the upper boundary constraints, and ii) the

separation between the adjacent sampling times is more than 0.1 h (6 min) which signifies a useful constraint,
i.e. practically it is difficult or inconvenient to take two consecutive samples in less than 5-6 min.

3. Results

3.1. Optimal sampling times for fixed ke and ka

We have let N , number of samples, vary from 3 to 9 due to practical considerations and done the optimization
using our example parameters, i.e. D = 400, V = 40, ka = 0.2, and ke = 0.1. In each case, i.e. for different
values of N , we have repeated the optimization runs 100 times with different initial conditions to increase
the chances of establishing the global minimum. Slightly changing with the N value, each run takes about 5

seconds on a PC with 384 MB of memory, 1.6 GHz PentiumTM -4 processor, running under Microsoft Windows

2000TM . The results of optimization, i.e. the optimal sampling times and corresponding optimal values of the

estimated PK parameters and the GOC, are shown in Table 1. Figure 3 shows the optimal AÛC (0-24) , Ĉmax ,

t̂max and GOC as a function of N . We note that N = 5 is an optimal choice for the number samples, since
there is a considerable decrease in the value of the optimal GOC as N moves from 4 to 5, whereas there is
negligible decrease from 5 to 6. In Figure 4, we see the location of optimal sampling times for N = 5 overlaid
on the actual CTC plot.

Table 1. Optimization results for N = 3, 4,. . . , 9; D = 400, V = 40, ka = 0.2, and ke = 0.1.

Optimal Sampling Times (h) Optimal values of the estimated PK
Parameters and the GOC

N t1 t2 t3 t4 t5 t6 t7 t8 t9 AÛC(0-24) Ĉmax t̂max GOCopt

3 6.02 14.04 24.00 - - - - - - 83.08 5.00 7.00 0.16126

4 4.18 9.22 15.98 24.00 - - - - - 82.81 5.01 6.93 0.01711

5 3.21 6.91 11.47 17.45 24.00 - - - - 82.74 5.00 6.93 0.00315

6 2.58 5.82 9.00 13.15 18.37 24.00 - - - 82.71 5.00 6.93 0.00087

7 2.22 4.31 6.74 9.80 13.86 18.63 24.00 - - 82.70 5.00 6.93 0.00033

8 2.09 4.20 6.68 9.60 11.78 14.86 19.08 24.00 - 82.69 5.00 6.93 0.00014

9 1.47 3.48 6.07 8.65 10.01 12.84 16.24 19.98 24.00 82.69 5.00 6.93 0.00008
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Figure 3. The optimal AÛC (0-24) , Ĉmax , t̂max and GOC as a function of N (the number of samples) for the example

case (D = 400, V = 40, ka = 0.2, and ke = 0.1). The horizontal lines in the upper 3 panels show the actual values of

the PK parameters.
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Figure 4. The arrangement/location of the optimal sampling times for the example case (D = 400, V = 40, ka = 0.2,

and ke = 0.1) for N = 5, overlaid on the actual C(t) plot.
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3.2. Optimization for random ke and fixed ka

In this case, we assume that ka is fixed as 0.2 and ke is a random variable with a doubly truncated lognormal

distribution, i.e. lnke ≈ N
(
μke , σ

2
ke

)
. Following Kong and Gonin (4), we have selected the parameters of this

distribution as μke = 0.1 and σke = 0.05. For the underlying compartmental model to be valid, ka should be
larger than ke , we have therefore set an upper bound on ke as 0.75ka . On the other hand, if ke value is too
small, meaning a long elimination time, then the value that we have assumed for the final time, i.e. 24 h, may
not be appropriate. Therefore, to avoid such cases, we have also imposed a lower bound on ke as 0.25ka .

We have generated 500 random ke samples from this distribution to simulate a population, so that we
can investigate the effect of subject variation on the optimal sampling times. For each value of ke and N (from

3 to 9), we have carried out the optimization procedure to find the optimal sampling times as described in the
previous section where both ka and ke were fixed. In each case, we have repeated the optimization attempts
10 times with different initial conditions to locate the global minimum. The total run time of this experiment
was (5 seconds per case) × (10 runs each case) × (500 different ke values) × (7 different N values) = 48.61
h. This way, we have obtained the distribution of optimal sampling times for a simulated population.

Figure 5 shows the mean and median of the optimal GOC values as a function of number of samples N .
We again note that N = 5 is the optimal selection for the number of samples. Figure 6 shows the distributions
of optimal sampling times for N = 5. Figure 7 provides a global picture for the results of the population

simulation for N = 5, where the histograms of optimal AÛC , Ĉmax and t̂max, along with the distributions of
actual PK parameters are given. We note that the distributions of the estimated PK parameters are very close
to those of the actual values.
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Figure 5. Mean and median of the optimal GOC values

(n = 500) as a function of number of samples (N) for

random ke and fixed ka .

Figure 6. Histograms of the optimal sampling times for

N = 5 (after n = 500 trials).

Table 2 presents summary statistics for the optimal sampling times. The means, medians, standard
deviations (SD) and their standard errors (SE) were computed by using the bootstrap technique [17, 18] with

1000 bootstrap samples. We suggest the Mean ± 2SEM (SE of the Mean)for each sampling time as an “optimal
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sampling interval.” These optimal sampling intervals and their length in minutes are reported in the last two
rows of Table 2.
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Figure 7. Histograms of optimal AÛC (0-24), Ĉmax and t̂max (n = 500) along with the distributions of the actual PK

parameters for random ke and fixed ka .

Table 2. Summary statistics of the optimal sampling times for N = 5.

Optimal sampling times (h)

t1 t2 t3 t4 t5
Mean (SE) 3.273 (0.010) 7.039 (0.019) 11.552 (0.024) 17.471 (0.021) 24.000 (0.000)

Median (SE) 3.263 (0.003) 7.061 (0.012) 11.584 (0.024) 17.483 (0.014) 24.000 (0.000)

SD (SE) 0.244 (0.010) 0.443 (0.015) 0.532 (0.020) 0.455 (0.017) 0.000 (0.000)

Optimal Sampling Interval 3.252 - 3.294 7.000 - 7.077 11.505 - 11.599 17.429 - 17.512 24.000 - 24.000
(Mean ± 2SEM)

Length (in minutes) of the 2.503 4.595 5.652 4.962 0
Optimal Sampling Interval

4. Discussion and conclusion

Proper of estimation of PK parameters are of crucial importance in understanding drug dynamics and making
bioequivalence decisions. In PK studies, the PK parameters estimated from a limited number of samples are
compared, therefore the timing of the samples is very important to achieve accurate parameter estimates. In
previous studies, piece-wise straight line fit approximation to the concentration-time-curve is used and the
optimization of the sampling times is done based only on one of the PK parameters, which is the AUC mostly.
Other optimal design strategies based on Fisher’s information matrix suffer from the requirement of having
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accurate prior information and large variances for the estimated optimal sampling times, especially when the
number of samples is small. In this study, we have suggested a cubic spline approximation based method for PK
parameter estimation and introduced a global optimality criterion (GOC) that can simultaneously consider all
the PK parameters. We have considered several provisions to improve the spline approximation and obtained
optimal sampling times by minimizing the GOC using sequential quadratic programming. Along with the
estimation of optimal sampling times, we have also devised a technique to determine the optimal number of
samples to be drawn for accurate and efficient/economical PK parameter estimation.

While forming the GOC, a time resolution of 1 min was used to find Ĉmax and t̂max values. By increasing
this resolution, it should be possible to obtain better Cmax and tmax estimates and therefore lower GOC values.
However, as Figures 3 and 5 show clearly, it is possible to obtain very accurate PK parameter estimates even
with this resolution.

After validating the proposed technique on a sample case where all the model parameters were fixed, we
have assumed that ke , which varies among individuals considerably, comes from a realistic density and studied
the optimal sampling times for a population. We have obtained the optimal sampling times for each generated
value of ke and different N , i.e. number of samples. We have concluded that N = 5 is an optimal choice for
the number of samples for the example and studied the distributions of optimal sampling times for this value of
N . We therefore reported Mean ± 2SEM, which approximately corresponds to 95% confidence interval for the
mean, for each sampling time as an optimal sampling interval. (As we forced the last sample tN to be taken at
24 h exactly, there is not any interval associated with tN . However, it is possible to relax this constraint and
obtain an optimal sampling interval for tN as well.) The use of optimal sampling intervals instead of optimal

sampling times/instants has many convenient practical implications.

As for the future direction of our study, we will assume that all the model parameters come from a
suitable realistic joint lognormal density whose parameters are determined from earlier tests. We will simulate
or generate data (i.e., different ka , ke , and V combinations) from the assumed multivariate density and obtain
the optimal sampling times for each case. Then, following the procedure we have introduced in this study, we
will study the characteristics of the optimal sampling intervals that can be suggested for the whole population.
Although we introduced our approach based on a one-compartmental model, the ideas involved in it are very
general and therefore it can be applied to general PK models as well. We are also planning to evaluate the
impact of optimal sampling time designs in bioequivalence studies in a future study.
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