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Abstract

DNA and protein are the fundamental biological sequences. DNA is a fundamental molecule that plays

a vital role in the processes of life. Proteins synthesized by DNA in a cell are the building blocks of every

living organism. There is a variety of reasons behind the alignment of biological sequences. Biological

sequence alignment helps to discover functional and structural similarity of sequences. Biologists work with

these aligned sequences to construct phylogenetic trees, characterize protein families, and predict protein

structure. Sequence alignment is an extremely promising field of research that is characterized by very high

computational complexity. Stochastic optimization is needed for sequence alignment, as it generates efficient

solutions to the problem. The objective of this study is to survey recent trends in stochastic optimization for

sequence alignment as means of a guide for researchers who are interested in the sequence alignment problem.
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swarm optimization, ant colony optimization

1. Introduction

A molecular biology experiment is not an easy task. Real experiments have to be carefully carried out using
necessary equipment and the results can only be obtained after weeks and months of work. Computational
methods are needed, for they generate solutions faster than conventional experimenting methods in order to
solve complex problems of biological systems. The solution for a biological problem may be acquired in hours
and days instead of weeks and months by using computational methods. Computer science interacts with the
biological sciences as in the field of computational biology for solving biological problems characterized by very
high computational complexity. Examples of biologically inspired computing include molecular modeling [1],

microarray image processing [2], and structural genomics [3]. Each main topic contains a variety of key subtopics.

For example, microarray image segmentation [4] is a subtopic that belongs to microarray image processing. One
of the most important problems in the area of computational biology is sequence alignment. The task is to

157



Turk J Elec Eng & Comp Sci, Vol.19, No.1, 2011

align 2 or more DNA or protein sequences and observe the similarity between them. Biologists work with these
aligned sequences on many biological problems, such as constructing phylogenetic trees, characterizing protein
families, and predicting the structure of proteins.

Quite a number of studies have been conducted on sequence alignment over the last few decades. The
computing time and memory space are the main characteristics that indicate the efficiency of the methods
applied to the problem. Retrieving and analyzing sequences in a fast and efficient manner is important. However,
while the number or size of sequences increases, an exponential growth in computation time could be observed.
As in multiple sequence alignment (MSA), the problem may turn into a nondeterministic polynomial-time

complete (NP-complete) computation problem [5]. There are several approaches developed in the literature
around sequence alignment; however, for MSA, no optimal solution has been found yet.

Stochastic optimization (SO) is an extremely promising field of research, in which several methods have
come up recently. The purpose of this study is to survey the sequence alignment problem, organized as a timeline
through the literature, from the perspective of stochastic optimization. The well-known techniques that are
prominent methods of stochastic optimization have been discussed in detail. The results and distinctive features
obtained have been presented. There is no doubt that the application of stochastic optimization to sequence
alignment will continue with an upward trend. Hopefully, research will provide new ideas in order to find an
effective solution to the problem in the foreseeable future.

This survey aims for a broad discussion of the state of the art in sequence alignment with a main focus
on stochastic optimization. Recent advances in the techniques and methods of stochastic optimization for the
sequence alignment problem have been presented. This paper is organized as follows: The first section is an
introduction to the research area. The second section lays down the description of the problem. The third
section summarizes the familiar stochastic optimization methods being researched, while the fourth section
discusses the applications of stochastic optimization methods to the problem. The results are reported and
discussed in the fifth section. The last section summarizes the study with a conclusion.

2. Sequence alignment problem

2.1. Problem description

As noted in the description of sequence alignment given by Arslan in [6], sequence alignment allows the observing
of similarities between biological sequences; if they are highly similar, then they have similar 3D structures or
share similar functions. The problem can formally be represented as a set of sequences, S = {s 1 , ... , s n }, and
each sequence has its own length. The characters of sequences are defined over an alphabet Σ including a gap
symbol denoted by ‘–’, which is a molecular biology term, indel (insertion or deletion). The indels indicate that

some parts of a sequence are inserted or deleted. The sequence is either a DNA, ribonucleic acid (RNA), or

amino acid (protein) sequence. The nucleotide bases are adenine (A), cytosine (C), guanine (G), thymine (T),

and uracil (U). The alphabet is {A, C, G, T} and {A, C, G, U} for DNA and RNA, respectively. On the other

hand, 20 letters for amino acid symbols {A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V} constitute
the alphabet for protein. There are 2 types of sequence alignment: pairwise and multiple sequence alignment.
Pairwise sequence alignment involves only 2 sequences, whereas multiple sequence alignment involves more than
2. The sequence alignment problem has 2 computational approaches: local alignment and global alignment. In
global alignment, sequences are aligned as a whole, whereas in local sequence alignment, similarities detected
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locally between sequences are aligned. Assume that 2 DNA sequences are given as S1 = {ATTGT} and S2

= {AGGACAT} with lengths |S1 | and |S2 | , respectively. This pair of sequences can be aligned as shown in
Figure 1. The efficiency of an alignment is assessed by the application of some techniques. The most often used
techniques are sequence editing and calculating the similarity score. The edit operations are insertion, deletion,
and substitution. Insertion is the adding of any symbol s in Σ within the sequence. Deletion is the removing
of symbol s in Σ from the sequence. Substitution is replacing symbol s in Σ within the sequence.

� � � � � � � �
� � �
� � � � � � � �

Figure 1. Sequence alignment of 2 DNA sequences.

There exist several scoring schemes for the sequence alignment problem. It is often the case that alignment
methods try to minimize the number of gaps by giving a penalty score for their objective functions. The objective
function is utilized to maximize the alignment similarity of sequences. One component of a scoring system used
in the objective function is penalizing the opening and extending of gaps in the sequence. One familiar approach
is using the affine gap penalty model. Affine gap penalty is calculated by

fa(x) = po + pe(x − 1), (1)

where po is the gap opening penalty, pe is the gap extension penalty, and x is the gap of length. It is observed
that a large gap with a small amount is better than a higher amount of small gaps. Therefore, one should
consider using a gap extension rather than a new gap opening. There is a novel technique called gap profiling
that analyzes the accuracy of indel placement in order to compare the indel positions of 2 MSAs [7]. For protein
analysis, a more consistent way to measure the similarity or dissimilarity between sequences is the use of a
substitution matrix. The most familiar matrices are based on point accepted mutation (PAM) and the blocks

substitution matrix (BLOSUM) [8, 9]. PAM, introduced by Dayhoff in [8], is the first most commonly adapted
similarity measure. PAM matrices are derived from closely related proteins. BLOSUM matrices, introduced by
Henikoff et al. in [9], on the other hand, are developed by estimating the probabilities from conserved regions
of amino acid sequences. BLOSUM matrices are much better in aligning evolutionary divergent sequences.
The main difference between these 2 matrices is that PAM matrices are based on global alignments, whereas
BLOSUM matrices are based on local alignments. Both similarity matrices and gap penalties contain some
specific features. The setting of these parameters in the alignment affects the success of the process [10].

In MSA, one of the most commonly cited examples of the scoring scheme is the sum of pairs method.
The sum of pairs method scores all possible combinations of pairs of residues in a column of a multiple sequence
alignment. More closely related sequences will have a higher weight in this approach. The MSA program
circumvents this by calculating weights to associate to each sequence alignment pair. The weights are then
assigned based on the predicted tree of the aligned sequences.
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Figure 2. Entry of the sequences.

Let us give an MSA alignment example from Clustal [11]. Clustal is a common and widely used alignment

tool for sequence alignment [12]. The example entries of sequences given in Figure 2 are from the European

Bioinformatics Institute (EBI) official website [13]. The process has been carried out usign Clustal 2.0.12 the
results obtained with this version have been given in Figures 3 and 4, respectively.

Figure 3. The score table.

In the example, 3 sequences with an equal length of 60 are the input sequences. When the alignment
process has been completed, the outputs are the alignment result and the scores table. The scores table presents
the sequence alignment scores, which are 48.0, 40.0, and 58.0, respectively, for this example. The lowest and
highest scores represent the lowest and highest similarities between pairs of sequences. Briefly, in Clustal, MSA
is performed through the following steps. First, scores of each pair of sequences are calculated and put in a
distance matrix. Second, the pairwise alignment scores in a distance matrix are used to construct a hierarchy
in the form of a tree. Finally, sequence weights are calculated pairwise based on the tree, and then sequences
are progressively aligned using the tree. Aligned sequences, pointed out with a star ‘*’, denote the matching
character of these 3 sequences.

Exponential growth may take place with the number of sequences in an MSA problem and, as a
consequence, the problem may become intractable. All approaches use some sequence data for performing
alignment. There is an international database known as GenBank (Genetic Sequence Data Bank) that contains

biological sequences for more than 300,000 named organisms [14]. As new sequences are discovered by scientists,
this repository is updated and extended daily. The sequences kept in GenBank provide a useful publicly available
repository for all researchers worldwide. Swiss-Prot is another knowledgebase that keeps only protein sequences.
Swiss-Prot provides useful information about the protein along with its sequence, such as function description,

160



BUCAK, USLAN: Sequence alignment from the perspective of stochastic...,

domain structure, and variations of the protein [15]. Benchmarks assess the success of the methods applied for
optimization problems. In sequence alignment, BAliBASE reference alignments have been mostly used in order
to assess the performance of the applied methods [55]. This database keeps high quality alignments as reference
alignments with their alignment scores.

Figure 4. Alignment result.

2.2. Historical view

In the past decades, several methods were proposed for aligning biological sequences that find the homology
among species effectively. The Needleman-Wunsch algorithm has used the dynamic programming approach
(DP) for pairwise alignments [16]. The usefulness of DP comes from the fact that it ensures the giving of
the maximum score, which means an optimal alignment with any scoring scheme. Another advantage of DP
is that it is easy to implement. Smith and Waterman considered the local alignment of sequences instead of
aligning them entirely [52]. The Needleman-Wunsch approach was extended by Murata et al. to align 3 protein

sequences [17]. Feng et al. utilized the Needleman-Wunsch algorithm for pairwise alignments of sequences and
gave scores for each group, and then progressively aligned groups of sequences in order to accomplish multiple
alignments [18]. The method rests more on the recently diverged sequences and supports the rule of “once
a gap, always a gap.” The progressive alignment approach starts by aligning closely related sequences, and
then adds the other remaining sequences to the alignment progressively in the order of edit distances. The
initial alignment of closely related sequences involves using DP most of the time. This ensures that the initial
alignment is more likely an optimal alignment, but the main disadvantage is that once the initial alignment is
completed, it will not be possible to modify it again.

3. Stochastic optimization

Stochastic optimization is an extremely promising field of research in which several methods have come up
recently, and there is no doubt that this trend will continue and new ideas will be developed in the foreseeable
future. Well-known techniques, the prominent methods of stochastic optimization like simulated annealing,
evolutionary computation, and swarm intelligence, will be discussed here in detail. There are also many other
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methods available for stochastic optimization, like basin-hopping, cross-entropy, hill climbing, etc. However,
initial versions of these algorithms may need to be improved to fit the sequence alignment problem. This is an
open area of research and application of these innovative methods that suit the problem is needed. This paper
focuses only on the most familiar ones for the sequence alignment problem that have been researched recently.
Swarm intelligence has become the prevailing technique recently and it is utilized as an effective tool for finding
solutions for optimization problems. It is inspired by the behavior of swarm insects, like flocks of birds or fish
schools.

3.1. Simulated annealing

Simulated annealing, introduced by Kirkpatrick et al., is a stochastic iterative method that attains an optimal
solution by performing modifications on existing solutions at each step [19]. It is inspired by the annealing
of solids in physics and exposes the similarities between statistical mechanics and combinatorial optimization.
The methodology bears analogy with the cooling process of molten metals through annealing. By raising the
temperature to a very high level, the atoms of the metal lose their crystalline structure and begin to move
freely. The temperature is then gradually declined to a lower level, at which the movements of the atoms are
limited. As a consequence, the atoms get arranged and form a crystal structure that yields the minimum energy.
The cooling process should be carried out at a slow rate that results in the annealing process; otherwise, the
atoms may not achieve the crystal structure and may still be found at a higher energy. Simulated annealing
models this slow cooling process of solids to achieve the minimum energy as an analogy, reaching the minimum
function value. As a result, it attains an optimal or near-optimal solution by implementing an iterative cooling
process from a high temperature, at which solid particles are in the liquid phase. Simulated annealing utilizes a
control parameter, temperature t , for the cooling process. The solid is allowed to attain the thermal equilibrium
for every t degree that has its energy E probabilistically distributed, as given in equation (2), and kb is the
Boltzmann constant. At a high temperature, there is a uniform probability of being at any energy state, whereas
a gradual decrease in temperature tends to have only a small probability of being in a high energy state.

P (E) = e(−E

kbt ) (2)

3.2. Evolutionary computation

Evolutionary computation (EC), which is inspired by the genetic mechanisms in nature, is an important field of
computational intelligence. EC has received the attention of many researchers over the decades and is applied
mainly as an efficient technique for combinatorial optimization problems. A guided search is iteratively applied
using biological mechanisms in EC during the optimization process. A genetic algorithm (GA), which is a
branch of EC, is perhaps the most familiar and most popular stochastic optimization technique. GA is a
heuristic search method inspired by genetic processes in nature [20, 21]. Like in the biology, this method models
and uses inheritance, chromosomes, selection, mutation, and crossover concepts. The basic GA algorithm
starts initially with a population selected from a set of chromosomes that are potential solutions. Successive
individuals within the population are crossed over or mutated so that new individuals are generated. When
2 parent chromosomes are crossed over, the new chromosomes generated are the offspring. Then the best
chromosomes from the population are selected and the weak ones are eliminated, and the next generation of
the population is formed. A fitness function is utilized to the selection process, which assigns a fitness value to
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each chromosome. Those that have best fitness value among others in the population survive to give offspring
for the new generation. This process goes on until a stopping condition is satisfied. The stopping condition is
either an iteration count or an optimal fitness that is achieved by the individuals in the population. The steps
of the GA algorithm are as follows:

Step 1: Initialize the population with a set of chromosomes.

Step 2: Calculate the fitness value about each individual in the population according to a fitness function.

Step 3: Select the individuals that have the best fitness values.

Step 4: Generate new offspring for the new generation using genetic operators.

Step 5: Replace weak chromosomes in the population with those newly generated ones.

Step 6: Repeatedly apply the steps from Step 2 until the stopping condition is satisfied.

For small-size problems, GAs can find optimal solutions; however, as the size of the problem grows, it
can fall behind the optimal solutions.

3.3. Ant colony optimization

Ant colony optimization is one of the methods used in combinatorial optimization that is inspired from nature,
by observing swarm intelligence. It is observed that biological ants can find the shortest path from a food source
to the nest [22, 23]. Dorigo and Gambardella described an artificial ant colony in their papers as capable of

solving the traveling salesman problem (TSP) [24-26]. The idea is that each artificial ant moves from one city
to another with a probabilistic decision on a TSP graph. The probabilistic decision made by an artificial ant
is based on the edges that contain a pheromone trail and cities that are close by. Ants modify the pheromone
trail of a city when they move to another city. Once the ants complete their tours, the shortest tour travelled
by the ant is selected and the edges belonging to this tour are globally modified. ACO is good at escaping from
local minimums. This is achieved by the local update rule, which encourages ants to explore.

The equations to model ACO can be described as follows: The decisions made by ant k to select the next
city s from city r are shown in equations (3) and (4), respectively. Equation (3) represents a selection of ant

k from cities having shorter distances and greater amounts of pheromone, whereas equation (4) allows for ant

k to probabilistically select the next city. In other terms, equation (3) is used as exploitation and equation (4)
is used as an exploration for ants within the mathematical model. These 2 equations together form the state
transition rules for the ACO method.

arg max
u∈Uk(r)

= [τ (r, s)]α [η(r, s)]β , if q ≤ q0, (3)

pk(r, s) =
[τ (r, s)]α [η(r, s)]β

∑
u∈Uk(r) [τ (r, s)]α [η(r, s)]β

, if s ∈ Uk(r) and q > q0. (4)

Here, q is a random value with a uniform distribution over [0,1] and q0 is a predefined parameter in [0,1]. As
q0 gets smaller, the more probabilistically ants tend to make a random choice. The cities unvisited by ant k

located at city r during the travel are denoted by Uk(r). α and β are parameters that indicate the relative
importance of the pheromone trail and of the closeness between cities, respectively. τ denotes the amount of
pheromone trail and η denotes the ant’s heuristic, that is, the inverse of the distance between cities r and s .
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The pheromone level on the selected edge is updated according to the local update rule in equation (5).
In time, the pheromone amount on the edge weakens. ρ denotes the local pheromone evaporation parameter
with a value between 0 and 1. t0 denotes the initial amount of pheromone deposited on each of the edges.

τ (r, s) = (1 − ρ)τ (r, s) + ρτ0 (5)

Once all ants construct a tour that corresponds to a complete iteration, a global update of the pheromone will
take place. The shortest tour made by an ant from the beginning is selected. Edges as a function of pairs of
(r , s) that compose the optimal solution as the shortest path are rewarded with an increase in their pheromone

level. This is expressed in equation (6), the global update rule, as follows:

τ (r, s) = (1 − ρ)τ (r, s) + ρ
1

Dmin
, (6)

where Dmin is the global shortest distance found since the beginning. Today, ACO is widely used in optimization
problems. Blum has discussed recent trends with ACO and claimed that the research direction offers many
possibilities for valuable future research [51].

3.4. Particle swarm optimization

Inspired by social behavior observed in the animal kingdom, some algorithms have been developed in the field
of artificial intelligence. Particle swarm optimization, founded by Eberhart et al., is an optimization method
that models this social behavior, particularly in terms of fish schooling and bird flocking [27]. It is based on
the idea of quickly adapting to the changes in the speed and direction of neighboring particles. PSO contains
some similarities to genetic algorithms. The significantly different aspect of PSO is that it does not include the
use of genetic operators. The mathematical model of the foraging behavior of the swarm in a PSO algorithm
is briefly described below. PSO can formally be defined as a kind of stochastic optimization search technique
with the following components:

Step 1: The initial state that includes a population of random solutions.

Step 2: Particles that are potential solutions fly through the search space.

Step 3: An objective function that searches for an optimal solution by updating generations.

Step 4: A stopping criterion that determines when the search is over.

Birds flock together and follow a leader while keeping the distance between them firm. During the
movement on search space, each particle moves towards proximity of its best and its neighbors’ best, which are
called pbest and gbest, respectively. The velocity of a particle is updated as the sum of inertia of its previous
velocity, its personal experience, and its cooperation among particles. This equation is given by the following:

vid= wvid + c1r1(pid − xid) + c2r2(pgd − xid). (7)

Here, w is the inertia weight [28], c1 and c2 are the acceleration constants, and r1 and r2 are 2 randomly

generated values with a uniform distribution over [0,1]. Particles move to their new positions, given by

xid = xid + vid. (8)

164



BUCAK, USLAN: Sequence alignment from the perspective of stochastic...,

4. Application of stochastic optimization methods to the sequence
alignment problem

Numerous algorithms have been proposed for the sequence alignment problem over the past decades. Moreover,
over the last few years, there has been a growing upward trend of researching stochastic optimization methods.
Notredame pointed out the increasing use of iterative optimization strategies on sequence alignment [29]. This
section summarizes recent developments in a number of stochastic optimization methods, such as simulated
annealing, evolutionary algorithms, and swarm intelligence, applied to the sequence alignment problem. A
timeline of the developments is given for a historical view. Stochastic optimization methods have been in use
since the mid-1990s in order to solve the sequence alignment problem. Other than the well-known techniques,
stochastic optimization consists of many other algorithms. The solution is being pursued with an iterative
alignment approach; first, an initial alignment of sequences is created, and then, in each iteration, the alignment
of sequences is modified in order to minimize the error and maximize the overall alignment.

Simulated annealing (SA) was one of the first heuristics applied to sequence alignment [30]. Briefly, the
system works as follows. Initially, the sequences are randomly aligned with the control parameter, temperature,
which is set at a very high level. The system tends to move at low energy states with an analogy of altering
from one solution to other neighboring solutions in order to find the optimal one. Next, depending on the move,
the score is calculated and the move is either accepted or rejected by evaluating the score of the alignment.
Subsequently, the temperature is slowly decreased. The process continues until it reaches a stopping criterion
or until a predefined iteration count with an analogy that the freezing point has been reached. Variants of
this method have been studied recently. Kim et al. suggested the use of simulated annealing to overcome
some limitations of dynamic programming that require long computation time [31]. Keith et al. have utilized
simulated annealing to find a consensus sequence that represents common features shared by most family
members of the related sequences [32]. This algorithm searches pairs of sequences in order to find a resulting
sequence that has the shortest distance from each of the sequences in the family. Hernandez-Guia et al. proposed
a probabilistic algorithm to solve the multiple sequence alignment problem based on simulated annealing
that exploits the representation of the multiple alignment between D sequences as a directed polymer in
D dimensions [33].

Researchers found that evolutionary computation could be a good alternative to SA for the sequence
alignment problem. EC, inspired by genetic processes, is a stochastic approach that is iteratively applied to find
an optimal solution in the search space. Hence, EC began to be used in sequence alignment problems in the
1990s. The system is basically derived from the simple genetic algorithm. Over time, GA and many variants of
it have been applied to the sequence alignment problem. Shyu et al. reviewed and presented the strengths and
weaknesses of their recent work for sequence alignment using evolutionary computation [34]. The objective of
genetic algorithms applied to the sequence alignment problem is to generate as many different multiple sequence
alignments as possible and to select and iterate on the alignments that have good fitness values through the
use of genetic operators, mutation, and crossover concepts. It starts initially with a population selected from a
set of alignments. These alignments are the models of chromosomes that can be stated as candidate solutions.
Crossover ensures 2 different alignments combined together to form a new one. A cutoff position on parent
alignments is arbitrarily chosen and the left side of a parent combines with the right side of the other parent to
produce a child. Each candidate solution has a fitness value. In a multiple sequence alignment problem, those
that have good fitness values are the ones that have better sums of pair scores. The best alignments within
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the population are then crossed over or mutated so that new alignments are generated. Moreover, a selection
from the population is performed; weak alignments are eliminated from the population and newly generated
alignments are added to the population. This process continues until the stopping condition is satisfied. In GA,
the stopping condition can be an iteration count or an appearance to attain the optimal fitness of alignment.
Wayama et al. proposed GA for protein sequence alignment in which only up to a small number of residues
could optimally be aligned [35]. Serial alignment by genetic algorithm (SAGA), introduced by Notredame, is
one such approach that achieves very promising results but becomes slow when more than 20 sequences are
used [36]. Zhang et al. implemented GA for sequence alignment to identify matches and mismatches, and

the average computing time was much more efficient as compared with pairwise dynamic programming [37].
Chellapilla et al. proposed an evolutionary programming approach for sequence alignment, and the offspring
generated by parents were probabilistically varied using several predefined variation operators [38]. Horng et al.
used GA and reported that good performance and efficiency were achieved in the majority of datasets with high
similar sequences with long lengths [39]. Omar et al. proposed an algorithm using GA for the multiple sequence

alignment with simulated annealing and considered simulated annealing as an alignment improver [53]. Lee et

al. presented a genetic algorithm by incorporating a local search with ant colony optimization [54].

Swarm intelligence, which is a branch of artificial intelligence, is another area becoming prominent in
the field of optimization. Ant colony optimization (ACO) and particle swarm optimization (PSO) are the main
swarm intelligence methods. ACO is inspired by the foraging behavior of biological ants that find the shortest
path from a food source to the nest. PSO is also another major swarm intelligence method that models the
swarm’s social behavior, particularly in terms of fish schooling and bird flocking. A particle adapts its speed
and direction to the changes in the speed and direction of neighboring particles within the swarm. ACO was one
of the first swarm intelligence methods applied to the sequence alignment problem. It is one of the problems
residing within the large range of discrete combinatorial optimization problems. Briefly, ants search for a
pairwise alignment of 2 sequences in the following way. They move on the sequences to choose the matching
characters. The selected probability of characters or gaps is determined by the matching score and pheromone
deposited on matching characters. The ants ultimately tend to pursue finding the highest alignment score with
an analogy of the shortest route attained. Once the optimal route is determined by the ants, then the stopping
criterion is reached. In recent years, ACO has been applied to the sequence alignment problem in many ways.
Moss et al. applied one of the first examples of ACO to sequence alignment and found that the results were
efficient when sequences were similar [40]. Karpenko et al. considered applying ACO for finding the optimal

multiple peptide alignment [41]. Multiple peptide alignment is considered to be ungapped and is used for the
derivation of a position-specific scoring matrix for a given set of short protein peptides. Mikami et al. focused
on improving multiple peptides by determining a better starting point for each sequence [42]. Y. Chen et al.

proposed a divide-and-conquer approach based on ACO in order to solve multiple sequence alignment [43]. In
this algorithm, a set of sequences are divided into several subsections vertically by splitting the sequences. Next,
ACO is used to align sequences for each subsection. The alignment of original sequences can then be obtained by
assembling the result of each subsection. Avoidance of the local optimum was achieved by adaptively adjusting
the parameters and updating the pheromones. W. Chen et al. proposed a new method for pairwise alignment
[44]. This method can find the optimal alignment without the use of a scoring matrix. The aligning process
employs a plan by the modified dot plans. The next position will be selected by the amount of pheromone
and the matching score of candidates. W. Chen et al. further studied the sequence alignment problem, this
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time, the multiple alignment case [45], by taking every possible aligning result into account by defining the
representation of gap insertion and the scoring rule and determining the value of heuristic information in every
optional path. The study employed ACO for finding optimal paths by using the multidimensional graph. PSO
is the next swarm intelligence method applied to the sequence alignment problem. In recent years, due to its
simple, fast, cost-effective properties, PSO has attracted the attention of many researchers and has been applied
to many computational problems. In short, the system works for the pairwise alignment case as follows. A
motion space for the particles is constructed as a matrix based on 2 sequences. Each particle starts from the
left-top corner of the matrix and takes a path to reach the right-bottom corner in order to build the alignment.
At each step, the particle can choose from 3 directions to move: down, right, and lower diagonal. During the
moves on the search space, each particle moves toward the proximity of its best alignment and global best
alignment. The velocity and position of the particles are updated at each iteration until a stopping criterion
that determines the search is over. Ge et al. described an immune particle swarm optimization (IPSO), which

was based on the models of the vaccination and receptor editing in immune systems [46]. First, hidden Markov

models (HMMs) were trained and then integrated with IPSO. The tests were performed by benchmark alignment

database (BAliBASE) in order to measure the performance of the proposed algorithm. Rodriguez et al. used

PSO as an alignment improver [50]. The alignment was first obtained by using Clustal. They designed special
representation and operators for PSO and performed their tests over families of proteins. Juang et al. presented
an algorithm that consisted of DP and PSO working together [47]. This approach considers some drawbacks
that arise from the inefficient computational and memory capacity, and the trapping local optimum problem
in DP when dealing with more than 2 sequences. PSO is used for escaping the local optimum problem, and
sequences are aligned progressively and iteratively by the pairwise DP. Xu et al. proposed a PSO method along
with designing 3 operators, which were gap deletion, gap insertion, and local search, in order to solve MSA [48].

Lei et al. proposed an algorithm that used the idea of chaos systems with PSO [49]. The particle population

was initialized using the chaotic variables with a uniform distribution over [0,1] and a logistic map was used to
generate the sequences; the diversity of the population became stronger.

5. Results and discussion

Today, popular MSA tools still use DP, but the drawback is the excessive need for increase in computational
capacity and memory in proportion to the increase in the number of sequences and sequence lengths. An increase
in problem size can cause exponential growth in computation time. Figure 5 illustrates how exponential growth
occurs in computational resources with an increase in the number of sequences. This is where stochastic
optimization may take place in order to efficiently solve the sequence alignment problem.

In this study, we have surveyed several recent and past approaches of the existing literature for sequence
alignment from the perspective of stochastic optimization. Due to the NP-hard nature of MSA, no optimal
solution has yet been found. On the other hand, pairwise alignment may need excessive computational resources
as the sequence size increase. Hence, there have been many methods proposed by researchers in order to
retrieve and analyze sequences in a fast and efficient manner. Researchers have to consider 3 basic parameters
in particular, the number of sequences, the average length of sequences, and the overall similarity of sequences,
when developing an algorithm in order to efficiently solve the multiple sequence alignment problem. The
computing time and memory space are the main characteristics that indicate the efficiency of the methods
applied to the problem. A wide variety of opportunities can appear when researching the sequence alignment
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problem for finding an optimal solution to the problem. Research will hopefully allow the overcoming of the
dramatic increase in computation time. Consequently, as researchers develop new or existing algorithms, new
horizons will be opened and this might result in significant improvements in complex sequence alignments. In
the following tables, we present the methods surveyed in this paper, aiming to find an optimal solution to the
problem from the perspective of stochastic optimization. Table 1 gives further details of the indicative timeline
for this work. Table 2 summarizes the performance evolutions of the references given in Table 1.
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Figure 5. Exponential growth in computational resources with an increase in the number of sequences.

Table 1. Stochastic optimization methods applied for sequence alignment problem.

SO Method Authors Characteristics Year Ref.
SA Ishikawa et al. One of the first heuristics for the problem 1993 [30]
SA Kim et al. Simulated annealing based 1994 [31]
GA Wayama et al. Simple genetic algorithm employed 1995 [35]
GA Notredame et al. The use of operators with a scheduling scheme 1996 [36]
GA Zhang et al. Use of a genetic algorithm 1997 [37]
EP Chellapilla et al. Evolutionary programming-based 1999 [38]
SA Keith et al. Finding a consensus sequence 2002 [32]

ACO Moss et al. Multiple sequence alignment 2003 [40]
GA Shyu et al. Finding a consensus sequence 2004 [34]

ACO Karpenko et al. Applied on MHC class II molecules 2005 [41]
SA Hernandez-Guia et al. Indels without extra computational cost 2005 [33]

PSO Ge et al. Immune with HMM 2005 [46]
GA Omar et al. With simulated annealing 2005 [53]

ACO Y. Chen et al. Divide-and-conquer 2006 [43]
PSO Rodriguez et al. Alignment improver 2007 [50]
ACO W. Chen et al. Pairwise alignment 2008 [44]
PSO Juang et al. With DP 2008 [47]
GA Lee et al. With ACO 2008 [54]
PSO Xu et al. With the design of 3 operators 2009 [48]
ACO W. Chen et al. Multiple alignment 2009 [45]
PSO Lei et al. Chaotic approach 2009 [49]
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Table 2. Performance evaluations of the applied stochastic optimization methods.

SO Method Performance Evaluation Ref.
SA Utilized parallel algorithm to achieve reasonable solution times [30]
SA Overcomes some limitations of dynamic programming [31]
GA Succeeds to find optimal values of the genetic algorithms parameters [35]
GA Becomes slow when more than 20 sequences are used [36]
GA More efficient when compared with pairwise dynamic programming [37]
EP The quality of solutions is comparable to those obtained with Clustal [38]
SA Results are similar to and in many cases better than Clustal [32]

ACO Efficient when sequences are similar [40]
GA Iterations do not depend on the number of sequences aligned [34]

ACO More versatile in finding the best value prompter [41]
SA Satisfactory for small numbers of sequences [33]

PSO Faster alignment [46]
GA Simulated annealing as an alignment improver [53]

ACO Quality solution and reduced running time [43]
PSO Improves a sequence alignment previously obtained using Clustal [50]
ACO No use of scoring matrix [44]
PSO Good at escaping the local optimum [47]
GA Better performance than other algorithms when similarity of dataset is low [54]
GA More efficient compared with Clustal [48]
PSO Gives good results on MSA benchmarks and can improve the solution quality [45]
ACO Promising performance on datasets with different similarity [49]

Simulated annealing was one of the first stochastic optimization methods applied to the sequence align-
ment problem. One of the major drawbacks of simulated annealing is that it can be trapped in a local optimal
alignment, although there could exist a globally optimal aligned sequence. SA is also considered too slow to
converge, and some researchers say that it can be considered as an alignment improver. On the other hand, for
small numbers of sequences, GA is a good alternative for finding the optimal solution. However, as the number
of sequences increases, it can fall behind optimal solutions and exponential growth in time may be observed.
Swarm intelligence methods have some advantages, such as self-organization, robustness, and flexibility. Self-
organization is the cooperation of individuals to accomplish difficult tasks without any strict top-down control.
It is robust because the swarm can sustain its tasks even if some individuals fail to fulfill their tasks. Flexibility
is the adaptation of individuals in the changing environment. Being equipped with these properties, swarm
intelligence could be employed for solving relatively complex problems, as in sequence alignment.

6. Conclusion

This paper is a survey, organized as a timeline through the literature, aiming to provide a guide for researchers
on the sequence alignment problem from the perspective of stochastic optimization and swarm intelligence.
Biology is increasingly becoming an entirely data-driven science, making computation very essential for research.
Sequence alignment is an essential task in computational biology. Alignment problems are considered to be NP-
hard. An increase in problem size can cause exponential growth in computation time. Researchers develop new
or existing algorithms for improving speed and sensitivity as the main goal. Although dynamic programming
gives us the exact and optimal solutions, they are very slow. In order to gain speed, heuristics is considered
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as an option. More often than not, finding a near optimal sequence alignment would have a higher degree of
importance than finding the exact or optimal solution. This is where stochastic optimization methods gain
importance, and they first come to mind as a methodic approach to the problem. In conclusion, this survey lays
down the sequence alignment problem from the point of view of stochastic optimization and swarm intelligence
and presents distinctive features of each investigated method.
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