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Abstract

A new low-complexity parameters estimator for multiple two-dimensional (2D) domain incoherently

distributed (ID) sources is presented. One 2D domain ID source is parameterized with four parameters, the

central azimuth direction-of-arrival (DOA), azimuth angular spread, central elevation DOA and elevation

angular spread. Based on the eigenstructure between the steering matrix and signal subspace, an average

total least-squares via rotational invariance technique (TLS-ESPRIT) is used to estimate the central elevation

DOA, and then a generalized multiple signal classification (GMUSIC) algorithm is derived to estimate the

central azimuth DOA. Utilizing preliminary estimates obtained at a pre-processing stage, the angular spread

parameters can be obtained by matrix transform. To estimate four-dimensional parameters, our algorithm

only needs one-dimensional search. Compared with earlier algorithms, our method has lower computational

cost. In addition, it can be applied to scenarios with multiple sources that may have different angular power

densities. Finally, the Cramér-Rao Lower bound (CRLB) for parameters estimation of 2D domain ID sources

is also derived. Numerical simulations are carried out to study the performance of the suggested estimator.

Key Words: Distributed sources, parameter estimation, angular spread, direction-of-arrival, source local-

ization

1. Introduction

In mobile communications, due to local scattering in the vicinity of the mobile, the sources are no longer viewed
as point sources by the array in the base station, in that they represent spatially distributed sources with some
central angles and angular spreads. Angular spreads can increase up to 10◦ depending on the distance between
the mobile and the base station as well as the base station’s height in practice [1]. Hence, in such case, the
distributed source model is more appropriate than the point source one. The direct application of many classical
direction-of-arrival (DOA) estimators [2, 3, 4, 5, 6], which are designed for point source, will cause deteriorated
performance.
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In [7], the distributed source models are classified into coherently distributed (CD) source and incoherently

distributed (ID) source, depending on the relationship between the channel coherency time and the observation
period. For a CD source, all signal components arriving from different directions are time delay replicas of the
same signal, whereas for the ID source case, these components are considered to be uncorrelated.

Several techniques have been proposed for distributed source parameters estimation. A class of extensions
tp the MUSIC algorithm, such as distributed source parameter estimator (DSPE) in [7] and the dispersed signal

parameter estimator (DISPARE) in [8], have been proposed. Both algorithms involve a 2D search and, therefore,

are computationally intensive. A maximum likelihood (ML) [9] and weighted subspace fitting (WSF) [10] have
been proposed to estimate distributed source parameters, the computational costs of these algorithms remain
prohibitively high since a multidimensional search is required. Recently, the covariance matching estimation
technique (COMET) [11], which is based on the extended invariance principle (EXIP), has been used to compute
the central DOA and angular spread of single distributed source using two successive one-dimensional searches.
However, this technique has an ambiguity [12] and cannot be extended to multiple sources case. To overcome

the drawbacks, a modified COMET-EXIP method [12] has been used to solve the ambiguity problem. Based on

an approximation of the array covariance matrix, [13] proposed a new multiple distributed sources parameters
estimation algorithm with iterative search technique. The algorithm needs preliminary DOA estimates of the
sources and subjects to local minimum problem. A parameters estimation algorithm using ESPRIT for the
distributed sources model was proposed in [14], in which the central DOAs of the sources are estimated by using

TLS-ESPRIT with two closely spaced uniform linear arrays (ULAs) and the angular spreads are estimated by
one-dimensional DSPE spectrum.

However, all the algorithms mentioned above are designed for 1D domain distributed sources. That is,
it commonly assumes that the sources and the base arrays are in the same plane and the parameters to be
estimated are azimuths-only and their angular spreads. However, in most cases, sources and receiving arrays
are not in the same plane, which correspond to a 2D domain distributed sources model. In this study, we
consider parameters estimation problem for multiple 2D domain ID sources. The 1D domain ID sources are
only special cases of our model [15].

The computational complexity of the parameters estimator for 2D domain ID sources is normally high
since four-dimensional optimization is needed. In [16] and [17], two kinds of 2D domain CD source parameters

estimation techniques using uniform circular arrays (UCAs) and L-shape ULA, respectively, have been proposed.
These algorithms can give more exact parameters estimation results, however, they need two two-dimensional
searches and the computation burden is still large. In [18], the authors consider the central azimuth DOAs
and central elevation DOAs estimation problem using a pair of UCAs under 2D domain CD sources model.
The central azimuth DOAs and central elevation DOAs are estimated by sequential one-dimensional searching
(SOS) algorithm. Two-dimensional search is simplified as one-dimensional one. However, it can not estimate
the azimuth angular spreads and elevation angular spreads parameters. In addition, the algorithms listed above
are designed only for 2D domain CD sources. Additionally, for 2D domain CD sources, an improved source
localization method based quadric rotational invariance property (QRIP) method has been developed in our

recent work [19]. In this work, only 2D domain ID sources model is considered.

In this study, we develop a new low-complexity parameters estimation algorithm for 2D domain ID sources
using a pair of uniform circular arrays (UCAs). Based on the eigenstructure between the steering matrix and
signal subspace, an average TLS-ESPRIT algorithm is adopted to estimate the central elevation DOAs, and a
new GMUSIC algorithm is derived to estimate the central azimuth DOAs. Utilizing the preliminary estimation
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Figure 1. A pair of uniform circular array geometry.

results, the angular spreads parameters can be obtained by matrix transform. To estimate the four-dimensional
parameters, our approach only needs one-dimensional search. Compared with the existing method, our method
has lower computational cost and does not exist parameters pairing problem. In addition, it can be applied to
scenarios with multiple distributed sources that may have different angular power densities.

2. 2D domain incoherently distributed sources signal model

Assume that the signals impinge on UCAs of 2L sensors from q far-field narrowband incoherently distributed
sources. The geometry structure of receiving arrays using a pair of UCAs is shown in Figure 2. The two UCAs
X and Y are displaced from each other by a known distance d vertically and the origin of the coordinate
system is located at the center of the array X . Each of the UCAs has L sensors. The L × 1 array receiving
signal vectors of the two arrays can be modeled as

x(t) =
q∑

i=1

∫ π/2

−π/2

∫ 2π

0

a(ϑ, ϕ)si(ϑ, ϕ; μi, t)dϑdϕ + nx(t), (1)

y (t) =
q∑

i=1

∫ π/2

−π/2

∫ 2π

0

a (ϑ, ϕ) e−jκ cosϕsi (ϑ, ϕ; μi, t) dϑdϕ + ny (t) , (2)

where si(ϑ, ϕ; μi, t) is the complex random time-varying angular distribution of the ith source; and κ = 2πd/λ ,

with λ being the wavelength. a(ϑ, ϕ) is the response of array to unit energy source emitting from the direction

(ϑ, ϕ). nx(t) and ny(t) are the additive zero-mean spatially white noise in arrays X and Y . The parameter

vector μi = [θi, φi, σθi , σφi]T , which characterizes the angular distribution of the ith 2D domain ID source, is to

be estimated. The symbols θi , φi , σθi and σφi are the central elevation DOA, central azimuth DOA, elevation

angular spread and azimuth angular spread of the ith 2D domain ID source, respectively. The steering vector
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and matrix of UCA can be expressed as

a(θi, φi) = [ejη sin θi cos(φi−γ1), ejη sin θi cos(φi−γ2), . . . , ejη sin θi cos(φi−γL)]T

and

A = [a (θ1, φ1) , a (θ2, φ2) , . . . , a (θq , φq)] ,

respectively. Among them, η = 2πr/λ and γk = 2π (k − 1) /L(k = 1, 2, . . . , L), with r being the radius of
UCA and T being a transposition operator. nx and ny are L × 1 additive Gaussian vectors with zero-mean

and covariance matrix E
[
nxnH

x

]
= E

[
nynH

y

]
= σ2

nIL , where σ2
n is noise variance and E {} is expectation

operator. The integer limits for ϕ and ϑ are 0 ≤ ϕ ≤ 2π and −π/2 ≤ ϑ ≤ π/2, respectively.

For 2D domain ID source, the angular cross-correlation kernel function can be defined as [14]

pij(ϑ, ϕ, ϑ′, ϕ′; μi, μj) = E
{
si(ϑ, ϕ; μi, t)s∗j (ϑ′, ϕ′; μj, t)

}
, (3)

since the components arriving from different directions in the same 2D domain ID source are uncorrelated, and
we also assume that all distributed sources are mutual uncorrelated yields

pij(ϑ, ϕ, ϑ′, ϕ′; μi, μj) = σ2
siρi(ϑ, ϕ; μi)δ(θ − θ′)δ(ϕ − ϕ′)δij , (4)

in which σ2
si is the power of the ith source, ρi(ϑ, ϕ; μi) is deterministic angular power density and δ() is Dirac

function. It is reasonable to assume that it is a unimodal symmetrical function with respect to (θi, φi). The
index i shows that different sources may have different deterministic angular power density functions. It satisfies
the relationship as ∫ π/2

−π/2

∫ 2π

0

ρi(ϑ, ϕ; μi)dϑdϕ = 1, i = 1, 2, . . . , q. (5)

Assuming that ϑ and ϕ are independent each other, i.e., it follows ρi(ϑ, ϕ; μi) = fϑ(ϑ; μi)fϕ(ϕ; μi),

in which fϑ(ϑ; μi) and fϕ(ϕ; μi) are the probability density function of ϑ and ϕ , respectively. Using the
first-order and second-order central moment information of the angular power density, the central DOA θi , φi

and angular spreads σθi and σφi in vector μi can be defined as [13]

θi = M1
θi

Δ=
∫ π/2

−π/2

∫ 2π

0

ϑρi (ϑ, ϕ; μi) dϑdϕ, (6)

φi = M1
φi

Δ=
∫ π/2

−π/2

∫ 2π

0

ϕρi (ϑ, ϕ; μi) dϑdϕ, (7)

σ2
θi

= M2
θi

Δ=
∫ π/2

−π/2

∫ 2π

0

(ϑ − θi)
2
ρi (ϑ, ϕ; μi) dϑdϕ, (8)

σ2
φi

= M2
φi

Δ=
∫ π/2

−π/2

∫ 2π

0

(ϕ − φi)
2 ρi (ϑ, ϕ; μi) dϑdϕ. (9)
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Assuming that the sources and the noises are uncorrelated, so the covariance matrix of array receiving
signal vectors x (t) and y (t) can be given by

Rx = Ry =
q∑

i=1

σ2
siRi + σ2

nIL, (10)

where

Ri =
∫ π/2

−π/2

∫ 2π

0

ρi (ϑ, ϕ; μi)a (ϑ, ϕ)aH (ϑ, ϕ) dϑdϕ (11)

is normalized covariance matrix for the ith source. The expression of Ri for different deterministic angular
power density functions can be seen from Appendix 6.

3. A low-complexity parameters estimator for multiple 2D domain
ID sources

3.1. TLS-ESPRIT algorithm for central elevation DOAs estimation

In what follows, an approximate invariance property between the receiving signal vectors of x (t) and y (t) ,
which is based on first-order Taylor series expansion, is derived to estimate the central elevation DOAs

Let the centroid of ρi (ϑ, ϕ; μi) be (θi, φi), the first-order Taylor series expansion of the steering vector

a (ϑ, ϕ) around (θi, φi) can be expressed as

a(ϑ, ϕ) = a(θi, φi) + a′
ϑ(θi, φi)(ϑ − θi) + a′

ϕ(θi, φi)(ϕ − φi), (12)

where a′
ϑ(θi, φi) and a′

ϕ(θi, φi) are the first-order derivative of a(ϑ, ϕ) with respect to ϑ and ϕ around

(θi, φi), respectively.

Introducing the following random variables

α0i =
∫ π/2

−π/2

∫ 2π

0

si(ϑ, ϕ; μi, t)dϑdϕ, (13)

αθi =
∫ π/2

−π/2

∫ 2π

0

(ϑ − θi) si (ϑ, ϕ; μi, t) dϑdϕ, (14)

αφi =
∫ π/2

−π/2

∫ 2π

0

(ϕ − φi) si (ϑ, ϕ; μi, t) dϑdϕ. (15)

Therefore, for q 2D domain ID sources, equation (1) can be approximated as

x ≈ Ās + nx, (16)

in which
Ā = [ā(θ1 , φ1), ā(θ2, φ2), . . . , ā(θq , φq)], (17)

s = [s1, s2, . . . , sq]T , (18)
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where
ā(θi, φi) = [a(θi, φi), a′

ϑ(θi, φi), a′
ϕ(θi, φi)], (19)

si = [α0i, αθi, αφi]T , (20)

If different sources are mutually uncorrelated and ϑ and ϕ are independent each other simultaneously,
one obtains

E
{
ανiα∗

κj

}
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ2
si, ν = κ = 0

M2
θi

, ν = κ = θ

M2
φi

,ν = κ = φ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,i = j

0, ν �= κ, i �= j

(21)

Hence, the covariance matrix of array receiving signal vector x (t) can be approximated as

Rax ≈ ĀΛsĀH + σ2
nIL, (22)

where {
Λs = diag (Λs1, Λs2, . . . ,Λsq)
Λsi = σ2

sidiag
(
1, M2

θi
, M2

φi

)
.

(23)

Now, we define

b (ϑ, ϕ) = a (ϑ, ϕ) e−jκ cos,ϑ, (24)

similar to equation (12), the first-order Taylor series expansion of b (ϑ, ϕ) around (θi, φi) can be given by

b (ϑ, ϕ) = b (θi, φi) + b′
ϑ (θi, φi) (ϑ − θi) + b′

ϕ (θi, φi) (ϕ − φi) . (25)

Then the derivative of b (ϑ, ϕ) with respect to the variables ϑ and ϕ can be written as

b′
ϑ (θi, φi) = a′

ϑ (θi, φi) e−jκ cos θi + jκ sin θia (θi, φi) e−jκ cos θi , (26)

b′
ϕ (θi, φi) = a′

ϕ (θi, φi) e−jκ cos θi , (27)

Under the assumption d/λ � 1, equation(26) can be approximated as

b′
ϑ (θi, φi) ≈ a′

ϑ (θi, φi) e−jκ cos θi . (28)

Let the steering matrix of array Y be B̄ and expressed as B̄ =
[
b̄1, b̄2, . . . , b̄q

]
, in which

b̄i = [b (θi, φi) , b′
ϑ (θi, φi) , b′

ϕ (θi, φi)] . (29)

Hence, the receiving signal vector y (t) can be approximated as

y ≈ B̄s + ny = ĀΦs + ny, (30)

where the diagonal matrix Φ has the form

Φ = diag (Φ1, Φ2 . . . , Φq)
Φi = e−jκ cos θiI3,

, (31)
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where I3 denotes 3 × 3 identity matrix. From above description, the central elevation DOAs can be given
by ESPRIT-type algorithm. Now we give the central elevation DOAs estimation method using an average
TLS-ESPRIT as follows.

The total receive vector of the arrays X and Y is z =
[
xT , yT

]T . The covariance matrix of z denotes

by Rz . Let 2L × 3q matrix Es be the signal subspace which corresponds to the 3q large eigenvalues of Rz .
Consequently, the column space spanned by Es can equivalently given by

–A =
[

Ā
ĀΦ

]
. (32)

So there is an 3q × 3q matrix U , which satisfies –A = EsU . Let Es1 and Es1 are the upper L × 3q and lower
L × 3q matrices of Es , respectively. Therefore, we have

Ā = Es1U, (33)

ĀΦ = Es2U. (34)

Combining equations (33) and (34), one obtains

Es2 = Es1UΦU−1. (35)

Based on equations (31) and (35), the central elevation DOAs θi can be given by an average TLS-ESPRIT
algorithm as

θ̂i =
1
3

3∑
k=1

arccos

[
−

arg
(
l(i−1)q+k

)
κ

]
, (36)

in which lj is the j th eigenvalue of the matrix Ξ = UΦU−1 , (j = 1, . . . , 3q) . Noted that equation (36) is not

a conventional TLS-ESPRIT but an average of three TLS-ESPRIT solvers.

3.2. A new generalized MUSIC (GMUSIC) for central azimuth DOAs estimation

Next, based on the conventional MUSIC algorithm, we derive a new generalized MUSIC algorithm (GMUSIC)
to estimate the central azimuth DOAs. For a single 2D ID source, the normalized covariance matrix is a full
rank matrix even in noise free environment its noise subspace is generally degenerate [8]. However, for several
cases of practical interest, most of the energy of the signal is concentrated in a few eigenvalues of the covariance
matrix. Assuming that the number of those eigenvalues is qe , which is referred to as the effective dimensional of
the signal subspace and it corresponds to the effective signal subspace Eqs1 . From equation (22), we know that

the space spanned by the column of Ā is equivalent with the one spanned by Eqs1 . So we can construct a new

one-dimensional generalized MUSIC (GMUSIC) spectrum based on Frobenius-norm minimization to obtain the
central azimuth DOAs estimation.

Let Eqn1 be a (L − qe) matrix whose columns are the eigenvectors of covariance matrix Rax corre-

sponding to the smallest eigenvalues. After obtaining the central elevation DOAs estimation, we can make use

of orthogonal principle between steering response matrix Ā and noise subspace Eqn1 to estimate the central

azimuth DOAs such that

φ̂i = arg min
θ̂i,φ

∥∥∥āH
(
θ̂i, φ

)
Êqn1ÊH

qn1ā
(
θ̂i, φ

)∥∥∥2

F
. (37)
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The corresponding generalized MUSIC (GMUSIC) spectrum can be given by

P
(
φ̂i

)
=

1∥∥∥āH
(
θ̂i, φ

)
Êqn1ÊH

qn1ā
(
θ̂i, φ

)∥∥∥2

F

. (38)

The spectrum peaks of P
(
φ̂i

)
give the locations of the central azimuth DOAs estimation. It can transform

two-dimensional search to one-dimensional one successfully. It is noticed that the new GMUSIC spectrum
has remarkable differences with that of conventional MUSIC. The expression of ā (θi, φi) in equation(38) is

ā (θi, φi) = [a (θi, φi) , a′
ϑ (θi, φi) , a′

ϕ (θi, φi)] , which is a L × 3 matrix. The conventional MUSIC makes use

of the orthogonality between the first column vector of ā (θi, φi) and noise subspace to construct spectrum.
Hence, for 2D domain ID sources, GMUSIC can give more precise estimation results compared with MUSIC.
This will be verified with simulation result.

3.3. The elevation angular spreads and azimuth angular spreads estimation using

matrix transform

From equations (22) and (23), since the diagonal elements of matrix Λs include the second central moment

information M2
θi

and M2
φi

of ρi (ϑ, ϕ; μi), they can be used to estimate the angular spread parameters σθi and

σφi by simple matrix transform as

Λ̂s = Ā†
(
θ̂i, φ̂i

) (
Rax − σ̂2

nIq

) (
ĀH

(
θ̂i, φ̂i

))†
, (39)

where σ̂2
n is the estimated noise power, which can be approximated by the average of the L − qe smallest

eigenvalues of covariance matrix and the signal powers σ2
s are often known. The relationships between Λ̂s and

σθi , σφi are {
σ̂2

θi
= M̂2

θi
= Λ̂s (iq − 1, iq − 1) /σ2

si

σ̂2
φi

= M̂2
φi

= Λ̂s (iq, iq) /σ2
si.

(40)

From the above steps, we find that for each central elevation DOA estimation θ̂i , the proposed GMUSIC

spectrum can give the corresponding central azimuth DOA estimation φ̂i . Furthermore, the angular spreads
parameters can be given by equation (40). The proposed estimator avoids parameters pairing problem success-
fully.

4. Cramér-Rao Lower Bound for 2D domain ID sources

In this section, we give the Cramér-Rao Lower Bound (CRLB) for 2D domain ID sources based on UCA model.

The covariance matrix equation (10) of the receive vector can be rewritten as [20]

r = vec (Rx) =
q∑

i=1
σ2

s,i [(a∗
i ⊗ ai)] � [vec (Bi)] + vec (Rn)

= [(A∗ ◦ A) �B]ps + vec (Rn) ,
, (41)

in which A = [a (θ1, φ1) , a (θ2, φ2) , . . . , a (θq , φq)] and B = [vec (B1) , . . . , vec (Bq)] are the steering matrix

and vectorized angular spread matrix, respectively. Also, vec () , ⊗ , � and ◦ are vector operator, kronecker
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product, Hadamard product and Khatri-Rao product, respectively. Here, ps =
[
σ2

s,1, . . . , σ
2
s,q

]T is the signal

power vector. In what follows, we define ψ = [θ1 · · ·θq , φ1, . . . , φq]
T and Δ =

[
σθ1 · · ·σθq , σφ1 · · ·σφq

]T are the

central DOAs vector and the angular spreads vector, respectively. The unknown noise power vector is defined

as In = [ξ1 · · · ξL]T . The vector to be estimated is denoted as μ =
[
ψT , ΔT

]T . And β =
[
pT

s ,IT
n

]T is a nuisance

vector, which is not required in the context of solving for the central DOAs and angular spreads. The overall

vector can be written as η =
[
μT , βT

]T .

Now we derive the CRLB of the parameters estimation for multiple 2D domain ID sources. From [21]

and [22], the CRLB matrix for the parameters estimation of 2D domain ID sources can be given by

MCRB (η) =
1
N

[
DH

(
R−T

x ⊗Rx

)
D

]−1
, (42)

where N is the number of snapshot, D is ∂r/∂ηT . According to block matrix inversion lemma, the CRLB
matrix of the parameters vector to be estimated can be given by

MCRB (μ) =
1
N

[
C̄H

0 Π⊥
C̄1

C̄0

]−1

, (43)

in which

C̄0 = Λ1/2C0, (44)

C̄1 = Λ1/2C1, (45)

Π⊥
C̄1

= I− C̄1

(
C̄H

1 C̄1

)−1
C̄H

1 , (46)

and in which C0 and C1 are defined as

C0 =
[
∂r/∂ψT , ∂r/∂ΔT

]
, (47)

C1 = ∂r/∂pT
s . (48)

The matrix Λ can be expressed as

Λ =
(
R−T

x ⊗ R−1
x

)
[I −Π] , (49)

where

Π = Ṙn

(
ṘH

n

(
R−T

x ⊗R−1
x

)
Ṙn

)−1

ṘH
n

(
R−T

x ⊗R−1
x

)
, (50)

and

Ṙn = ∂r/∂IT
n = ∂vec (Rn) /∂IT

n . (51)

The concrete expression of C0 , C1 and Λ can be seen from Appendix 6.
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5. Simulation results

In this section, the performance of our algorithm is investigated through some simulation experiments. Assume
that each of the uniform circular arrays (UCA) has L = 16 sensors. The distance between the two UCAs is

d = 0.1λ and the signal-to-noise-ratio (SNR) is defined as SNR = 10 log10

(
σ2

s/σ2
n

)
, the snapshot number N is

500.
In the first experiment, we consider that two equipower uncorrelated narrowband ID sources with Gaus-

sian shape deterministic angular power density functions both in elevation and azimuth and their parameters
are

μ1 = (30◦, 2◦, 50◦, 3◦) ;

μ2 = (50◦, 4◦, 70◦, 5◦) .

Next, we compare our GMUSIC algorithm with the conventional MUSIC for estimating the central
azimuth DOA. Firstly, we use the average TLS-ESPRIT solver of equation (36) to estimate the central elevation

DOA with SNRs are 5 dB and 15 dB, respectively. Based on the preliminary estimation of θ̂i , GMUSIC and
MUSIC algorithms are used to search the central azimuth DOA, respectively. Figure 2 shows the central azimuth
DOA estimation results. GMUSIC algorithm can give more precise estimation whenever the SNR is 5 dB or
15 dB compared with MUSIC. And it has more acute spectrum than MUSIC. Since MUSIC algorithm does not
take the distribution character of distributed source into consideration. As a result, the MUSIC spectrum gives
the wrong central azimuth DOA estimation results whenever the SNR is low or high.

Figure 3 shows the central elevation DOAs and central azimuth DOAs estimation results with 50 runs.
Similarly, the elevation angular spread and azimuth angular spread estimation results are depicted in Fig. 4.
From the Figure 3 and 4, it is observed that our estimator can give more precise parameters estimation results
and it does not need parameters pairing. As expected, the parameters estimation error becomes smaller with
increasing SNR.

Towards this end, the performance of the proposed estimators is studied. The SNRs vary from 5 dB to
40 dB in each figure and 200 Monte Carlo simulations were run to calculate the root-mean-square error (RMSE)
of the estimators. Figure 5 displays the RMSE and CRLB of the central azimuth DOA φ . Figure 6 considers
the RMSE and CRLB of the elevation angular spread σθ . Similarly, the RMSE and CRLB of the azimuth
angular spread σφ are plotted in Figure 7. From the inspection of these figures, it can be observed that our
proposed estimator is an efficient estimator for 2D domain ID sources, as predicted by the theory. For low SNR,
the RMSE departs slightly from the CRLB, but for high SNR, the RMSE draws close to the CRLB. This can
be explained intuitively as follows. Since our method is derived from the first-order Taylor series expansion of
steering vector, the noise level will bring influence in this approximation. As a result, the estimation precision
will degenerate with reduction, and improve with increasing SNR.

In the second experiment, we validate the robustness of our estimator. Here, we consider the influence of
different deterministic angular power density functions to our method. Assume that three signals impinge on
the arrays. The first one has Gaussian deterministic angular power density function, the second and the last
one have Uniform and Laplace deterministic angular power density functions, respectively. The parameters are:

μ1 = (30◦, 2◦, 50◦, 3◦) ,

μ2 = (35◦, 4◦, 40◦, 3◦) ,

μ3 = (45◦, 3◦, 50◦, 2◦) .
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The central elevation DOAs and central azimuth DOAs estimation results via different SNRs are plotted in
Figure 8 and the elevation angular spreads and azimuth angular spreads estimation results are shown in Figure
9. As expected, although for the case of different sources with different deterministic angular power density
functions, the proposed estimator can give the more precise parameters estimation results, which can not be
done by other previous algorithm (for example, DSPE, DISPARE, COMET, etc.).

We use the CPU time as a measure of complexity. Although it is not an exact measure, it gives a
rough estimation of the complexity, for comparing the classical 2D searching algorithm (2D MUSIC [23]) and
our algorithms. Our simulations are performed in MATLAB7 environment using an AMD Athlon sempron
2400+, 1.67 GHz processor with 512 MB of memory, and under Microsoft Windows XP operating system.
The searching grid intervals in azimuth angle and elevation angle are set to 1◦ for compared methods. For
500 independent trials, the total run time of our method and 2D searching method are 101.55 s and 2914.1 s,
respectively. It shows that our method is faster than classical 2D searching method. Additionally, we also shown
the performance of method for SNR of 0 dB case in Table. 1.

6. Conclusion

Herein, a low-complexity parameters estimator for multiple 2D domain incoherently distributed (ID) sources is
proposed. The proposed method can estimate four-dimensional parameters with only one-dimensional search.

Firstly, based on the approximate rotational invariant property between the steering vector and signal
subspace, a average TLS-ESPRIT is used to estimate the central elevation DOAs. Then, the central azimuth
DOAs can be found from the peaks of the reconstructed one-dimensional GMUSIC spectrum. Finally, the
elevation angular spreads and azimuth angular spreads are estimated by matrix transform. The proposed
estimator is a low-complexity parameters estimation technique for 2D domain ID sources. It avoids parameters
pairing problem and it can be applied to the situation that different 2D domain ID sources have different
deterministic angular power density functions.

Table 1. Average RMSE of parameters estimation under SNR of 0 dB

SNR(dB) var (θ − θ̂) var (φ − φ̂) var (σθ − σ̂θ) var (σφ − σ̂φ )
0 1.0651 1.2170 1.9203 2.0421

APPENDIX A

Approximated expression of the normalized covariance matrix for 2D domain ID
source

From equation (12), we have

Ri =
∫ π/2

−π/2

∫ 2π

0

ρi (ϑ, ϕ; μi) a (ϑ, ϕ)aH (ϑ, ϕ) dϑdϕ. (52)

For any DOA (ϑ, ϕ) , we have ϑ = θi + ϑ̃ and ϕ = φi + ϕ̃ , where ϑ̃ and ϕ̃ are random angular deviations. We
introduce the following variables: {

mi
kl = cos (φi − γk) − cos (φi − γl)

ni
kl = sin (φi − γk) − sin (φi − γl)

(53)
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Figure 2. The central azimuth DOAs estimation with GMUSIC and MUSIC in 5 dB and 15 dB.
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Figure 3. The central elevation DOAs and central azimuth DOAs estimation results with 5 dB and 15 dB.

Therefore, one obtains

a (ϑ, ϕ)aH (ϑ, ϕ) ≈ ejη sin θim
i
klejη(cos θim

i
kl ϑ̃−sin θin

i
klϕ̃), (54)
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Figure 4. The elevation angular spreads and azimuth angular spreads estimation results with 5 dB and 15 dB.
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Figure 5. CRLB and RMSE of the central azimuth DOA estimation versus SNR, N=500.

where we use the facts that cos θ̃ ≈ 1, sin θ̃ ≈ θ̃ , cos ϕ̃ ≈ 1, sin ϕ̃ ≈ ϕ̃ and θ̃ϕ̃ ≈ 0 for small angular spreads.
Now we consider three typical deterministic angular power density functions ρi (ϑ, ϕ; μi). They are Gaussian,
Uniform and Laplace shapes

ρi (ϑ, ϕ; μi) =
1

2πσθiσφi

e−1/2((ϑ−θi)
2/σ2

θi
+(ϕ−φi)

2/σ2
φi

), (55)
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Figure 6. CRLB and RMSE of the elevation angular spread estimation versus SNR, N=500.
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Figure 7. CRLB and RMSE of the central azimuth DOA estimation versus SNR, N=500.

ρi (ϑ, ϕ; μi) =

⎧⎪⎨
⎪⎩

1
2
√

3
|ϑ − θi| <

√
3σθi

1
2
√

3
|ϕ − φi| <

√
3σφi

otherwise
(56)

ρi (ϑ, ϕ; μi) =
1

2σθiσφi

e−(
√

2|ϑ−θi|/σθi
+
√

2|ϑ−ϕi|/σφi ), (57)

respectively. Inserting equations (55), (56), (57) and (54) into equation (52), The different normalized covariance
matrix expressions can be given by [

RG
i

]
kl

≈ ejη sin θim
i
kl

[
BG

i

]
kl

, (58)

[
RU

i

]
kl

≈ ejη sin θim
i
kl

[
BU

i

]
kl

, (59)

[
RL

i

]
kl

≈ ejη sin θim
i
kl

[
BL

i

]
kl

. (60)
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Figure 8. The central elevation DOAs estimation and central azimuth DOAs results in different SNRs (50 runs).
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Figure 9. The elevation angular spreads and azimuth angular spreads estimation results in different SNRs (50 runs).

For above three different cases, Ri can be written as

Ri =
(
aiaH

i

)
�Bi, (61)
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where i denotes the ith 2D domain ID source and Bi for the different cases are Gaussian:

[
BG

i

]
kl

= e−
η2
�
(σθi

cos θimi
kl)

2
+(σφi

sin θini
kl)

2
�

2 ; (62)

Uniform: [
BU

i

]
kl

=
sin

(√
3η sin θin

i
klσθi

)
√

3η sin θini
klσθi

sin
(√

3η cos θim
i
klσφi

)
√

3η cos θimi
klσφi

; (63)

and Laplacian:

[
BL

i

]
kl

=

(
1

1 +
(
η sin θin

i
klσφi

)2

)(
1

1 +
(
η cos θim

i
klσθi

)2

)
. (64)

APPENDIX B

Cramér-Rao Lower Bound for 2D domain ID sources

In spatial uniform white Gaussian environment, the noise covariance matrix can be expressed as

Rn = σ2
nIL. (65)

Accordingly, the derivative of the noise covariance matrix with respect to (w.r.t) the noise variance vector

In = [ξ1, . . . , ξL]T = σ2
n1

T (1T = [1, . . . , 1]T is a L × 1 column vector) can be written as

Ṙn = vec (IL) . (66)

Inserting equation (66) into equations (50) and (49), the matrix Λ is

Λ = R−T
x ⊗R−1

x − tr−1
(
R−2

x

)
vec

(
R−2

x

)
vecH

(
R−2

x

)
, (67)

where tr () is the trace operator. From above description, we know that the vector r can be rewritten as

r = vec (Rx) =
q∑

i=1
σ2

s,i [(a∗
i ⊗ ai)] � [vec (Bi)] + vec (Rn)

= [(A∗ ◦ A) �B]ps + vec (Rn)
, (68)

where A = [a (θ1, φ1) , a (θ2 , φ2) , . . . , a (θq, φq)] = [a1, a2, . . . , aq] . So the derivatives of r with respect to (w.r.t)

the elevation central DOA vector θ = [θ1, . . . , θq]
T , the azimuth central DOA vector φ = [φ1, . . . , φq]

T , elevation

angular spread vector σθ =
[
σθ1 , . . . , σθq

]T and azimuth spread vector σφ =
[
σφ1 , . . . , σφq

]T are, respectively,

∂r/∂θT = (A∗
θ ◦ A + A∗ ◦ Aθ) � (BP) + (A∗ ◦ A) � (BθP) , (69)

∂r/∂φT =
(
A∗

φ ◦ A + A∗ ◦ Aφ

)
� (BP) + (A∗ ◦ A) � (BφP) , (70)

∂r/∂σT
θ = (A∗ ◦ A) � (BσθP) , (71)

∂r/∂σT
φ = (A∗ ◦ A) �

(
BσφP

)
, (72)
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where the matrices Aθ , Aφ , Bθ , Bφ , Bσθ , Bσφ and P are

Aθ = [∂a1/∂θ1, . . . , ∂aq/∂θq ] , (73)

Aφ = [∂a1/∂φ1, . . . , ∂aq/∂φq] , (74)

Bθ = [∂vec (B1) /∂θ1, . . . , ∂vec (Bq) /∂θq ] , (75)

Bφ = [∂vec (B1) /∂φ1, . . . , ∂vec (Bq) /∂φq] , (76)

Bσθ =
[
∂vec (B1) /∂σθ1 , . . . , ∂vec (Bq) /∂σθq

]
, (77)

Bσφ =
[
∂vec (B1) /∂σφ1 , . . . , ∂vec (Bq) /∂σφq

]
, (78)

P = diag (ps) . (79)

Observing that ψ = [θ1 · · · θq , φ1, . . . , φq]
T and Δ =

[
σθ1 · · ·σθq , σφ1 · · ·σφq

]T , it follows that

∂r/∂ψT =
[
∂r/∂θT , ∂r/∂φT

]
, (80)

∂r/∂ΔT =
[
∂r/∂σT

θ , ∂r/∂σT
φ

]
, (81)

Inserting equations (80) and (81) into equation (49), we can get the expression of C0

C0 =
[
∂r/∂ψT , ∂r/∂ΔT

]
. (82)

Obviously, the matrix C1 can be directly given by

C1 = ∂r/∂pT
s = (A∗ ◦ A) �B. (83)

Inserting equations (67), (81) and (82) into equations (44), (45) and (46). The CRLB matrix can be obtained

from equation (43).
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