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Abstract

This paper addresses distributed deterministic consensus algorithms based on averaging. We relate the

conditions for achieving consensus to the existence of a common norm for a set of row-stochastic matrices

associated with the original set of averaging matrices. For a system to achieve consensus, it is shown that

this associated set of matrices should have a Common Lyapunov Function, even if the original set might not

have one.
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1. Introduction

There has been considerable recent research interest in developing scalable algorithms for the control of multi-
agent systems, including autonomous teams of unmanned air/ground/sea vehicles (U/AGS/V) and sensor
networks. The individual agents in such networks share a common physical quantity, e.g., heading angle
for unmanned autonomous vehicles, and time value for sensor nodes. It is important that all nodes in the
network acquire the same state value; for instance, in formation control it is desired that all UAVs fly in the
same direction. In wireless sensor network applications, the sensor nodes are the energy constrained, not always
dependable devices which are used to sense, compute, and communicate data. It is important for sensor nodes
that they share a common clock in order for them to effectively compare their measured data (e.g., temperature,

humidity, pollution level). While GPS is used for time stamping in many areas, it may not always be suitable
for wireless sensor applications where the tiny sensors may not have a direct path to the GPS signal. There are
many other types of problems where achieving a common value is the objective, e.g., in the study of bird and
fish flocking behavior; in the study of social networks; in the study of disease propagation; and in the study
biological oscillators.
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In this paper, we focus on one particular consensus algorithm based on averaging, where each node
updates its value using information collected from its neighbors (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and references

therein). These and related problems arise in a number of applications across a wide variety of disciplines.
While the control and systems theory community have studied these algorithms in the context of unmanned air
vehicles, consensus related problems also arise in distributed sensing [11], signal processing [12], cloud computing

[13], distributed load balancing [13], routing [14], and in congestion control applications [15]. In each of these
applications, the problem under study can be reduced to establishing whether distributed algorithms converge
to a desired fixed point. A major contribution of this paper is to develop new tools for establishing such facts
using the infinity-norm Lyapunov function.

Mathematically, the consensus problem is related to determining classes of matrices whose infinite
products converge to a rank one matrix. Wolfowitz’s classical result requires each matrix in the product to
be ergodic [16]. Convergence to a rank one matrix can also be established under different sets of assumptions

that relax, in various ways, the ergodicity requirement on the individual matrices [1]–[10]. Convergence of
consensus based strategies are usually studied using techniques from the Markov chain community, e.g., the
properties of the Birkhoff coefficient [17, pp. 19]. A purported advantage of this strategy is that convergence,

or stability, is derived without resorting to the use of common Lyapunov functions (which are typically hard to

find); see for example, [1]. A similar line of justification was followed in [2] to motivate the contribution of [2].

Our motivation in this work is to show that an elementary common Lyapunov function (CLF) derived from the
L∞ norm always exists for such systems.

It is argued in [1] and [2] that the set of averaging matrices under consideration do not have a common
quadratic Lyapunov function and alternative tools were employed in order to demonstrate the convergence
of the consensus algorithm. Furthermore, the non-existence of a common quadratic Lyapunov function was
demonstrated analytically in [7] for networks consisting of more than seven nodes. Although non-existence of
a common Lyapunov function for the set of averaging matrices under consideration is an important finding,
we demonstrate in this paper that this is not as crucial in proving the convergence of the consensus algorithm
for the same set of conditions given in [1, 2]. The latter observation stems from the fact that we can prove
that indeed such a common Lyapunov function exists for a related set of averaging matrices constructed from
the original set of stochastic matrices. We show that this function is elementary to construct, and that many
existing results and some new ones can be derived in an elementary manner using this framework of common
Lyapunov functions.

The rest of the paper is organized as follows. In Section 2, the switched system formulation of the
consensus problem with relevant mathematical preliminaries is discussed. The main contributions of the paper
relating scrambling matrices and CLFs to the concepts of ergodicity, network connectivity and consensus are
presented in Section 3. Finally, some concluding remarks are given in Section 4.

2. Mathematical preliminaries

Consider a group of n agents with x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ �n representing the vector of the values

(that could be clocks, heading angle, etc) that are to be equalized. The objective is to achieve a common value for

all nodes, ideally x1(t) = x2(t) = · · · = xn(t), for all t . Clearly, this requires at least a single node transmitting
to all others for all time; an assumption that usually fails for instance, in mobile ad hoc and sensor networks
due to lack of connectivity at certain time intervals. Similarly, the flow of information among the agents in a
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multi-agent system is restricted due to mobility and variations in the communication neighborhoods. Therefore,
we are interested in distributed algorithms that achieve consensus at least asymptotically, i.e., xi(t) → c as
t → ∞ . To this end, let each agent update its value using the averaging algorithm

xi(t + 1) =
n∑

j=1

wij(t)xj(t), (1)

where wij(t) are non-negative averaging coefficients that satisfy the following assumption in this paper; see

[1, 2, 3, 4, 5, 7].

Assumption 1 (i) There exists a positive constant α such that wii(t) > α , for all i and t .

(ii) wij(t) ∈ {0}
⋃

[α, 1] for all i, j , t .

(iii)
∑n

j=1 wij(t) = 1 for all i and t .

The first part of the above assumption makes sure that the updates use individual data. The second
part is a condition on whether the data from other agents are used in the update (i.e., with some non-vanishing

weight wij such that wij ∈ [α, 1]) or not (i.e.,wij = 0). We are interested in deriving conditions under which

synchronization can be achieved asymptotically, i.e., xi(t) → c as t → ∞ .

The value update in (1) can also be described by the recursion

x(t + 1) = W (t)x(t), W (t) ∈ W, (2)

where W (t) in the set W is a non-negative row-stochastic matrix with positive diagonal elements. We are

interested in the dynamic properties of (2) in the subspace

Δ = {δ ∈ �n : δT e = 0}, (3)

where e = [1, 1, . . . , 1]T ∈ �n . Let Δ⊥ = span{e} = {ke : k ∈ �} . Note that any vector in �n is in the joint

span of Δ and Δ⊥ .

The entries of a row-stochastic matrix W are non-negative, and each row adds up to one, i.e., we have
We = e . Another important property of such matrices is summarized in the following lemma.

Lemma 1 (Theorem 1.1 in [18], pp. 3–4) Let y be a nonnegative vector and W a stochastic matrix. If z = Wy

then
max

i
zi − min

i
zi ≤ τ (W )(max

i
yi − min

i
yi) (4)

where

τ (W ) =
1
2

max
i,j

∑
k

|wik − wjk|. (5)

Definition 1 The parameter τ (W ) in (5) is referred to as the coefficient of ergodicity of W , and it satisfies

0 ≤ τ (W ) ≤ 1 [18]. Furthermore, if τ (W ) < 1 , the matrix W is called a scrambling matrix.
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Two important properties of the coefficient of ergodicity are

‖δT W‖1 ≤ τ (W )‖δ‖1, (6)

for all δ ∈ Δ, and
S(Wz) ≤ τ (W )S(z), (7)

for all vectors z , where S(z) is the spread of a vector z , defined as S(z) = maxi,j |zi − zj | (see [18], page 5).

From (6) it follows that a scrambling matrix W is contractive in Δ since τ (W ) < 1. Similarly from (7), it is
seen that W is contractive on the difference of the entries in a vector if we are to consider left multiplication
by vectors (see [18], page 5).

As τ (W ) < 1 for a scrambling matrix, it can be seen from (4) that successive iterations will lead to a
strict decrease in the difference between the maximum and the minimum components of the vector. In the limit
as time approaches infinity, this difference vanishes; hence the maximum and the minimum values become equal
implying that all components have the same value, i.e., the nodes are synchronized.

A stochastic matrix W is said to be ergodic if limt→∞ W t = edT for some d . A scrambling matrix is
ergodic [18], but the converse is not true in general, e.g.,

W =

⎡
⎢⎢⎣

1/10 9/10 0 0
2/3 1/6 1/6 0
0 1/3 1/3 1/3
0 0 1/2 1/2

⎤
⎥⎥⎦ . (8)

Using (5), the coefficient of ergodicity τ (W ) can be computed to be equal to one, which implies by Definition
1 that this matrix is not scrambling. On the other hand, since we have

lim
t→∞

W t =

⎡
⎢⎢⎣

0.2878 0.3885 0.1942 0.1295
0.2878 0.3885 0.1942 0.1295
0.2878 0.3885 0.1942 0.1295
0.2878 0.3885 0.1942 0.1295

⎤
⎥⎥⎦ = edT,

where d = [0.2878 , 0.3885, 0.1942, 0.1295]T , the matrix W in (8) is ergodic.

2.1. Common Lyapunov functions and pseudocontractivity

The main objective of this paper is to relate the notion of synchronization to the existence of common Lyapunov
functions. We will say that V (x(t)) is a Lyapunov function for (2) if it satisfies (i) V (x(t)|Δ) > 0 for all

x(t)|Δ �= 0, and V (0) = 0, (ii) V (x(t + 1)|Δ) − V (x(t)|Δ) < 0 for all x(t)|Δ �= 0, where x(t)|Δ denotes the

projection of x(t) onto the subspace Δ. Given a set of row-stochastic matrices, W = {W1, W2, . . . , WN} ,

consider the N subsystems obtained by using the system matrix W (t) = Wi in (2), i.e.,

Σi : x(t + 1) = Wix(t), i = 1, 2, . . . , N. (9)

If a Lyapunov function, V (x(t)), that is common to all of the subsystems Σi exists, then it is called a common

Lyapunov function (CLF) for Σi, i = 1, 2, . . . , N . Note that, when and if such a CLF exists, it is seen from the
definition of the CLF that the trajectories in the subspace Δ will diminish and synchronization will be ensured.
The notion of CLF as defined above is related to the pseudocontractivity defined in [8].

486



AKAR, SHORTEN: On the existence of common Lyapunov functions for consensus...,

Definition 2 Let T be an operator on �n . The operator T is nonexpansive with respect to some norm ‖ · ‖
and a closed set X� if

∀x ∈ �n, x� ∈ X�, ‖Tx− x�‖ ≤ ‖x− x�‖. (10)

T is pseudocontractive if it is nonexpansive with respect to ‖ · ‖ and X� and

∀x /∈ �n, d(Tx, X�) < d(x, X�), (11)

where d(x, X�) is the distance of x to X� defined as d(x, X�) = ‖x − x|X�‖ .

In [8], Su and Bhaya use the notion of pseudocontractivity in order to study the convergence of nonsta-

tionary iterative methods for linear systems in which the coefficient matrices are singular M -matrices. In [9],

Fang and Antsaklis utilize these tools in the study of consensus algorithms. The following result in [10] relates
pseudocontractivity of stochastic matrices to the scrambling condition.

Lemma 2 (Theorem 6.35 in [10]) Let W be a stochastic matrix. The matrix W is pseudocontractive with

respect to ‖ · ‖∞ and Δ⊥ if and only if W is a scrambling matrix.

Remark 1 Lemma 2 is easily extended to the case of sets of row stochastic matrices. Joint pseudocontractivity
of these matrices imply convergence of trajectories to the ray spanned by the vector e (under certain scrambling

type assumptions). Note in this case it is not necessary to assume any invariant properties of the subspace Δ .

By taking X� = Δ⊥ and using the above lemma, we note that V (x(t)) = ‖x(t)|Δ‖∞ is a Lyapunov

function for a system with a scrambling system matrix. Similarly, the same function is also a CLF for a set of
systems with corresponding set of scrambling matrices W . Given that such a CLF exists, it is straightforward
to note that any trajectory in the subspace Δ is contracting, hence consensus is achieved under arbitrary
switching. In the case that the existence of a CLF is not so obvious, it is important to relate the structural
properties of the weighting matrices to synchronization.

Example 1 Consider the averaging matrices

W1 =

⎡
⎢⎢⎣

1 0 0 0
1/4 3/4 0 0
0 1/2 1/2 0
0 0 1/3 2/3

⎤
⎥⎥⎦ , (12)

W2 =

⎡
⎢⎢⎣

1/4 3/4 0 0
0 2/3 1/3 0
0 0 1/2 1/2
0 0 1/2 1/2

⎤
⎥⎥⎦ . (13)

that correspond to the network topologies in Figures 1, 2, respectively. Similar to the matrix in (8), it can easily
be shown that both matrices are ergodic, although neither is scrambling.

Consider the situation in which the network topology is changing arbitrarily between the two shown in
Figures 1, 2. The natural question that arises is whether synchronization is achieved under this scenario.
Since neither matrix is scrambling, V (x(t)) = ‖x(t)|Δ‖∞ is not a CLF. On the other hand, we will show that

V (x(t)) = ‖x(t)|Δ‖∞ is indeed a CLF for an associated set of matrices; hence synchronization is achieved under

arbitrary switching of these system matrices.
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Figure 1. The topology corresponding to W1 in Example 1.

� � � �

Figure 2. The topology corresponding to W2 in Example 1.

3. Consensus and CLFs

Given a deterministic and finite set of matrices W = {W1, W2, . . . , WN} that satisfies Assumption 1, it is
important to know whether infinite products of such matrices is ergodic. In this section, we relate the existence
conditions of consensus to the existence of CLFs and to scrambling matrices. To this end, define the sets πk ,
k ≥ 1, which contain all products of matrices of length k from the set W , e.g., π1 = W = {W1, W2, . . . , WN} ,

π2 = W×π1 = {W 2
1 , W1W2, . . . , W1WN , W2W1, W

2
2 , . . . , W2WN , . . . , WNW1, WNW2, . . . , W

2
N} , πk = W×πk−1 ,

k ≥ 2. Associated with πk , consider the class of switched systems:

Sk : x(t + 1) = W (t)x(t), W (t) ∈ πk. (14)

The following result is useful to deduce stability properties of (2).

Theorem 1 For the systems in (2) and (14), the following statements are equivalent.

(i) The system in (2) achieves consensus.

(ii) For some positive constant K , all matrices in πK are scrambling, and V (x(t)) = ‖x(t)|Δ‖∞ is a CLF.

(iii) For some positive constant K , the system SK in (14) achieves consensus.

Proof The equivalence of (i) and (iii) follow from the construction of the matrices. The assertion (ii) ⇒
(iii) is straightforward. We now prove (i) ⇒ (ii). Suppose that there is no positive constant K such that

all matrices in πK are scrambling. Then for the matrix product sequence which is not scrambling, ‖x(t)|Δ‖∞
cannot decrease in the subspace Δ (by definition of a scrambling matrix and by Lemma 2), and hence consensus

cannot be achieved for (2).

Remark 2 Theorem 1 relates the synchronization properties of a system to that of an associated system which
contains a larger number of system matrices. Although the induced one-norm may not be decreasing in the
subspace Δ along the trajectories of each system at each time step, it has to be so for all of the system
matrices of the associated system. A similar principle was used in [19] to show that there exists a common
quadratic Lyapunov function for the associated system, and hence one could conclude that the switched system
is exponentially stable although there exists no such function for the original subsystems.
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Remark 3 The proof of Theorem 1 notes the existence of the induced one-norm as a CLF for the associated
system SK for some positive K . Due to the equivalence of norms on finite dimensional spaces, it might be
worth reminding the reader that a quadratic CLF also exists for some associated system SK̄ , although K and

K̄ are not necessarily equal to each other.

3.1. Graph representation and relating topology to consensus

In the study of distributed consensus algorithms, it is important to relate the convergence properties of the
update rules to the underlying topology of the network [1]–[9]. To this end, we can associate a graph (V, E(t))

with (1), where V = {1, 2, . . . , n} is the set of vertices, E(t) is the set of directed edges, and (j, i) ∈ E(t)

holds if and only if wij(t) > 0 (i.e., there is communication from node j to node i). The graph is said to be

symmetric if (j, i) ∈ E(t) implies (i, j) ∈ E(t). A graph is said to be connected if it is symmetric and if there
is a path between any two vertices. A connected graph is complete if there is a direct connection between all
vertices. An adjacency matrix for (V, E) is defined as an n × n matrix G = [gij] , where gij = 1 if wij > 0,

and gij = 0 if wij = 0. A complete graph has a positive adjacency matrix.

Given the set W , let G = {G1, G2, . . . , GN} be the set of adjacency matrices for the graphs associated
with the matrices W1 , W2 , . . ., WN . Let Gk be the similar set for πk . Under Assumption 1, we have the
following results which will subsequently be used to relate ergodicity to CLFs:

Lemma 3 (i) If every G ∈ G is connected, then there exists an integer K ≤ n − 1 for which every element of
GK is complete.
(ii) Assume that every graph G of G has a node from which there exists a path to all other nodes of the graph.

Then there exists an integer K ≤ n − 1 for which every graph of GK has a node (not necessarily the same)
from which there is a direct link to every other node.

Proof Suppose that every graph G ∈ G is connected. Consider an arbitrary product of the adjacency matrices
G = Gi1Gi2 . . .GiK = [gij] for an arbitrary index set ij ∈ {1, 2, . . . , N} . Then gij is given by

gij =
n∑

k1=1

n∑
k2=1

· · ·
n∑

kK=1

gi,k1k2 . . . giK ,kKj (15)

where gk,lm is the (l, m)-th component of the adjacency matrix Gk . Recall that gk,lm is non-zero if there is a

path of length one from node m to l . Hence gij in (15) will be non-zero for all i, j and for K = n− 1, as the

graphs are connected and every node is accessible from every other in at most n − 1 steps (This is guaranteed

by Assumption 1). This concludes the proof for part (i).

For the second part assume that every graph G of G has a node j0 from which there exists a path to
all other nodes. From (15), gij will be non-zero for all i and j = j0 , i.e., G will have a positive column, which

yields the desired result.

Example 2 To illustrate the first part of Lemma 3, consider the averaging matrix in (8), with the corresponding
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adjacency matrix

G =

⎡
⎢⎢⎣

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

⎤
⎥⎥⎦ , (16)

i.e., W = {W} , and G = {G} . For K = 3 , we have

GK = G3 =

⎡
⎢⎢⎣

4 5 3 1
5 7 6 3
3 6 7 5
1 3 5 4

⎤
⎥⎥⎦ , (17)

which is complete.

For the second part of Lemma 3, consider the matrices W1 and W2 in (12–13), i.e., W = {W1, W2} ,

and G = {G1, G2} with

G1 =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

⎤
⎥⎥⎦ , G2 =

⎡
⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦ . (18)

Let K = 3 , and consider G3 = {G3
1, G

2
1G2, G1G2G1, G1G

2
2, G2G

2
1, G2G1G2, G

2
2G1, G

3
2} . It is not diffi-

cult to verify that all of the eight matrices in G3 have a positive column (hence the matrices in π3 =

{W 3
1 , W 2

1 W2, W1W2W1, W1W
2
2 , W2W

2
1 , W2W1W2, W

2
2 W1, W

3
2 } are all scrambling).

Theorem 2 Given a set of matrices W satisfying Assumption 1, suppose that one of the following statements
holds for the associated set G:
(i) Every G ∈ G is connected, or

(ii) For every graph G of G, there is a vertex from which there is a path to all other vertices.

Then there exists some positive integer K ≤ n − 1 so that ‖x(t)|Δ‖∞ is a CLF for all systems with

matrices in πK and hence consensus is achieved.

Proof Suppose that every graph in G is connected. Then by Lemma 3(i), there exists an integer K ≤ n−1 for
which every element of GK is complete, which, by definition of a complete graph, implies that all the matrices
in πK are strictly positive (and also scrambling). Therefore, ‖x(t)|Δ‖∞ is common to all systems with the

system matrices in πK , and consensus is achieved.

Under hypothesis (ii), it follows from Lemma 3(ii) that all the matrices in πK have a positive column
and are scrambling by definition, hence the conclusion.

Remark 4 Theorem 2 relates consensus to the existence of a CLF for a set of systems whose system matrices
are in πK for some positive integer K ≤ n − 1 . In the worst case, this implies that one has to check whether
the matrices in πn−1 are scrambling or not, which is straightforward.

Example 3 The network topologies associated with the system matrices W1 and W2 in (12–13) satisfy the
conditions of Theorem 2, hence consensus is achieved.
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3.2. Extension to arbitrarily switching kopologies

For a particular sequence (rather than arbitrary switching) of stochastic matrices, it is not necessary that
each corresponding graph be connected. However, it is necessary that the graphs associated with a product
of matrices satisfy the assumptions in Theorem 2 over regular intervals. That is why the following conditions
stated in [2] suffice to achieve consensus.

Corollary 1 (Propositions 1-2 [2]) Consensus is achieved if either (i) the associated graph for Π∞
t=t0W (t) is

connected for all t0 ≥ 1 , or (ii) there exists T ≥ 0 such that for all t ≥ 1 , there is a node connected all other

nodes across [t, t + T ] .

Remark 5 Under the jointly connected conditions given in [1, 2], it follows from Theorem 2 that consensus

is reached. In [1, 2], the non-existence of a common quadratic Lyapunov function has been pointed out and
alternative methods have been proposed to study the convergence of the averaging based consensus algorithm. In
this paper, we demonstrate that there is a CLF for an associated set of systems from which results for averaging
based consensus algorithms can be obtained.

3.3. Extensions to time-varying and interval matrices

The above results are extended to time-varying and interval matrices that satisfy Assumption 1 by constructing

a set of extreme matrices W1 , W2 , . . ., WN from W (t) = [wij(t)] . For a set of interval matrices, W̃l = [w̃l,ij] ,

where w̃l,ij ∈ [wl,ij , wl,ij ] , l = 1, 2, . . . , N , the extreme matrices to be considered are simply Wl = [wl,ij ] . As

an example consider

W (t) ∈
{[

1 − w1,12 w1,12

0 1

]
,

[
1 0

w2,21 1 − w2,21

]}

where w1,12 = [0.2, 0.5] and w2,21 = [0.1, 0.8] . Then

W1 =
[

0.5 0.2
0 1

]
, W2 =

[
1 0

0.1 0.2

]
,

for which consensus is achieved. Further reduction in the number of extreme matrices is possible by eliminating
matrices that correspond to the same graphs.

For time-varying matrix sets, the extremal matrices are computed by taking the infimum over the
components of wij(t) over time. For instance, if W (t) assumes

W (t) ∈
{[

1 − 2−t−1 2−t−1

0 1

]
,

[
1 0

2−t−1 1 − 2−t−1

]}
.

then we take

W1 =
[

1/2 0
0 1

]
.
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It is not necessary to consider the second matrix

W2 =
[

1 0
0 1/2

]
,

as it has the same graph as W1 . Since conditions of Theorem 2 are not satisfied, it follows that consensus may
not be guaranteed for this class of matrices.

4. Concluding remarks

In this paper, we have studied the convergence properties of distributed synchronization algorithms in a
deterministic setting. The relation between synchronization and the existence of a common norm for the
averaging matrices used has been established. It is important to note the existence of a node (possibly different

over different time intervals) distributing information to other nodes of the network either directly or indirectly,

so that conditions of Lemma 3 are met and the network could be synchronized [1, 2]. On the other hand,

contrary to what is pointed out in [1, 2], the non-existence of a common quadratic Lyapunov function is not
critical in the convergence proofs of these algorithms. What is crucial is the existence of a CLF for an expanded
set of matrices having a CLF, even if the original set of averaging matrices might not have one. The results
can also be extended to time-varying and interval matrices that satisfy Assumption 1 by constructing a set of
extreme matrices.
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