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doi:10.3906/elk-0905-5

Electromagnetic scattering from layered strip

geometries: the method of moments study with the

sinc basis
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1Department of Electrical and Electronics Engineering, Faculty of Engineering,
Dokuz Eylül University, Buca, 35160 İzmir-TURKEY
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Abstract

Electromagnetic scattering from strips of layers is analyzed using the method of moments (MoM) for

both polarizations in spatial domain with the sinc-type orthogonal sets as basis and testing functions. We

exploited the sinc function’s properties of exponential convergence, the orthogonality, easy convolution and

better handling of singular kernels in MoM procedure resulting in fast performance and reasonable accuracy

even in ordinary MoM treatment. We transferred the integral of the Hankel function multiplied by sinc

functions to Hankel function introducing a slight error with large band width. We proved that this relative

error during the generation of the main matrix elements is smaller than that of the free space error, i.e.,

1%–0.5% for considerably large matrix sizes. Our approach is readily applicable to a singular kernel problem

due to properties of the sinc functions in particular 2D geometry. The procedure undertaken here is proven to

be very efficient as regard to similar treatments in the literature developed mainly for regular kernels. Various

numerical results are calculated such as the surface induced current and normalized far field radiation pattern.

We compared them with the results available in the literature.
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1. Introduction

Electromagnetic modeling of various complexities require advanced numerical techniques such as the method
of moments (MoM) [1], the finite element method (FEM) [2] and the finite difference time domain method

(FDTD) [3]. Some efforts have gone to improve the classical problems, such as in [4], but requires tremendous

computational capacity. The MoM reduces the original operator (i.e. differential or integral) to an algebraic
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linear equation. The MoM can be employed 3D and 2D geometries to the scattering and propagation of the
printed strip and the slotted structures in layered media. Particularly even in 2D geometries the MoM method
can be approximated by generalized pencil of functions (GPOF) [5] which enable us a closed form Greens
functions in spatial domain for planar layered medium so that we save computational time. However both the
spectral and spatial domain Green’s functions have to be used in the MoM treatment [5].

The usual MoM formulation involves an integral equation (IE) which can be written for an electromagnetic

problem either the mixed potential integral equation (MPIE) or the electric-field integral equation (EFIE) for
open geometries. These equations contain the auxiliary vector and scalar potentials obtained through the
appropriate Green’s functions. The Green’s functions in the spectral domain can be computed easily, whereas
the Green’s function in the spatial domain requires an efficient inverse Fourier transform algorithm. We also
have to discretize the unknown current function by the known basis functions out of various configurations, i.e.
pulse or triangle. The IE is discretized and then reduced by an error reduction technique (i.e., an inner product

testing) to a system of an algebraic matrix equation. In 2D, the matrix elements can be computed either by
double integrals in the spatial domain or single infinite integral in the spectral domain.

In the electromagnetic scattering problems the various techniques were applied to the strip scattering
geometries as given in the [12, 13–14]. Also in [15] a different approach is presented as an effective one. Similarly

3D problems were studied as given in [16, 17]. In [18], the linear thin wire antennas are solved by radiation and
scattering problems. In this study a wavelet based solution technique is used. On the other hand a regularized
type solution is used in [19] for the strip scattering problem but it needs some complicated mathematical tasks.
In all these studies, problems are solved for free space case and for layered geometries by using the effective
computation of the Green’s function as described below.

The closed form spatial domain Green’s function in 3D for micro-strip structures are obtained in [6] and

[7] by using an efficient tool, the GPOF in the usual MoM. A similar approach can be taken in 2D problems by

expressing the Green’s functions as a finite sum of Hankel functions [5].

We choose here the sinc type basis and testing functions as in [20–22, 24] when formulating the method
of moments. The sinc functions consist of an orthogonal set with desirable properties: well suited numerically
handling singularities and an exponential convergence with system size. A finite difference approach is taken
when handling the derivatives in the problem since sinc method has a capacity making bunch up more points
then the other methods.

The expansion of the unknown current density function in coefficients of the sinc function involves
sampling it at the peak positions on the scatterer’s surface. In the usual MoM with the Galerkin procedure, the
sinc function integrals yield easy computation, for instance, the convolution of two sinc functions under integral
produce a single sinc function. The use of the sinc collocation in the electromagnetic theory is a new approach.
Lately it has been applied to Hallen’s integral equation in [8] and to various boundary value problems, such

as in [9, 10]. In [11], the surface scattering problem is also solved by the MoM using the sinc type basis as a
sampling approach.

Here we used the sinc based MoM in the spatial domain and requires just one small term summation of
the GPOF contrary to one integral and summation in the usual procedure [5]. We can calculate thus the main
matrix elements as the sampled spatial domain Green’s function values. Closed form Green’s functions in spatial
domain using the GPOF are given in the literature [5]. Therefore no integration is necessary except for some
singular points of the Green’s function. This allows one to compute the problem faster and with performance
compared to that of the usual MoM. This is our main contribution to the problem studied here since the demand
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from any technique is faster computation with reduced relative error in the main matrix calculations.

With sinc type functions, we have here considerable improvement in the CPU time and reasonably reduced

error. In all these studies, the ejwt convention is suppressed.

2. The closed-form Green’s function for 2D layered media

Consider a planar multilayer as in Figure 1, where the transverse direction extends to infinity and a line source
infinite in the y-direction that is buried in layer i . Any layer may be selected for the observation point. Each
layer has its own relative electric and magnetic (ε ri , μ ri) constants and the layer thickness is di . Also, z and
z’ are the observation position and source points, respectively.

x

z

εi+m

εi+1

εi

εi-1

εi-m

(Observation)
z (Line source)

z′

z = zm - h

z = di - h

z = -h

z = -di-1 - h

z = -z-m - h

Figure 1. Layered geometry of the studied problem.

The spatial domain Green’s function in 2D are discussed in [5] involving a line source �J = ŷδ(ρ) for the

E-polarization case and �J = x̂δ(ρ) for the H-polarization case. (We abbreviate the cases as E-pol and H-pol,

respectively.) Thus the spectral domain Green’s function for auxiliary vector potential �A in 2D layers can be

written as [5]

G̃A
yy =

μi

2jkzi

⎧⎪⎪⎨
⎪⎪⎩

e−jkzi
|z−z′| + R̃i,i+1

TE e−2jkzi
(di−h)MTE

i ejkzi
zejkzi

z′
+ R̃i,i+1

TE R̃i,i−1
TE e2jkzi

diMTE
i ejkzi

ze−jkzi
z′

+R̃i,i−1
TE e2jkzi

hMTE
i e−jkzi

zejkzi
z′

+ Ri,i−1
TE R̃i,i+1

TE e−2jkzi
diMTE

i e−jkzi
ze−jkzi

z′

⎫⎪⎪⎬
⎪⎪⎭
(1)

and the Green’s function for scalar potential is

G̃q
x =

1
2jεikzi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−jkzi
|z−z′| + k2

i

k2
x
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(di−z′)γ1e
jkzi

(z−z′) + k2
i

k2
x
e−2jkzi

diγ2e
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(z−z′)

−R̃i,i+1
TM MTM

i e−2jkzi
(di−z′)ejkzi

(z−z′) + R̃i,i+1
TM MTM

i R̃i,i−1
TM e−2jkzi

diejkzi
(z−z′)

+ k2
i

k2
x
e−2jkzi

z′
β1e

−jkzi
(z−z′) + k2

i

k2
x
e−2jkzi

diγ2e
−jkzi

(z−z′)

−e−2jkzi
z′

R̃i,i−1
TM MTM

i e−jkzi
(z−z′) + R̃i,i−1

TM MTM
i R̃i,i+1

TM e−2jkzi
die−jkzi

(z−z′)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)
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where γ1 = R̃i,i+1
TE MTE

i + R̃i,i+1
TM MTM

i , γ2 = R̃i,i+1
TE MTE

i R̃i,i−1
TE − R̃i,i+1

TM MTM
i R̃i,i−1

TM ,β1 = R̃i,i−1
TE MTE

i +

R̃i,i−1
TM MTM

i which they are applicable for both E and H polarization cases, respectively which they are applicable

for both E and H polarization cases, respectively. Additionally kzi =
√

k2
i − k2

x and kx are the spectral domain

parameters (kx plane) and R̃i,i−1
TE(TM) and R̃i,i+1

TE(TM) are the reflection coefficients from the lower and upper

regions when the source in the i-th region and M̃
TE(TM)
i is related to the reflection coefficients [5].

The closed form spatial domain counterpart can be formed by the inverse Fourier transform which is
given by the relation

GA
yy(G

q
x) =

1
2π

∫ ∞

−∞
dkxe−jkxxG̃A

yy(G̃q
x), (3)

where GA
yy and Gq

x are spatial, G̃A
yy and G̃q

x are the spectral domain Green’s functions, respectively. Sommerfeld

integration path (SIP) is used in equation (3), [5] yet this integral have no analytical solution so time consuming
numerical computation is required. Nevertheless, if the spectral Green’s function is rewritten with complex
exponentials of kzi , then we formulate the Fourier transformed integrals in (3) in terms of Hankel’s functions
that using the identity

H
(2)
0 (kiρ) =

1
π

∫ ∞

−∞

e−jkxxe−jkzi|z|

kzi
dkx, (4)

where kzi =
√

k2
i − k2

x and ρ =
√

x2 + z2 and H2
0(ki ρ) is zero order and second kind Hankel function. Thus the

closed-form spatial Green’s functions are obtained by employing the exponential approximation of the spectral
Green’s functions within the framework of the Generalized Pencil of Function (GPOF) [5]. 2D Hankel function

transformation of the spectral domain Green’s function is applied [5] after cumbersome one-level approach, i.e.,
sampling the function to be approximated along the modified integration path. Hence the carefully selected
exponential functions should introduce little error when the GPOF substitutes in the original function. Using
the equation (4) in the exponential expansion of the spectral Green’s function above, we obtain the closed form
spatial domain Green’s function as

GA
yy(x, z, z′) = −jμi

4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
(2)
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)
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(2)
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(1)
tyy)2

)

+
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b
(2)
tyyH

(2)
0

(
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√
x2 + (z − z′ + jα

(2)
tyy)2

)

+
M∑
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(2)
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(
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(3)
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(2)
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(
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)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (5)

where x and z are the coordinates and also bk
tyy and αk

tyy are coefficients of the GPOF in exponential

formulation technique, and where k = 1,2,3,4 and tyy = 1,2,..,M . M is a predefined parameter prior to

the GPOF algorithm. The αk
tyy is a complex number αk

tyy = pk
t + iqk

t where pk
t and qk

t are both real. The
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same procedure can be applied for Gq
x and spatial domain Green function for H-polarization can be written as

Gq
x(x, z, z′) =

1
j4εi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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+
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)
+
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b
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(2)
0

(
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√
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(6)
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)

−
M∑
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b
(7)
txqH

(2)
0
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)
+
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
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,

(6)

where bk
txq and αk

txq are the coefficients of the GPOF in exponential formulation technique, and where k =

1,2,3,4,5,6,7,8, txq = 1,2,. . . ,M , and M is a parameter predefined prior to the GPOF algorithm. αk
txq is a

complex number such that αk
txq = pk

t + iqk
t where pk

t and qk
t are both real.

3. The methods of moments with sinc basis and testing

Here we used both GPOF technique and sinc functions to solve our integral equation when the MoM technique is
applied. The GPOF is used to approximate the spectral domain Green’s functions to the exponential expansions
and then these exponential expansions can be used to obtain the closed form spatial domain Green’s function
by using the equation (3). This sinc based MoM is applied to the strip scattering in the layered medium for
both E and H polarization cases given below.

a) E polarization case: Let the PEC strip in the i-th layer shown in the Figure 1 be illuminated by a
plane electromagnetic wave. Our goal is to solve basically the IE in terms of field and current, that is to solve

Es
y = −jω(GA

yy ∗ Jy) = −jω

2w∫
0

Jy(x′)GA
yy(x − x′, z, z′)dx′ x ∈ M, (7)

where Es
y = −Ein

y and Ein
y is incident electric field and symbol (*) refers to usual convolution. Notice that

equation (7) is imposed on strip surfaces. We employ the MoM procedure with sinc functions to solve the above

equation. For this, the unknown surface current density is expanded by orthogonal sinc functions (see Appendix

for further details) as

Jy(x) ∼=
N∑

n=0

an sin c(2Wx− n), (8)

where the sinc functions are defined in the spatial domain and W is the bandwidth of the sinc functions in
a counterpart frequency domain; N is the total number points representing sinc’s peak positions for a site n
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and an is coefficients to be determined. We have also Nt x = 2w , with tx = 1/(2W ). Then using the current

expansion the original IE in (7), we get the function

Ein
y (x, z) = jω

N∑
n=0

an

∫ ∞

−∞
sin c(2Wx′ − n)GA

yy(x − x′, z, z′)dx′. (9)

After testing both sides by sinc functions (using the Galerkin method) and changing variables x − x′ = u , we
get the relation

∞∫
−∞

Ein
y (x, z) sin c(2Wx − m) dx

= jω
N∑

n=0
an

∞∫
−∞

GA
yy(u, z, z′)

(
∞∫

−∞
sin c(2Wx − m) sin c(2W (x − u) − n)dx

)
du,

(10)

where the integral inside the right hand side bracket is a convolution. We can reformulate this by using the

orthogonally and convolution (of two sinc functions is also another sinc; see Appendix) that Ein
y (x)reduces to

Ein
y (txm, z) = jω

N∑
n=0

an

∫ ∞

−∞
sin c(2Wx − n + m)GA

yy(x, z, z′)dx, (11)

which can be written in a matrix form

[Amn][an] = [Bm], (12)

where

Amn = jω

⎧⎪⎨
⎪⎩

txGA
yy(|n − m|tx, z, z′) + error |n− m| ≥ L

∫∞
−∞ sin c(2Wx − n + m)GA

yy(x, z, z′) |n− m| < L

Bm = Ein
y (txm, z),

(13)

and where L is a small integer number. The convergence of the above defined integral will be discussed shortly.
The GPOF technique produces error close to machine precision, i.e. very low error rate [5], but the sinc function

integrals produce relative error of about 0.5% to 1% (see section 4). These magnitude errors are in a better
range compared to the usual MoM; yet the written code consumes very little CPU time, even with an ordinary
PC.

b) H polarization case: Similar layered geometry shown in the Figure 1 is considered. The basic IE
for this case is

Einc
x = jω

[
�J(�r) ∗ GA

yy(�r)
]

+
∂

∂x

[
∇ · �J

jω
∗ Gq

x(�r)

]
, (14)

where the above integral equation given in (14) has a different boundary condition. After applying the
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convolution integral operators to the equation (14), it takes the form

Ein
x (x, z) = jω

2w∫
0

Jx(x′)GA
yy(x − x′, z, z′)dx′

+ 1
jω

(
∂Jx(x′)

∂x′ Gq
x(x − x′, z, z′)

∣∣∣2w

0

)

− 1
jω

2w∫
0

∂2Jx(x′)
∂x′2 Gq

x(x − x′, z, z′)dx′,

(15)

where Jx(x) denotes the surface current distribution. Also GA
yy and Gq

x are the required Green’s functions of

the layered geometry (see section 2).

In the equation (15), the derivatives can be evaluated by using the finite difference manner and also by
the cost of the error, it comes from derivative expression. The unknown surface current distribution is again
approximated by orthogonal sinc functions as performed in the E-pol case:

Jx(x) ∼=
N−1∑
n=1

an sin c(2Wx − n), (16)

where the sinc functions are defined in the spatial domain and W is the bandwidth of these sinc functions in
the frequency domain. The N -1 is the number of total sample points on the strip and due to the boundary
conditions on the surface current density, at the initial and final points on the strip, the current density is zero.
We have also Ntx = 2w . Then using the current expansion (16) in the original IE given in (15), we get

Ein
x (x, z) = jω

N−1∑
n=1

an

∞∫
−∞

sin c(2Wx′ − n)GA
yy(x − x′, z, z′)dx′

+ 1
jω

(
∂Jx(x′)

∂x′ Gq
x(x − x′, z, z′)

∣∣∣2w

0

)

− 1
jω

N−1∑
n=1

an+1−2an+an−1
(tx)2

∞∫
−∞

sin c(2Wx′ − n)Gq
x(x − x′, z, z′)dx′,

(17)

where we have the residual error to be minimized.
So we tested both sides of equation (17) by the sinc functions and then applying change of variables, one

can find a convolution of the sinc functions similar to that of equation (10) for the E-polarization case. Then
finally all the terms are arranged into an algebraic matrix equation, as is done in MoM. The function we get is

txEx(ptx, z) = jωtx[Anp][an] +
2

jωtx
[Aq

np][an] +
j

ωtx
[γnp][an]. (18)

In above equation (18), Anp matrix can be written as

Anp =

⎧⎪⎨
⎪⎩

txGA
yy(|p − n|tx, z, z′) + error, |p− n| ≥ L,

∫∞
−∞ sin c(2Wu − p + n)GA

yy(|u| , z, z′)du, |p − n| < L,

(19)
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where L is a small integer. Also Aq
np matrix including Gq

x can be evaluated as

Aq
np =

⎧⎪⎨
⎪⎩

txGq
x(|p− n|tx, z, z′) + error, |p − n| ≥ L,

∫∞
−∞ sin c(2Wu − p + n)Gq

x(|u| , z, z′)du, |p − n| < L.

(20)

In equation (18), the third term in the right hand side can be written as the sum of matrices,

γnp = Fnp + G,
np (21)

where
Fnp = [Cp|Aq

(n−1)p]
, (22)

Gnp = [Aq
(n+1)p|Dp]. (23)

Also, matrix coefficients Cp and Dp are given as

Cp =
∫ ∞

−∞
sin c(2Wu − p)Gq

x(|u + 2w|, z, z′)du, (24)

Dp =
∫ ∞

−∞
sin c(2Wu− p)Gq

x(|u|, z, z′)du. (25)

The above described mainly depends on the dense mesh of the sinc functions; but when the sinc functions
become narrow due to the quasi-localized property [23] of the special function, peak values of the sinc become
more effective in the integral.

Also here in the H-polarization case the derivatives are expressed as finite difference manner. Our code
runs in reasonable time with an ordinary PC. Notice that this way of MoM solution can easily be extended
for multi-strip case in layered medium. The convergence of this integral, i.e. similar to the free space case, is
discussed in section 4.

4. Sinc integral approximations

Constructing the matrix integrals of the MoM for layered medium, the integrand for the free space term, i.e.,
the first term of the spectral Green’s function, can be approximated by Hankel function again and the error level
goes to zero as W increases and even stronger for nonzero |z-z’ | [20, 21, 22, 24]. All four terms representing
the scattering part in the spatial domain under the integral can be written and then it can be expressed in a
compact form approximately as

∞∫
−∞

sin c(2Wx − n + m)H
(2)
0 (ki

√
x2 + (A − iαk

t )2) dx = txH
(2)
0 (ki

√
(n − m)2t2x + (A − iαk

t )2) + Error, (26)

where A and αk
t (symbolized as αk

tyy or αk
txq) are arranged such that the equation (26) models the four different

the scattered parts of GA
yy (or Gq

x). We have here A ≥ 0 and real butαk
t ’s are complex numbers. Notice that

A is function of both z and z ′ and n and m are site numbers.
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The aim is to approximate this integral with simple Hankel function such as in the right side of the
equation (26) that can be useful for a negligible error. To find error criteria, we applied Parseval’s relation to
the both sides. After that we found similar integrands and then we can subtract these two from each other and
thus the absolute error is given as follows by the modified integral limits,

Error = −tx

∞∫
W

4√
k2

i − 4π2f2
x︸ ︷︷ ︸

kzi

e−jkzi(A−jαk
t )︸ ︷︷ ︸

γ

cos
πfx

W
|n − m| dfx, (27)

where kzi =
√

k2
i − k2

x and kx = 2πfx . Define the exponential term as γ = e−jkzi(A−jαk
t ) . Substituting the

previously defined parameter αk
t in γ , then inserting it in the equation (27), and expanding square root, since

k2
i << 4π2f2

x (doing so increases error), we get

Error ∼= − txi(2/π)

∞∫
W

e−2πfx (A+qk
t ) ej2πfx pk

t
cos(πfx|n − m|/W )

fx
dfx. (28)

In fact, already on this level, very low error limit is reached with increasing W . Note also that, when A+qk
t > 0,

the integral above converges due to an exponential decaying factor. For A + qk
t < 0, the other branch has to

be chosen for convergence. In addition to the exponentially convergent factor, the error in question has also

an exponentially oscillating factor ej2πfxpk
t as well. This rapidly oscillating factor contributes greatly to the

convergence, even in absence of exponential decay. If αk
t = pk

t + iqk
t = 0, A = 0 and z = z ’ = 0 for all values

of t and k (free space case), we would obtain the same relative error formula in [22]. So we conclude that our

error is smaller then 1% for L = 1 or 0.5% for L = 2, where L = |n-m | . Note that our analyses work for
L > = 1; otherwise, for L = 0 or n = m, it is recommended that the original error integral of Hankel function
equation (13) has to be taken numerically. ForL ≥ 1, the upper bound of the absolute error reduces to

Error ≤ i

πW
Ci(π|m − n|) . (29)

where the relative error can be found by using the above absolute error by diving it to just the right hand side
of the Hankel function expression.

5. Numerical results

The above formulation is performed utilizing the Sinc-Galerkin MoM whose error along the computation
significantly reduces as W increases. To check this, we have done number of computations for single/multi strip
geometries in the layered medium. We expect also to achieve significantly fast performance in our computation.
To confirm its performance, we deliberately used relatively modest computational facility and implement the
regular MoM procedure (which is quite slower than its later versions). Simulations were carried out on an AMD
Athlon 3200+ 2.0 GHz processor with 1.00 GB RAM under Matlabr©7.0 program package operated under the
Windows operating system.

As we have developed general formulation in the previous chapters, we apply it now to some specific
geometries to verify our formulation. Producing matrix elements through transforming sinc integrals to Hankel
functions, we reduced successfully computation time as we have targeted.
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In Figure 1, the general layered media is shown by the different ε i values defined in each region, separately.
Thickness of each layer may vary depending on the problem’s geometry. In Figure 2, the three strips with
different locations are considered inside the slab, i.e. three region case where the strips are embedded in the
slab. In the same figure, in part (b), two layer geometry is given and the single strip located at the upper
region. The angle φ appearing in the radiation patterns in the numerical results part is the scattering angle

and is shown in Figure 2(b). Also, angle θ inc shows the incident direction of the incoming electromagnetic
plane wave which excites this scattering problem. Width of the strip ‘2w ’ may vary, depending on the problem.
The Figure 1 and Figure 2 define the geometry of the problems we have studied here.

observation

z

φ

θinc

Medium 2

Medium 1

2w

h1

h2

h3 x

Medium 0

Ei, Hi

observation

z

φ

θinc

Medium 2

Medium 1

2w x

Ei, Hi

h

(a) (b)

Figure 2. Geometric configuration: (a) three strip and three layer geometry; (b) one strip and two layer geometry.

In Figure 3, E-polarized plane wave is incident normally to the geometry of Figure 2(a) and the results
are given on the same plot with the sinc based MoM solution and the pulse type basis functions used in the
ordinary Galerkin procedure. Both the current density magnitudes of our method and MoM using pulse type
functions are consistent with each other shown in the same figure (Figure 3). H-polarized case for the same
geometry is presented in Figure 4 where the sinc based-MoM and regular triangular basis MoM are presented
in the same plot. In these figures, we observed that the error is higher in the E-pol case than H-pol, since
E polarization has singular behavior near edges that some current (especially sinc functions located near the

edges) persists out of the strip in E polarization (see Figure 3).

Keeping the same geometry (Figure 2(b)), single horizontal strip located at the interface between 2 half-
spaces, the current densities for E and H polarization excitations are calculated. Parameters chosen are: ε r1

= 4 and ε r2 = 1 for relative dielectric constants; width of the strip is 2w = 4λ , the height of the strip from
the interface is set to 0, thus the current densities for E and H polarization excitations are obtained using sinc
based MoM. Real and imaginary parts of current densities are given in Figure 5 and 6, respectively. Comparing
results with those found in [5], excellent aggreement is observed.

Once the current densities are obtained, one can obtain the far field patterns of radiation arising from
the strip. Both E-polarized and H-polarized incident wave cases are considered in the following figures. First
the current density of the strip is computed, then using far field approximations, scattered fields are plotted in
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Figures 7 and 8. For relative dielectric constants, ε r1 = 4, ε r2 = 1 and the width of the strips is 2w = 0.5λ ,
with normal incidence.
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Figure 3. Magnitudes of the current densities for E-

polarization on the three strips for the three regions, i.e.,

the strips inside the slab with ε r0 = ε r2 = 1 and ε r1 =

4 also 2w = 0.2λ 2, h1 = h2 = h3 = 0.1λ 2 and θ inc = 0.

Figure 4. Magnitudes of the current densities for H-

polarization on the three strips for the three regions, i.e.,

the strips inside the slab with ε r0 = ε r2 = 1 and ε r1 =

4 also 2w = 0.2λ 2 , h1 = h2 = h3 = 0.1λ 2 and θ inc =

0.
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Figure 5. Real and imaginary parts of the normalized

current densities for E-polarization excitation. ε r2 = 1,

ε r1 = 4, 2w = 4λ 2 , h = 0, θ inc = 0.

Figure 6. Real and imaginary parts of the normalized

current densities for H-polarization excitation. ε r2 = 1,

ε r1 = 4, 2w = 4λ 2 , h = 0, θ inc = 0.

Furthermore (in Figure 7), the heigth of the strip from the interface is taken as h = 5λ , 10λ or 15λ , given

as parts (a), (b) and (c), respectively. For similar geometry, the same dielectric constants and the incidence
angles are used, except for the height of the strip is taken as 5λ and the width of the strip, 2w , is chosen as
0.5λ , 2λ and 5λ as parts (a), (b) and (c) of Figure 8, respectively. We clearly see that in the Figure 7 and 8,
the number of oscillations is increased and level of radiation pattern became higher while increasing the strip
height from the interface and the width of the strip, respectively.
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Figure 7. Far field patterns of one strip on the two layer geometry problem for E-polarization excitation with parameters

ε r2 = 1, ε r1 = 4, 2w = 0.5λ 2 , h = 5λ 2, θ inc = 0 for (a), ε r2 = 1, ε r1 = 4 , 2w = 0.5λ 2 ,h = 10λ 2, θ inc = 0

for (b) and ε r2 = 1, ε r1 = 4, 2w = 0.5λ 2 , h = 15λ 2, θ inc = 0 for (c).
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Figure 8. Far field patterns of one strip on the two layer geometry problem for E-polarization excitation with parameters

ε r2 = 1, ε r1 = 4, 2w = 0.5λ 2 , h = 5λ 2, θ inc = 0 for (a), ε r2 = 1, ε r1 = 4, 2w = 2λ 2 , h = 5λ 2, θ inc = 0 for

(b) and ε r2 = 1 , ε r1 = 4, 2w = 5λ 2 , h = 5λ 2, θ inc = 0 for (c).

In Figure 9 and 10, the far field patterns of the scattered H-field are given. The parameters of the
Figure 9 and Figure 10 are the same as used in the previous Figures 7 and 8. As in the E-pol case, similar in
level of radiation pattern and number of oscillations are also observed. Comparing scattered fields of E and H
polarizations, we obtained some oscillations. But levels of radiation pattern are greater in H-pol case than in
E-pol case. Since the current densities obtained in H-pol case are extremely larger than E-pol case.
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Figure 9. Far field patterns of one strip on the two layer geometry problem for H-polarization excitation with parameters

εr2 = 1 ,εr1 = 4, 2w = 0.5λ2 ,h = 5λ2, θinc = 0 for (a), εr2 = 1 ,εr1 = 4, 2w = 0.5λ2 , h = 10λ2, θinc = 0 for (b)

and εr2 = 1 , εr1 = 4, 2w = 0.5λ2 , h = 15λ2,θ
inc = 0 for (c).
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Figure 10. Far field patterns of one strip on the two layer geometry problem for H-polarization excitation with

parameters εr2 = 1 ,εr1 = 4, 2w = 0.5λ2 ,h = 5λ2, θinc = 0 for (a), εr2 = 1, εr1 = 4, 2w = 2λ2 , h = 5λ2, θinc =

0 for (b) and εr2 = 1 , εr1 = 4, 2w = 5λ2 , h = 5λ2,θ
inc = 0 for (c).

In Table 1 and Table 2 the computation times for the geometry shown in Figure 2(b) are presented. The
resulting CPU times are indeed shorter than what we expected. Our code worked quite faster regarding to
the regular MoM’s performance for both E-polarized and H-polarized cases. We achieved better performance
even with a MATLAB 7.0 code running on a modest PC when compared with the results obtained with usual
facilities such as a fast sun system as in [5]. Significant reduction of an overall CPU time data is displayed in

409



Turk J Elec Eng & Comp Sci, Vol.19, No.3, 2011

Table 2. The results obtained from our spatial domain formulation are proven to be better in many performance
regards than those of the results found in the literature (we already performed to compare with our results).

Table 1

Number of sample points on 
each 0.2λ width strip. 

CPU Time of overall program in 
seconds, for a 3-strip case, each strip 
with 0.2λ width (Geometry in Figure 

2(a)).  Sinc type basis and test 
functions in MoM for E-pol case. 

CPU Time of overall program in 
seconds, for a 3-strip case, each strip 
with 0.2λ width (Geometry in Figure 

2(a)).  Pulse type basis and test 
functions in MoM for E-pol case. 

N=10 063 s 072 s 
N=20 124 s 239 s 
N=40 254 s 300 s 

Table 2

Number of sample points on 
each 0.2λ width strip. 

 
CPU Time of overall program in 

seconds, for a 3-strip case, each strip 
with 0.2λ width (Geometry in 

Figure 2(a)).  Sinc type basis and 
test functions in MoM for H-pol 

case. 

CPU Time of overall program in 
seconds, for a 3-strip case, each strip 

with 0.2λ width (Geometry in 
Figure 2(a)).  Triangular type basis 
and test functions im MoM for H-

pol case. 
N=10 114 s 525 s 
N=20 261 s 2069 s 
N=40 642 s 8010 s 

6. Conclusion

The sinc function based methods of moments are applied to a planar layered media containing a single or
multi strips in various geometries for both polarization cases. The sinc type basis functions are used as in the
Galerkin sense. Far field patterns of fields are examined and effects of strip width and distance to the interfaces
are monitored. We conveniently exploited the properties of the sinc functions in our formulation. We showed
that the error is reduced under a specified limit where the sinc basis bandwidth increases. When compared
to layered scattering regular MoM studies obtained before, the presented formulation provides an accurate
solution faster with better accuracy. Hence E and H polarization results compared with available literature, we
get striking consistency. We are currently developing our code to simulate 3D scattering problems for several
planar geometries.

Appendix

The set of the sinc functions defined in section 3 constitutes a complete orthogonal set and this orthogonally
can be represented as

∞∫
−∞

sin c(2Wx − n) sin c(2Wx − m)dx =

{
1/(2W ) if n = m

0 if n �= m,
(A1)

where n and m are integer numbers and W is the frequency domain bandwidth of given sinc functions written
in the spatial domain. The convolution of two sinc functions located at different points in the spatial domain
produces again a sinc function mounted at the location of their difference:
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∞∫
−∞

sin c(2Wx′ − n)︸ ︷︷ ︸
g1(x′)

sin c(2W (x − x′) − m)︸ ︷︷ ︸
g2(x′−x)

dx′ = (1/(2W )) sin c(2Wx − n + m)︸ ︷︷ ︸
g3(x)

, (A2)

where n and m are integer numbers and W is the bandwidth of these sinc functions. Equation (A2)
can also be written as

g1(x) ∗ g2(−x) = (1/(2W )) g3(x). (A3)

Proof of this relation follows from taking the Fourier transform of both sides.
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