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Abstract

The goal of attribute reduction is to find a minimal subset (MS) R of the condition attribute set C of

a dataset such that R has the same classification power as C. It was proved that the number of MSs for a

dataset with n attributes may be as large as (n
n/2) and the generation of all of them is an NP-hard problem.

The main reason for this is the intractable space complexity of the conversion of the discernibility function

(DF) of a dataset to the disjunctive normal form (DNF). Our analysis of many DF-to-DNF conversion

processes showed that approximately (1 − 2/(n
n/2) × 100)% of the implicants generated in the DF-to-DNF

process are redundant ones. We prevented their generation based on the Boolean inverse distribution law.

Due to this property, the proposed method generates 0.5 × (n
n/2) times fewer implicants than other Boolean

logic-based attribute reduction methods. Hence, it can process most of the datasets that cannot be processed

by other attribute reduction methods.

Key Words: Information system, dataset, attribute reduction, feature selection, discernibility function,

computational complexity, reduct

1. Introduction

In most information systems such as data mining, decision support techniques for pattern recognition and neural
networks training the data tables, called datasets, are used. A basic problem for many practical applications
of information systems is the selection of a minimal subset of attributes (MSA) sufficient for the classification

of objects in the considered dataset [1-3]. This problem, known as attribute reduction or feature selection, was

addressed in many studies, and some approaches based on different reductions of discernibility matrices (DMs)
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or discernibility functions (DFs) have been developed [2,4,5]. Attribute reduction provides the following benefits
for processing datasets: reducing the dimensionality of feature space, improving the efficiency and precision of
data classification rules, speeding up the data mining algorithms, facilitating the data collection process, and
reducing the amount of memory needed for storing the datasets [2,5-7]. For instance, the application of attribute

reduction to the dataset “Lung Cancer” [8], with 56 attributes and 32 objects, showed that this dataset could
be classified with only 4 attributes from the original 56. That is to say, this dataset could be reduced from
56 to 4 columns and classified by rules with only 4 conditions instead of 56. Due to the mentioned benefits,
attribute reduction is widely used for preprocessing the datasets used in many fields, including data mining,
decision support systems, knowledge acquisition and discovery, pattern recognition, machine learning, text
categorization, customer relationship management, intrusion detection, weather forecast, economic forecasts,
fault diagnosis, and forecasting [2,6,7].

It was shown that the number of MSAs for a dataset may be as large as (n
n/2) [2,5]. Usually these

MSAs have different cardinalities, and those of the least cardinality are called reducts [2,3,5]. Every dataset
may be compactly described by any of its reducts. Since the MSA representing a reduct can be recognized
only in comparison to other MSAs, all MSAs should be generated for selecting a reduct. To the best of our
knowledge, the generation of all MSAs is possible only by DM-based attribute reduction, which is unfortunately
an intractable NP-hard problem [9,10]. Therefore, there have only been a few studies of the DM-based attribute

reduction problem. Particularly, in [11], a DM-based algorithm was explained. According to this algorithm,
the attribute with the highest frequency in the DF is added to the reduct candidate and all clauses in the DF
containing this attribute are removed. When all clauses have been removed, the algorithm returns a reduct [12].

An iterative approach similar to that explained in [11] was proposed in [13]. In each iteration, the attribute with
the highest frequency in the DM is selected and all elements involved with this attribute are removed from the
DM. The algorithm is iterated until a reduct is found. In [14], a heuristic approach was proposed, in which the
rough set operations are implemented by bitwise ones. This approach allows a reduction in the time needed for
finding an attribute subset. Although all 3 mentioned approaches are DM-based, they are heuristic; therefore,
they do not guarantee the optimality of the results. In [1], the concept of strong compressibility was introduced.

It was applied to the minimized DF (DF min) in conjunction with an expansion algorithm. But as was stated in

[5], this approach can only be efficient for small datasets. In [15], a reduct generation algorithm was proposed.
It was based on transformations of a discrete dimensionality reduction problem in Boolean space to a continuous
global optimization problem in real space. The experimental results showed that this approach is considerably
faster than dynamic reduct [16,17] or genetic reduct [18] approaches. In [4], a reduct construction algorithm
was proposed. According to this approach, a DM is considered as a matrix of a system of linear equations
and is minimized by the Gaussian method. Then, by uniting the elements of the minimized DM, a reduct is
generated. Unfortunately, neither [15] nor [4] contains an estimation of the space complexity (the amount of

memory required) of the proposed algorithm.

By analyzing many DFs for disjunctive normal form (DNF) conversion processes, we observed that the

mentioned hardness (complexity) of generating MSAs is mainly caused by the redundant implicants (RIs) that
occur in these processes. Therefore, we developed an approach preventing the generation of RIs during the
DF-to-DNF conversion. It allows us to reduce the worst-case space complexity of this conversion by a factor

of Dx = 0.5 × (n
n/2) = O(10(0.3×n)−1). In order to experimentally prove the correctness and efficiency of the

approach, we processed all datasets with no more than 64 attributes from the UCI repository [8], and the results
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were compared with those generated by the well-known exact attribute reduction program RSES [19]. For most
of the datasets, both our approach and RSES generated the same results. But for the 7 datasets given in Table
4, RSES failed due to an overflow of the 4 GB of memory, while our approach generated the results by using
no more than one-eighth of this memory space.

The rest of this paper is organized as follows. In Section 2, the concept of a discernibility function is
given. In Section 3, a DF-to-DNF conversion with prevention of the generation of redundant implicants is
explained. In Section 4, the estimation of the efficiency of the proposed approach and the results of experiments
on different datasets are given. The paper is concluded in Section 5.

2. The discernibility function of a dataset

2.1. Generating the bit-based discernibility function for a dataset

Consider a dataset S = (U,C), where U = {u 1, ..., um} and C = {a 1, ..., an}. Each u ∈ U is called an object or

instance, and each a ∈ C is called an attribute or feature. Each attribute aj ∈ C has a value set (domain) of

Va = {a j(ui )}m
i=1 , where aj(ui) is the value of attribute aj on object ui . The DM of S is an m× m matrix,

the entry Hik of which is obtained as follows [2,3,9,10]:

Hik = V (∀aj : aj(ui) �= aj(uk), j ∈ {1, 2, . . ., n} and i, k ∈ {1, 2, . . ., m}), (1)

where Hik as defined by Eq. (1) is a propositional logic clause (PLC) of the following form [2,3].

Hik = hikj = hik1∨hik2∨. . .∨ hikj∨. . .∨ hikn, (2)

where hikj = aj if aj(ui ) �= a j(uk) and hikj = 0 if aj(ui) = aj(uk).

Let us introduce a binary variable bikj such that:

bikj = 1 if aj(ui) �= aj(uk) and bikj = 0 if aj(ui) = aj(uk). (3)

Eq. (3) allows us to use the following bit-based clause (BBC) instead of a PLC as in Eq. (2).

Bik = bik1bik2. . .bikj. . .bikn (4)

As is seen from the comparison of Eqs. (2) and (4), Eq. (4) has been written with the ∨ (OR) signs removed.
This is because such a representation of a BBC provides compact storing and processing of the DFs composed
from BBCs. However, the presence of this sign between the neighbor components of any BBC must always
be taken into consideration when it is subjected to any logic operation. In order to transform a PLC into a
corresponding BBC and vice versa, the association between Eqs. (2) and (4) can be fixed by a data structure
like the following one.

Struct PLC-BBC { Unsigned a1 :1; Unsigned a2 :1; . . . ; Unsigned an :1; }.

This means that if attribute aj is present in a PLC, then the value of the jth bit in the corresponding BBC

is to be 1 else 0 and vice versa. The DF for a dataset with U = {u 1, ..., um} and C = {a 1, ..., an} may be
generated by the following algorithm:
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Algorithm 1 (U, m, n): Generate BBCs //m and n are the numbers of objects and attributes, respectively

Begin

DF = ∅
For i = 1 to m
{ For k = i + 1 to m

{ B ik = {0}n

For j = 1 to n

{ If a j (u i) �= a j (uk) then B ik [j] = 1

End If }
DF = DF ∪ B ik }

}
Return (DF )

End

Algorithm 1 has the space and time complexities O(m2) and O(n × m2) [5,20], respectively. The time

complexity O(n × m2) can be reduced to O(m2) by parallel processing of all attributes within each object,
which is possible with binary-encoded values of attributes.

2.2. Minimization of a discernibility function

Most BBCs generated by a procedure like Algorithm 1 are usually redundant and should be removed [1-3,20,21].
This can be done based on the principle of expand and eliminate, generating all clauses and then eliminating
redundant ones, according to which the BBCs are compared pair by pair and those BBCs absorbed by other
ones are eliminated [1,20,21]. The minimized DF, denoted by DF min , is constructed by simply connecting the

remaining (irredundant) BBCs by | (bitwise OR) operation signs.

Example 1. Let us construct the DF min for the dataset given by Table 1.

Table 1. Example of a dataset.

C U a1 a2 a3 a4 a5

u1 1 2 0 1 4
u2 0 1 2 3 4
u3 1 2 1 1 1
u4 0 1 1 5 1

1. Generating the DF

DF = {B 12, B13, B14, B23, B24, B34 } = {11110, 00101, 11111, 11111, 00111, 11010}
The PLCs represented by these BBCs are as follows:

H12 = a1 ∨ a2 ∨ a3 ∨ a4; H13 = a3 ∨ a5; H14 = a1 ∨ a2 ∨ a3 ∨ a4 ∨ a5;
H23 = a1 ∨ a2 ∨ a3 ∨ a4 ∨ a5; H24 = a3 ∨ a4 ∨ a5; H34 = a1 ∨ a2 ∨ a4.
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2. Minimization of the DF

BBCs B14 ,B23 , and B24 are absorbed by BBC B13 , and BBC B12 is absorbed by BBC B34 . Therefore,
in the results, only BBCs B13 = 00101 and B34 = 11010 remain. Consequently, DF min = {B13, B34 } =

{00101, 11010}.
This expression can be generalized for Q ≤ (n

n/2) BBCs as follows:

DF min = |Qq=1Bq , (5)

where | is the bitwise OR operation sign. The bit-based DNF of a DF min can be generated as follows:

DNF BB=|Qq=1E(Bq), (6)

where E(Bq) is the set of unit bit vectors generated by projecting BBC Bq onto nonzero bit-positions [3,22] as

follows:
E(Bq) = {Prj(Bq)|bj= 1}, (7)

where Pr j(Bq ) = 00. . . b j . . . 0 and bj is the value of the jth bit of Bq . For instance, for B13 and B34 given

above, E(B13 ) = E(00101) = {Pr 3(B13 ), Pr 5(B13 )} = {00100,00001}, and E(B34 ) = E(11010) = {Pr 1(B34 ),

Pr 2(B34 ), Pr 4(B34 )} = {10000, 01000, 00010}, respectively. The propositional logic representation of this

DNF BB is DNF = H13 ∧ H 34 = (a3 ∨ a 5 ) ∧ (a 1 ∨ a 2 ∨ a 4). A DF min obtained by Eqs. (5-7) will be
processed by Algorithm 2, given in Subsection 3.3.

2.3. The estimation of the worst-case number of redundant implicants

In order to estimate the worst-case number of redundant implicants, we have to estimate the memory space used
by the abovementioned expand and eliminate principle [1,20,21]. For this aim, let us introduce the concept of

the weight of BBC Bq , defined as the number of 1s in it and denoted by W (Bq). If a DF min to be converted to

DNF BB consists of Q BBCs with the average weight w per BBC, then wQ bitwise additions will be needed for
this conversion. Since each of these additions will produce one implicant, the total number of such implicants

is to be wQ.The numerical analysis of wQ shows that it reaches its maximum possible value at w = n/2

and Qmax = (n
n/2). Consequently, the worst-case space complexity [23,24] of the DF min -to-DNF conversion is

SC WC = (n/2)(
n
n/2) . On the other hand, the number of prime implicants of a DF min of n attributes cannot

exceed the value SC PI = (n
n/2) [2,5]. That is, the worst-case number of RIs generated in the process of a

DF min -to-DNF conversion may be as large as:

NRI = SCWC − SCPI = (n/2)(
n
n/2) − (n

n/2). (8)

Since the value of NRI obtained by Eq. (8) changes over a very wide range depending on n , in Figure 1, the
values of NRI are shown using the decimal logarithmic scale. As is seen from Figure 1, for n = 7 and n = 10,

NRI may reach values of orders of 1022 and 10176 , respectively . This is to say that even a memory with 264

= 1019.27 address space may theoretically be overflowed during the processing of datasets with n ≥ 7. In order
to avoid this negativity, it is necessary to prevent the generation of RIs.
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Figure 1. The dependency of NRI on n in the decimal logarithmic scale.

We observed that there are 2 types of RIs: predetectable and postdetectable RIs. While all predetectable
RIs may be identified without being generated, the postdetectable ones may be detected and deleted (ignored)
only after they are generated. The analysis of many DF min -to-DNF conversions shows that usually only a small
number of RIs are postdetectable.

3. The algorithm of DF min-to-DNF conversion for preventing the

generation of RIs

3.1. The basic structure of the algorithm

The algorithm of the conversion of a DF min to a DNF is based on the following iterative implementation of
Eq. (6):

F0= {{0}n}

Fq = Fq−1|E(Bq), ∀q = 1, 2, . . ., Q,

DNF BB = FQ

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9)

where DNF BB is the bit-based representation of the DNF and Fq is the state of the DNF BB in the qth

iteration. Fq is formed by the bitwise Cartesian summing of Fq−1 and E(Bq). Each new component generated

by Eq. (9) is separated by a comma from those already generated. Such a representation of Fq , Fq−1 and

E(Bq) allows us to look at each of them as a set and perform the logic operations on the elements of these sets.

For instance, according to this representation, the function G = x|y|z is to be considered as the set G = {x, y,

z}. Such a look at equation Fq = Fq−1 | E(B q) from Eq. (9) allows us to compute it simply, as follows:

Fq= {x|z : x ∈ F q−1 and z ∈ E(Bq)}, (10)

where x is a bit-vector of the weight 1 ≤ W (x) ≤ n and z is a bit vector always of the weight W (z) = 1 (a

unit BBC) .
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3.2. Preventing the generation of predetectable RIs and ignoring the

postdetectable RIs

For computation of Fq while preventing the generation of predetectable RIs, we use the following relation that

may exist between Fq−1 and E(Bq).

Let us represent Fq−1 = x|y as Fq−1 = {x, y} and E(Bq) = z|v as E(Bq ) = {z, v}, where each x,y ∈
F q−1 is a bit-vector of the weight 1 ≤ k ≤ n and each z,v ∈ E(B q) is a unit bit vector of the weight 1 . In
order to determine which components of the result of the Cartesian bitwise summing of x and y with z and v

are redundant, we use the following system of rules.

(x|z = x or x|v = x) and (y|z �= y and y|v �= y) →Fq−1|E(Bq) = x ∪ y|(z, v)

(y|z = y or y|v = y) and (x|z �= x and x|v �= x) →Fq−1|E(Bq) = y ∪ x|(z, v)

(x|z = x or x|v = x) and (y|z = y or y|v = y) → F q−1|E(Bq) = x ∪ y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11)

As is seen from Eq. (11), the computation of the expression Fq−1|E(Bq)may be reduced to the following:

∀x ∈ F q−1: x&Bq �= {0}n→ x|E(Bq) = x, (12)

where & is the bitwise conjunction (AND) operation sign. Eq. (12) states that if there is an implicant x ∈
F q−1 such that x & B q �= 0, then it will occur as a bit vector generated by the operation x|E(Bq) and will
absorb the other bit vectors generated by this operation. Therefore, each x ∈ F q−1 satisfying the condition x

& B q �= {0}n should be considered as a part of the final result without summing it with E(Bq). For storing

such parts of the result, we will use set Vq1 , obtained as follows:

Vq1= {x ∈ F q−1|x&Bq �= {0}n}. (13)

The rest of set Fq−1 is obtained as follows:

Vq2 = Fq−1 − Vq1. (14)

That is, E(Bq) is to be Cartesian-summed with only setVq2 .

Tq = Vq2|E(Bq) (15)

The postdetectable RIs may occur in the process of computations in Eq. (15). Each of them may be recognized
and ignored by the following rule:

Tq = Tq∪ωji ⇔ ∃v ∈ V q1: v|ωji = v, (16)

where ω ji = vj | e i such that vj ∈ V q2 , ei ∈ E(Bq), j ∈ {1,2,. . . , |Vq2|}, and i ∈ {1,2,. . . , |E(Bq)|}.

3.3. The algorithm of DF min -to-DNF conversion with relevant implicants

Remembering that the iterative DF min -to-DNF BB conversion is realized by Eq. (9), prevention of predetectable

RIs is realized by Eqs. (13) and (14), and the ignoring of postdetectable RIs is realized by Eqs. (15) and (16).
In the example below, we give a procedure implementing these formulas.
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Example 2. Convert to DNF the minimized discernibility function DF PL = (b ∨ c ∨ d) ∧ (d ∨ e) ∧ (a ∨
d) ∧ (a ∨ b ∨ c ∨ e), the bit-based representation of which is to be generated on the following structure.

Struct. Example 2. { Unsig.a:1; Unsig.b:1; Unsig.c:1; Unsig.d:1; Unsig.e:1; }
That is,B1 = ϕ 1 : (b ∨ c ∨ d) → 01110, ;2 = ϕ 1 : (d ∨ e) → 00011 ;B3 = ϕ 1 : (a ∨ d) → 10010 ; and

B4 = ϕ 1 : (a ∨ b ∨ c ∨ e) → 11101, where ϕ 1 is an operator transforming a given PLC to the appropriate

BBC on Struct. Example 2. Consequently, DF min = {01110, 00011, 10010, 11101}. Since Q = 4, according

to Eq. (9), the DNFBB will be computed in 4 iterations.

Iteration 1 :q = 1,B1 =01110; F0 = {{0}5 } = {00000}.
1.1. Intersect all x ∈ F0 with B1 : 00000 & 01110 = {0}5 .

1.2. Divide F0 into 2 sets such that V11 = {x ∈ F0 : x & B 1 �= {0}5 } and V12 = F0 − V11 :

V11 =∅ ;V12 = F0 − V11 = {00000}.
1.3. Generate, one by one, the elements of T1 = V12 | E(B 1). Compare each new generated element

with the elements of set V11 . Ignore those absorbed by any element of set V11 : E(B1 ) = {01000, 00100,

00010};T1 = {00000} | {01000, 00100, 00010} = {01000, 00100, 00010}. There is no element in T1 absorbed
by the elements of V11 .

1.4. Compute F1 = V11 ∪ T 1 : = {01000, 00100, 00010}.

Iteration 2 : q = 2,B2 =00011; F1 ={01000, 00100, 00010}.
2.1. Intersect all x ∈ F1 with B2 : 01000 & 00011 = {0}5 ; 00100 & 00011 = {0}5 ; 00010 & 00011 �=

{0}5 .

2.2. Divide F1 into 2 sets such that V21 = {x ∈ F1 : x & B 2 �= {0}5} and V22 = F1 − V21 :

V21 = {00010};V22 = F1 − V21 = {01000, 00100}.
2.3. Generate, one by one, the elements of T2 = V22 | E(B 2). Compare each new generated element

with the elements of set V21 . Ignore those absorbed by any element of set V21 : E(B2 ) = {00010, 00001};T2

= {01000, 00100} | {00010, 00001} = { 01010−−−−−− , 01001, 00110−−−−−− , 00101} = {01001, 00101}. Here, 01010 and
00110 ∈ T 2 are ignored as absorbed by 00010 ∈ V 21 .

2.4. Compute F2 = V21 ∪ T 2 : F2= {00010, 01001, 00101}.

Iteration 3 : q = 3,B3 = 10010; F2 ={00010, 01001, 00101}.
3.1. Intersect all x ∈ F2withB3 : 00010 & 10010 �= {0}5 ; 01001 & 10010= {0}5 ; 00101& 10010=

{0}5 .

3.2. Divide F2 into 2 sets such thatV31 = {x ∈ F2 : x & B 3 �= {0}5 } and V32 = F2 − V31 :

V31 = {00010};V32 = F2 − V31 = {01001, 00101}.
3.3. Generate, one by one, the elements of T3 = V32 | E(B 3). Compare each new generated element with

the elements of set V31 . Ignore those absorbed by any element of set V31 : E(B3 ) = {10000, 00010};T3 =

{01001, 00101} | {10000, 00010} = {11001, 01011−−−−−−, 10101, 00111−−−−−−} = {11001, 10101}. Here, 01011 and 00111
∈ T 3 are ignored as absorbed by 00010 ∈ V 31 .

3.4. Compute F3 = V31 ∪ T 3 : F3 = {00010, 11001, 10101}.

Iteration 4 : q = 4,B4 = 11101; F3 ={00010, 11001, 10101}.
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4.1. Intersect all x ∈ F3 with B4 : 00010 & 11101 = {0}5 ; 11001 & 11101 �= {0}5 ; 10101 & 11101 �=
{0}5 .

4.2. Divide F3 into 2 sets such thatV41 = {x ∈ F 2 : x & B 4 �= {0}5 } and V42 = F3 − V41 :

V41 = {11001, 10101};V42 = F3 − V41 = {00010}.
4.3. Compute, one by one, the elements of T4 = V42 | E(B 4). Compare each new generated element

with the elements of set V41 . Ignore those absorbed by any element of set V41 : E(B4 ) = {10000, 01000, 00100,

00001};T4 = {00010} | {10000, 01000, 00100, 00001} = {10010, 01010, 00110, 00011}. There is no element
in T4 to be ignored as absorbed by the elements of setV41 .

4.4. Compute F4 = V41 ∪ T 4 : F4= {11001, 10101, 10010, 01010, 00110, 00011}.
That is, DNFBB =F4= {11001, 10101, 10010, 01010, 00110, 00011}.
Based on Struct. Example 2, set F4 is to be transformed into the set of MSAs as follows:

R = ϕ 2 : DNFBB = ϕ 2 :{11001, 10101, 10010, 01010, 00110, 00011} → {{a,b,e}, {a,c,e}, {a,d},
{b,d}, {c,d}, {d,e}}, where ϕ 2 is an operator transforming the bit-based implicants into MSAs.

The structured Algorithm 2, given below, is a more detailed and formalized form of the procedure by
which Example 2 was solved.

Algorithm 2 (DF min , Q, n) //The algorithm converting DFmin toDNFBB

Begin

F0 = {0}n ; | F0| = 1

For q = 1 to Q

{ Algorithm 3 (Fq−1, Bq)

Algorithm 4 (Bq , Vq1, Vq2) // Vq1 and V q2 are the sets generated by

Algorithm 3 given below

Fq = Vq1∪ Tq } // Tq is a set generated by Algorithm 4 given below

Return (Fq)

End

The subprocedure Algorithm 3, used in Algorithm 2 and given below, generates the set of implicants Vq1

while preventing the generation of predetectable RIs according to Eqs. (13) and (14).

Algorithm 3 (Fq−1, Bq) // The algorithm generating implicants while preventing predetectable RIs

Begin

Vq1 = ∅ ; Vq2 = {0}n

For i = 1 to | Fq−1|
{ Select x i ∈ Fq−1 ; λ = x i & Bq

If λ �= {0}n then Vq1 = Vq1 ∪ x i

Else Vq2 = Vq2∪ x i }
Return (Vq1, Vq2)

End

The work of Algorithm 3 has been demonstrated by the pairs of steps (1.1, 1.2), (2.1, 2.2), (3.1, 3.2), and

(4.1, 4.2) in Example 2.

651



Turk J Elec Eng & Comp Sci, Vol.19, No.4, 2011

The subprocedure Algorithm 4, used in Algorithm 2 and given below, generates implicants according to
Eq. (15) and ignores the postdetectable RIs according to Eq. (16).

Algorithm 4 (Bq , Vq1, Vq2) // The algorithm generating implicants while ignoring postdetectable RIs

Begin

E(Bq) = {Prj (Bq) | dj = 1, j = 1,2, . . . , N}; Tq = Ø

For j = 1 to |Vq2|
{ Select vj ∈ Vq2

For i = 1 to | E(Bq)|
{ Select e i ∈ E(Bq); ωji = vj | e i

P = Tq ; Tq = Tq ∪ ωji

For k = 1 to |Vq1|
{ Select vk ∈ Vq1

If vk & ωji = vk then Tq = P; Break } } }
Return (Tq)

End

The work of Algorithm 4 has been demonstrated by steps 1.3, 2.3, 3.3, and 4.3 in Example 2.

4. Estimation of the efficiency of algorithm 2 (convert DF min to

DNF BB )

4.1. The efficiency of Algorithm 2 at worst-case space complexity

As mentioned in Subsection 2.3, the DF min with the worst-case space complexity is that composed from (n
n/2)

clauses, each of which contain exactly n/2 attributes. This is because n elements can compose the sets Z1 ,

Z2 , . . . , Zn/2 , . . . , Zn such that the cardinality of Zi is (n
i ) and max((n

1 ), (n
2 ), . . . , (n

n/2), . . . , (n
n)) = (n

n/2).

This is to say, the set of maximal cardinality is Zn/2 , containing (n
n/2) clauses. Therefore, the bit-based

representation of such a DF min has DDF = (n/2) × (n
n/2) 1s. The number of 1s per attribute is obtained as

follows:

D = DDF /n = (n/2) × (n
n/2)/n = (n

n/2)/2 = 0.5 × (n
n/2). (17)

In other words, the average number of presences of each attribute x ∈ C in such a DF min is D = 0.5 ×
(n
n/2).According to the Boolean law (x ∨ Fi ) ∧ (x ∨ Fj) = FiFj [20], only the first appearance of x is to

be included in the result of the expansion of the expression (x ∨ F 1 ) ∧ (x ∨ F 2 ) ∧ . . . ∧ (x ∨ F z ) = x
∨ F 1F2 . . . F z, . Therefore, subprocedure Algorithm 3 of Algorithm 2 omits all multiplications of implicants
containing attribute x with all clauses containing this attribute. Due to this reduction, Algorithm 2 generates

only the irredundant implicants, the total number of which is D = 0.5 × (n
n/2) = O(10(0.3xn)−1)times less than

the total number of all implicants (redundant and irredundant) generated by an algorithm based on expand and
eliminate principle. The dependency of the order of D on the number of attributes is given in Table 2.
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Table 2. The dependency of the efficiency of the algorithm on the number of attributes.

n 10 20 30 40 50 60 70 80 90 100 110 120
D 102 105 108 1011 1014 1017 1020 1023 1026 1029 1032 1035

As is seen from this Table, with each ,n increased by 10, the efficiency of the algorithm increases

approximately by a factor of 103 .

4.2. The efficiency of the algorithm for the DF min -to-DNF conversion at a space

complexity other than the worst case

Since the DF min with the worst-case space complexity is only one of 22n

possible Boolean functions [25], the

probability of the occurrence of such a DF min is 1/22n

, which for n ≥ 5 becomes negligibly small. Therefore, it
is necessary to obtain the probabilities of occurrences of clauses of sizes 1 to n separately. Unfortunately, we did
not do this analytically. Hence, we estimated the efficiency of Algorithm 2 based on the results of experiments
performed on several datasets from the UCI repository [8]. In Table 2, the expected coefficients of reduction
of the space complexities for several datasets are given. The coefficient D for every dataset was obtained in
accordance with Eq. (17), as follows:

D = W (DF BB)/n,

where W(DF BB) is the total number of 1s in the DF BB (in all BBCs) of the dataset considered. Recall
that m , n , and Q denote the number of objects in the given dataset, the number of attributes of this dataset,
and the number of BBCs in the minimized form of the DF for that dataset, respectively. The values of D for
several datasets from the UCI repository [8] are given in Table 3.

Table 3. The expected coefficients of the reduction of the space complexity for several datasets.

Dataset m n Q W(DFBB) D
Shuttle 43,500 9 8 26 2.9

Zoo 101 17 14 64 3.8
Diabet 768 8 15 66 8.3
Austra 690 14 23 139 9.9

Mushroom 8124 22 30 198 9.0
Anneal 798 38 55 279 7.3
Heart 270 8 68 430 53.8
Lymn 148 18 154 725 40.3

Ionesphere 351 34 235 5690 167.3
Lung Cancer 32 56 331 8588 153.4
Spectf Heart 187 44 2096 80,726 1834.7

Sonar 208 60 2004 98,969 1649.5
Statlog (Landsat Satellite) 4435 36 13,473 340,955 9471.0

As is seen from Tables 2 and 3, the values for D in Table 3 are considerably less than those in Table 2.
The reason for this is the fact that Table 3 includes not all theoretically possible BBCs, but only those that are
contained in the DF min for the corresponding dataset. For instance, in Table 2, for a dataset with n = 60, D

takes a value of the order of 1017 , while dataset Sonar with n = 60, given in Table 3, takes a value of the order
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of 103 . This is due to the fact that in Table 2, only 2004/(60
30) = 1.69 ×10−14 parts of possible BBCs exist.

Since 1.69 × 10−14× 1017 = 1.69 × 103 × 103 , the value of D for dataset Sonar is in a good accordance with
that obtained for a dataset with n = 60 (Table 2).

By using Algorithm 2, we processed many datasets from the UCI repository that could not be processed
by other algorithms due to memory overflows. Some of these datasets are given in Table 4.

Table 4. Examples of datasets that could be processed only by Algorithm 2.

Number of
Attributes/ Number of Minimal Memory Time

Dataset Instances/ Subsets /Reducts/ Space Elapsed
Classes Size of a Reduct Used (MB) (s)

Spectf Heart 44/187/56 26,454/1/2 2.7 21.120
Dna 57/106/2 6,259,767/1/3 265 492,726

Statlog (Landsat Satellite) 36/4435/7 1,088,611/1145/5 295 16,320
Lung Cancer 56/32/3 9,007,859/6/4 500 1,044,210
Annealing 38/798/6 275/6/6 2.8 2.4
Ionosphere 33/351/2 4257/6/2 3.2 1.6

Sonar 60/208/2 31,844/168/2 1 27.6

The computations of the data given in Table 4 were performed by a computer with an Intel Core2Quad@2.83
GHz processor, 4 GB of memory, and Microsoft XP Professional Edition OS.

5. Conclusion

The problem of finding all MSAs for datasets of information systems is known to be NP-hard. This is due to
the intractable space complexity of the DF-to-DNF conversion used as the main transformation in the attribute
reduction. The analysis of the DF-to-DNF conversion showed that the mentioned complexity is mainly caused by
redundant implicants occurring in this process. Therefore, we developed an algorithm preventing the generation
of redundant implicants. We showed that by using this algorithm, the computational complexity of the DF-to-
DNF conversion may be reduced thousands and even millions of times, allowing us to process many datasets
that cannot be processed by other methods. However, it may also be unsuccessful for some large-sized datasets.
We will further attempt to apply this method in conjunction with partitioning the DF to be converted to the
DNF.
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