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Abstract

This paper investigates the conservatism reduction of Lyapunov-Krasovskii based conditions for the stabil-

ity of a class of interval time-varying delay systems. The main idea is based on the nonuniform decomposition

of the integral terms of the Lyapunov-Krasovskii functional. The delay interval is decomposed into a finite

number of nonuniform segments with some scaling parameters. Both differentiable delay case and nondif-

ferentiable delay case and unknown delay derivative bound case are taken into consideration. Sufficient

delay-dependent stability criteria are derived in terms of matrix inequalities. Two suboptimal delay fraction-

ation schemes, namely, linearization with cone complementary technique and linearization under additional

constraints are introduced in order to find a feasible solution set using LMI solvers with a convex optimization

algorithm so that a suboptimal maximum allowable delay upper bound is achieved. It is theoretically demon-

strated that the proposed technique has reduced complexity in comparison to some existing delay fractionation

methods from the literature. A numerical example with case studies is given to demonstrate the effectiveness

of the proposed method with respect to some existing ones from the literature.

Key Words: Time delay systems, interval time-varying delay, delay partitioning, cone complementary

method, linear matrix inequality.

1. Introduction

Many physical and dynamical systems are inevitably subject to time-delay which usually results from long
transmission lines, finite speed of information processing rate and causal nature of systems such that physical
systems can not respond abruptly. The existence of time-delay may lead to a degredation in performance and
sometimes it may yield an unstable behavior. Time-delay systems are investigated as delay differential systems
[1]. The time-delay can be constant or time-varying with differentiable nature where delay derivative bound
may be known or unknown or the delay can be with nondifferentiable characteristics. The stability analysis of
such systems are conducted in the form of either delay-independent or delay-dependent [2]–[5].
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In general, time-delay is assumed to vary in an interval whose lower bound is usually considered to be
zero. However, in recent years investigation of time-delay systems in which the time-delay possesses a nonzero
lower bound is taken into consideration [6]–[16]. Introducing artificially fractions of the time-delay, delay-
dependent stability results are obtained for retarded systems which lead to a sequence of LMI conditions of
growing dimensions that result in decreasing conservatism [17]. A partitioning scheme for the time-varying

delay is introduced in [18] for constructing Lyapunov-Krasovskii functional which takes into account the whole

state of the time-delay system. Finally, another delay partitioning projection approach is presented in [19] for
stability analysis of neutral systems. Unfortunately, the authors who consider delay fractionation approach
do not introduce any technique that describes how the delay interval is partitioned. They simply adopt to
use a uniform delay partitioning scheme. Inspired by the aforementioned work, we argue if a generalized and
nonuniform delay-partitioning method can be used for the stability problem of interval time-varying delay
systems which results to be the motivation for the present work

In this paper, we study the stability problem of a class of time-delay systems with interval time-varying
delay. We propose a computational way of improving the design of Lyapunov-Krasovskii functionals. The
idea is to split the Lyapunov-Krasovskii functional integrals over several time intervals (subintervals of the

delay interval). The same idea is already present in [20] on Lyapunov-Krasovskii functional discretization, but,
here the sizes of splitting intervals are taken as parameters to be tuned. Some improved stability criteria are
formulated in terms of matrix inequalities to handle differentiable and nondifferentiable time-varying delays.
The scalar parameters used for delay partitioning are considered to be decision variables. Two suboptimal
delay fractionation schemes, namely, linearization with cone complementary technique and linearization under
additional constraints are introduced so that a suboptimal maximum allowable delay upper bound is achieved.
In particular, first a cone complementary problem is presented so that a nonlinear minimization problem with
LMI conditions replaces the derived nonconvex feasibility problem [21]. Employing the linearization method
allows to find a suboptimal maximal delay along with the scalar delay partitioning parameters. Second, some
additional bounding constraints are imposed on the delay partitioning parameters such that the original matrix
inequality is converted into an LMI. Moreover, it is theoretically demonstrated that the proposed technique
has reduced complexity in comparison to some existing delay fractionation methods from the literature. A
numerical example is introduced with case studies to illustrate the application of the proposed method. An
earlier preliminary form of the developed results can be found in [22].

2. Problem statement

Let us consider a class of interval time-varying delay systems given by

ẋ(t) = Ax(t) + Ahx(t − h(t)) (1)

x(t) = Φ(t), ∀t ∈ [−h2, 0] (2)

where x(t) ∈ �n is the state vector of the system, A ∈ �n×n , Ah ∈ �n×n are constant system matrices, h(t)
is the time-varying delay satisfying

h1 ≤ h(t) ≤ h2 (3)

where h1 , h2 are positive scalar constants. If the time-varying delay is of differentiable nature, then we have
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|ḣ(t)| ≤ μ (4)

where μ is a positive scalar constant. Moreover, Φ(t) is the initial condition function which is a continuous

vector-valued function of t ∈ [−h2, 0] . Adopting a nonuniform delay partitioning approach, we interpret the

delay interval [−h1, 0] as the union of subintervals

[−h1, 0] = [−h1,−αNh1]
⋃

[−αNh1,−αN−1h1]
⋃

. . .
⋃

[−α2h1,−α1h1]
⋃

[−α1h1, 0] (5)

where the delay partitioning parameters αi , i = 1, . . . , N are some scalar constants to be selected in accordance
with

0 ≤ α1 ≤ α2 ≤ · · · ≤ αN−1 ≤ αN ≤ (6)

The primary objective of the present work is to develop some sufficient stability criteria based on a
Lyapunov-Krasovskii functional which will be chosen with respect to the subinterval pattern given in Eqn. (5).
The secondary goal is to interpret the delay partitioning parameters αi , i = 1, . . . , N as decision variables so
that they can be optimized in order to achieve a maximum allowable delay upper bound.

3. Main results

The following theorem presents a sufficient stability criterion for interval time-varying delay system Eqn. (1),

Eqn. (2).

Theorem 1 (21) Given scalar constants h1 , h2 satisfying Eqn. (3) and a positive scalar μ , the interval time-

varying delay system Eqn. (1), Eqn. (2) is guaranteed to be globally asymptotically stable if there exist symmetric

matrices P T = P > 0 , QT
i = Qi ≥ 0 , RT = R ≥ 0 , ST

i = Si > 0 , TT = T > 0 , UT = U > 0 , and scalar

parameters αi , i = 1, . . . , N satisfying Eqn. (6) and

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Q1 · · · 0 0 0 Ω1(N+4)

∗ Ω22 · · · 0 0 0 0
...

...
...

...
...

...
...

∗ ∗ · · · Ω(N+1)(N+1) QN+1 0 0
∗ ∗ · · · ∗ Ω(N+2)N+2) 0 R
∗ ∗ · · · ∗ ∗ Ω(N+3)(N+3) R
∗ ∗ · · · ∗ ∗ ∗ Ω(N+4)(N+4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (7)

where Ω11 = AT P + PA − Q1 + S1 + AT QA , Ω1(N+4) = PAh + AT QAh , Ω22 = −Q1 − Q2 − S1 + S2 ,

Ω(N+1)(N+1) = −QN−QN+1−SN +SN+1 , Ω(N+2)(N+2) = −QN+1−R−SN+1 +T +U , Ω(N+3)(N+3) = −T−R ,

Ω(N+4)(N+4) = −2R−(1−μ)U+AT
h QAh with Q = h2

1[α
2
1Q1+

∑N
i=2(αi−αi−1)2Qi+(1−αN )2QN+1]+(h2−h1)2R

and (*) represents the symmetric terms.

Proof Let us choose a candidate Lyapunov-Krasovskii functional as follows

V (x(t), t) =
3∑

i=1

Vi (8)
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where V1 = xT (t)Px(t), V2 = α1h1

∫ 0

−α1h1

∫ t

t+θ
ẋT (s)Q1ẋ(s)dsdθ

+
∑N

i=2(αi − αi−1)h1

∫ −αi−1h1

−αih1

∫ t

t+θ
ẋT (s)Qiẋ(s)dsdθ + (1 − αN)h1

∫ −αNh1

−h1

∫ t

t+θ
ẋT (s)QN+1ẋ(s)dsdθ

+(h2 − h1)
∫ −h1

−h2

∫ t

t+θ
ẋT (s)Rẋ(s)dsdθ, V3 =

∫ t

t−α1h1
xT (s)S1x(s)ds +

∑N
i=2

∫ t−αi−1h1

t−αih1
xT (s)Six(s)ds

+
∫ t−αNh1

t−h1
xT (s)SN+1x(s)ds +

∫ t−h1

t−h2
xT (s)Tx(s)ds] +

∫ t−h1

t−h(t)
xT (s)Ux(s)ds . Taking the time-derivative of

V (x(t), t) along the state trajectory of system Eqn. (1), Eqn. (2) yields

V̇ (x(t), t) =
3∑

i=1

V̇i (9)

We can calculate V̇1 as

V̇1 = 2xT (t)P ẋ(t) = xT (t)(AT P + PA)x(t) + 2xT (t)PAhx(t − h(t)) (10)

In a similar manner we can compute V̇2 as follows

V̇2 = α2
1h

2
1ẋ

T (t)Q1ẋ(t) − α1h1

∫ t

t−α1h1

ẋT (s)Q1ẋ(s)ds +
N∑

i=2

[(αi − αi−1)2h2
1ẋ

T (t)Qiẋ(t)

−(αi − αi−1)h1

∫ t−αi−1h1

t−αih1

ẋT (s)Qiẋ(s)ds] + (1 − αN)2h2
1ẋ

T (t)QN+1ẋ(t)

−(1 − αN)h1

∫ t−αNh1

t−h1

ẋT (s)QN+1ẋ(s)ds (11)

Note that we can obtain the following inequality

−(h2 − h1)
∫ t−h1

t−h2

ẋT (s)Rẋ(s)ds ≤ −[h(t) − h1]
∫ t−h1

t−h(t)

ẋT (s)Rẋ(s)ds

−[h2 − h(t)]
∫ t−h(t)

t−h2

ẋT (s)Rẋ(s)ds (12)

Substituting Eqn. (12) into Eqn. (11) and applying Jensen integral inequality [11] allows to obtain

V̇2 ≤ ẋT (t)Qẋ(t) − [x(t)− x(t − α1h1)]T Q1[x(t) − x(t − α1h1)]

−
N∑

i=2

[x(t − αi−1h1) − x(t − αih1)]T Qi[x(t − αi−1h1) − x(t − αih1)]

−[x(t − h1) − x(t − h(t))]T R[x(t − h1) − x(t − h(t))]

−[x(t − h(t)) − x(t − h2)]T R[x(t − h(t)) − x(t − h2) (13)

Finally, we can compute V̇3 as follows
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V̇3 ≤ xT (t)S1x(t) − xT (t − α1h1)S1x(t − α1h1)

+
N∑

i=2

[
xT (t − αi−1h1)Six(t − αi−1h1) − xT (t − αih1)Six(t − αih1)

]

+xT (t − αNh1)SN+1x(t − αNh1) − xT (t − h1)SN+1x(t − h1)

+xT (t − h1)Tx(t − h1) − xT (t − h2)Tx(t − h2) + xT (t − h1)Ux(t − h1)

−(1 − μ)xT (t − h(t))Ux(t − h(t)) (14)

Substituting Eqn. (10), Eqn. (13), Eqn. (14) into Eqn. (9) gives

V̇ (x(t), t) ≤ χT (t)Ωχ(t) (15)

where χ(t) =
[

xT (t) xT (t − α1h1) · · · xT (t − αNh1) xT (t − h1) xT (t − h2) xT (t − h(t))
]T

Therefore, if the matrix inequality Eqn. (7) is satisfied then we get

V̇ (x(t), t) ≤ χT (t)Ωχ(t) < 0 (16)

implying that system Eqn. (1), Eqn. (2) is guaranteed to be globally asymptotically stable. This completes the
proof.

3.1. A suboptimal delay fractionation: linearization with cone complementary

technique

Note that the stability criterion Eqn. (7) is not in the form of convex LMI due to the delay partitioning
parameters αi , i = 1, . . . , N involved in the decision variable Q . However, we can pursue a linearization
method for investigating the feasibility problem of Eqn. (7) similar to the approach given in [23]. There exists

always a symmetric and positive definite matrix LT = L > 0 such that

α2
1Q1 +

N∑
i=2

(αi − αi−1)2Qi + (1 − αN)2QN+1 ≤ L (17)

then by Schur complement [23], Eqn. (17) is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−L α1I (α2 − α1)I · · · (αN − αN−1)I (1 − αN)I
∗ −Q−1

1 0 · · · 0 0
∗ ∗ −Q−1

2 · · · 0 0
...

...
...

...
...

...
∗ ∗ ∗ · · · −Q−1

N 0
∗ ∗ ∗ · · · ∗ −Q−1

N+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0 (18)

Introducing new variables Zi = Q−1
i , i = 1, . . . , N + 1 and utilizing a cone complementary problem leads to

propose a nonlinear minimization algorithm with LMI conditions replacing the original nonconvex feasibility
problem of Theorem 1,
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minimize trace
(∑N+1

i=1 QiZi

)
subject to

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−L α1I (α2 − α1)I · · · (αN − αN−1)I (1 − αN)I
∗ −Z1 0 · · · 0 0
∗ ∗ −Z2 · · · 0 0
...

...
...

...
...

...
∗ ∗ ∗ · · · −ZN 0
∗ ∗ ∗ · · · ∗ −ZN+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0

[
Qi I
∗ Zi

]
≥ 0, i = 1, . . . , N + 1 (19)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω̄11 Q1 · · · 0 0 0 Ω1(N+4)

∗ Ω22 · · · 0 0 0 0
...

...
...

...
...

...
...

∗ ∗ · · · Ω(N+1)(N+1) QN+1 0 0
∗ ∗ · · · ∗ Ω(N+2)N+2) 0 R
∗ ∗ · · · ∗ ∗ Ω(N+3)(N+3) R
∗ ∗ · · · ∗ ∗ ∗ Ω(N+4)(N+4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

where Ω̄11 = AT P +PA−Q1 +S1 +AT Q0A with Q0 = h2
1L+(h2 −h1)2R and the remaining entries are same

as described in the statement of Theorem 1.

Remark 1 The idea of dividing the time-varying delay into a constant part and a varying function is not new
and already studied in the literature as mentioned in the section of introduction. Moreover, in [18],[19],[25]

and [26], a fractionation scheme for the constant delay has been developed. The present work extends the delay
partitioning approach to the stability analysis of interval time-varying delay systems. As a matter of the fact,
the original contribution arises from the extension to a nonuniform fractionation of the constant delay. This is
achieved by adding appropriate functional terms with respect to the constant delay fractions and by introducing
another functional element which copes with the time-varying delay. In addition, a linearization technique is
proposed to tune the fractionation scheme automatically, thus leading to obtain suboptimal results.

When the information of the time-derivative of time-varying delay is unknown or if the time-varying delay is
nondifferentiable, we choose U = 0 and present the following result derived from Theorem 1.

Corollary 1 Given scalar constants h1 , h2 satisfying Eqn. (3), the interval time-varying delay system Eqn. (1),

Eqn. (2) is guaranteed to be globally asymptotically stable if there exist symmetric matrices P T = P > 0 ,

QT
i = Qi ≥ 0 , RT = R ≥ 0 , ST

i = Si > 0 , TT = T > 0 , and scalar parameters αi , i = 1, . . . , N satisfying

Eqn. (6) and

Ω̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 Q1 · · · 0 0 0 Ω1(N+4)

∗ Ω22 · · · 0 0 0 0
...

...
...

...
...

...
...

∗ ∗ · · · Ω(N+1)(N+1) QN+1 0 0
∗ ∗ · · · ∗ Ω̄(N+2)N+2) 0 R
∗ ∗ · · · ∗ ∗ Ω(N+3)(N+3) R
∗ ∗ · · · ∗ ∗ ∗ Ω̄(N+4)(N+4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (20)
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where Ω̄(N+2)(N+2) = −QN+1 − R − SN+1 + T , Ω̄(N+4)(N+4) = −2R + AT
h QAh and the remaining entries are

same as described in the statement of Theorem 1.

3.2. Another suboptimal delay fractionation: introducing additional constraints

We can choose the delay partitioning parameters αi , i = 1, . . . , N in such a way that

0 ≤ α1 ≤ β, 0 ≤ αi − αi−1 ≤ β, i = 2, . . . , N, 0 ≤ 1 − αN ≤ β (21)

where β is a scalar constant satisfying 0 ≤ β ≤ 1. Elaborating the constraints imposed in Eqn. (21) yields

α1 ≤ β, α2 − α1 ≤ β ⇒ α2 ≤ β + α1 ≤ β + β = 2β
...

...
...

...
αN−1 ≤ (N − 1)β, αN − αN−1 ≤ β ⇒ αN ≤ β + αN−1 ≤ β + (N − 1)β = Nβ

αN ≤ Nβ, 1 − αN ≤ β ⇒ 1 ≤ β + αN ≤ β + Nβ = (N + 1)β

(22)

It follows from Eqn. (22) that β needs to be chosen in accordance with

1
N + 1

≤ β ≤ 1 (23)

Moreover, the inequality Eqn. (21) requires Q satisfy

Q ≤ h2
1

(
β2Q1 +

N∑
i=2

β2Qi + β2QN+1

)
+ (h2 − h1)2R = h2

1β
2

N+1∑
i=2

Qi + (h2 − h1)2R (24)

Since the stability criterion given in Eqn. (7) has symmetric and strictly positive definite terms resulting from

the quadratic element of h2
1ẋ

T (t)Qẋ(t), the natural selection is to choose a minimized Q satisfying Eqn. (24)

which requires to choose β in view of Eqn. (23) as β = 1
N+1 . As a result we find that Q will be satisfying

Q ≤ h2
1

(N + 1)2

N+1∑
i=2

Qi + (h2 − h1)2R (25)

Therefore, replacing Q with the right-hand part of Eqn. (25) in Eqn. (7) leads to obtain a linear matrix inequality
form of stability condition which is subject to yield only suboptimal results on the maximum allowable delay
upper bound.

Remark 2 It follows from Eqn. (22) that 0 < αi ≤ iβ , i = 1, . . . , N where β = 1/N + 1 . At first glance, this
situation might mislead to the case of uniform partitioning which is not true of course. For example, let N = 3 ,
then β should be chosen as 0.25. Therefore, 0 < α1 ≤ 0.25 , α1 ≤ α2 ≤ 0.5 , α2 ≤ α3 ≤ 0.75 . Now, choosing
α1 = 0.25 , α2 = 0.5 , α3 = 0.75 implies a uniform partitioning scheme which is not the unique one. Another
possible fractionation can be given as α1 = 0.15 , α2 = 0.20 , α3 = 0.35 which shows that infinitely many
such selection of partitioning parameters can be obtained and uniform pattern is just one among those infinite
choices. Hence, the second suboptimal approach is a more general than the idea of uniform delay fractionation
paradigm.
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4. Reduced complexity

In order to demonstrate that the proposed stability criteria yield less conservative results as the number of
partitions are increased, one can refer to the approach given in [17]. Moreover, we can also show that the
proposed technique has reduced complexity in comparison to the existing delay fractionation methods from the
literature. It is reported in [17] that the number of decision variables involved in their existing stability criterion

is Ne1 = Nn(Nn+1)
2 n(n+1) where N , n denote the number of delay partitions and degree of time-delay system,

respectively. In a similar manner, we can calculate the number of decision variables required for our proposed

stability criterion and find that Np = (3N+7)n(n+1)
2

+ N . It is apparently seen that Ne1 < Np for 1 ≤ N ≤ 4.

However, when N > 4, one can see that Np < Ne1 for n ≥ 4. This shows that the method in [17] requires less
number of decision variables for only a finite number of cases while the proposed method of this note guarantees
to utilize less number of decision variables for infinitely many cases. In a similar manner, we can calculate the

number of variables involved in the method given in [19]. We find that Ne2 = (2N+3)n(n+1)
2 + Nn2 . Now we

can compare Ne2 and Np in such a way that Np −Ne2 < 0 implies N(−n2 +n+2)+4n2 +4n < 0. Therefore,

Np − Ne2 < 0 can not be guaranteed for only n = 2. One can select N in accordance with N ≥ 4n2+4n
n2−n−2 for

n > 2 which covers infinitely many cases that the proposed method requires less number of decision variables
thus with reduced complexity when compared to that of [19].

5. Numerical example

In this section, a numerical example is presented with case studies to demonstrate the application of Theorem
1 and Corollary 1.

Example 1 We consider an interval time-varying delay system example which is also given in [12],and [16] as
follows

ẋ(t) =
[

−2 0
0 −0.9

]
x(t) +

[
−1 0
−1 −1

]
x(t − h(t)) (26)

Table 1 lists the maximum allowable upper bound (MAUB) for h2 with respect to the different values of h1 under
various delay-derivative bounds along with some existing results from the literature. It can be seen from Table 1
that the results achieved with the proposed stability criterion of Theorem 1 are less conservative when compared
with those obtained in [12], and [16]. Moreover, the conservativeness seems to decrease as N increases. In
addition, we assume that the upper bound of the time-derivative of the time-varying delay is unknown or the
time-varying delay is nondifferentiable. Table 2 presents the numerical results on the maximum allowable upper
bound for the delay, h2 obtained by the application of Corollary 1 in comparison to the existing results from the
literature. It follows from Table 2 that Corollary 1 with the linearization method described in Eqn. (17)-Eqn. (19)

yields better numerical results with respect to the ones obtained by the methods in [12], and [16]. It also appears
that the rate of conservativeness of the numerical results can be reduced by adopting larger nonuniform delay
partitioning limit, N .
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Table 1. The maximum allowable upper bound for h2 versus h1 .

h1 Methods μ = 0.3 μ = 0.5 μ = 0.9
2.0 Shao (2009)

Sun et al. (2009)
Theorem 1, N = 2
Theorem 1, N = 5

2.6972
3.0129
3.1767
3.1938

2.5048
2.5663
2.5339
2.5412

2.5048
2.5663
2.5339
2.5412

3.0 Shao (2009)
Sun et al. (2009)
Theorem 1, N = 2
Theorem 1, N = 5

3.2591
3.3408
3.3475
3.3574

3.2591
3.3408
3.3475
3.3570

3.2591
3.3408
3.3475
3.3570

4.0 Shao (2009)
Sun et al. (2009)
Theorem 1, N = 2
Theorem 1, N = 5

4.0744
4.1690
4.2072
4.2182

4.0744
4.1690
4.2072
4.2182

4.0744
4.1690
4.2072
4.2182

5.0 Shao (2009)
Sun et al. (2009)
Theorem 1, N = 2
Theorem 1, N = 5

-
5.0275
5.0936
5.1060

-
5.0275
5.0936
5.1060

-
5.0275
5.0936
5.1060

Table 2. The maximum allowable upper bound for h2 versus h1 with unknown μ .

Methods h1 2.0 3.0 4.0 5.0
Shao (2009) h2 2.5048 3.2591 4.0744 -

Sun et al. (2009) h2 2.5663 3.3408 4.1690 5.0275
Corollary 1, N = 2 h2 2.5339 3.3475 4.2072 5.0936
Corollary 1, N = 5 h2 2.5412 3.3570 4.2182 5.1060

6. Conclusions

The stability problem of a class of interval time-varying delay systems is studied by introducing a technique of
a nonuniform delay partitioning for the delay interval. A Lyapunov-Krasovskii functional candidate is selected
in accordance with the nonuniformly decomposed pattern of the delay interval so that some sufficient stability
criteria are obtained. The proposed methods can handle both delay differentiable case and nondifferentiable
delay case or unknown delay derivative bound case. Two suboptimal delay fractionation schemes, namely,
linearization with cone complementary technique and linearization under additional constraints are introduced.
It is theoretically demonstrated that the proposed technique has reduced complexity in comparison to some
existing delay fractionation methods from the literature. In order to illustrate the improvements of the proposed
approach, a numerical example is presented and numerical results on the maximum allowable delay bound are
exhibited along with a comparison with those of some existing methods from the literature.
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