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Abstract

This paper addresses the L2 gain control problem for disturbance attenuation in Linear Parameter

Varying (LPV) Systems having saturating actuators when the system is subjected to L2 disturbances. In

the presented method, saturating actuator is expressed analytically with a convex hull of some linear feedback

which let us construct L2 control problem via Linear Matrix Inequalities (LMIs) which are obtained by some

ellipsoids. It is shown that the stability and disturbance rejection capabilities of the control system are all

measured by means of these nested ellipsoids where the inner ellipsoid covers the initial conditions for states

whereas the outer ellipsoid designates the L2 gain of the system. It is shown that the performance of the

controller is highly related by the topology of these ellipsoids. Finally, the efficiency of the proposed method is

successfully demonstrated through simulation studies on a single-track vehicle dynamics having some linear

time-varying parameters.
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1. Introduction

Disturbance rejection problem in linear systems with saturating actuators have recently started to attract
attention. It is due to the fact that actuator saturation could defects controller performance and even more
could lead the system to instability. The studies on actuator saturation problem in literature can be grouped in
two categories depending on how the disturbances act on the system. First group includes the ones which are
input-additive [1], [2], while the second group analyzes the ones which can not be classified as input-additive[3],

[4],[5], [6], [7]. It is shown and proven in literature that in case of systems of which disturbances affect input
additively, strong stability and very good performance could be obtained. But it is difficult to claim the same
for the later case. On the other hand, if the disturbances acting on the system have bounded magnitude, the
stability of system can only be analyzed via invariant ellipsoids. As in the case of this study, if there is no
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restrictions on initial conditions and disturbances except energy bound, solution can only be obtained through
nested ellipsoids [6], [3].

In this work, the saturation is guaranteed to be in a group of convex linear feedback hull of control signal
as described in [5], [6]. The idea behind is on nested ellipsoids. Another effort in literature uses modified sector

conditions for actuator saturation [3], [7]. The goal of this work is to provide a method to enlarge the set
containing the initial conditions for states and to present multi-objective optimization method to construct a
state-feedback Linear Parameter Varying (LPV) controller for the minimization of closed-loop L2 gain for LPV
systems. To the best of authors knowledge, there does not exist a paper in literature that deals with the L2

gain LPV control of actuator saturated systems. The applicability of the proposed method is also demonstrated
on a single track unstable model for a vehicle at the end.

The rest of the paper is organized as follows: The problem is formulated in Section 2. Mathematical
background is constructed for main results in Section 3. Main outcomes of the study is demonstrated, in
Section 4. The proposed method is extended to the LPV systems in Section 5. In Section 6, the efficiency of
proposed methodology is demonstrated on the single-track vehicle model both for the LPV case and nominal
case. Finally, in Section 7, results are discussed and possible future studies are addressed.

2. Problem definition

Let us consider,

ẋ = Ax + B1sat(u) + B2w

z = Cx, x(0) = x0 (1)

where x ∈ R
n real-time measurable states, x(0) = x0 initial conditions which are generally not needed to be

identical to zero, u ∈ R
m denotes the control inputs, w ∈ R

q are the disturbances acting on the system. sat(·) is

the standard saturation function with unity saturation level, i.e., sat(u) =
[
sat(u1) sat(u2) · · · sat(um)

]T
,

where sat(ui) = sign(ui)min{1, |ui|} . Please note that here we mildly harm the notation by using sat(·) to
denote both the scalar valued and vector valued saturation functions. Also note that any non-unity input level
can be easily converted to a unity one by simply scaling B1 matrix appropriately. z ∈ R

p is performance or the
controlled output. Then A , B1 , B2 and C are system matrices of appropriate dimensions. Let us assume that
disturbances acting on the system penetrate from the set of W having bounded energy. Assuming 1/δ ∈ R+ is
known upper energy bound for disturbances, then one can define this set as,

W :=
{

w : R+ → R
q :

∫ ∞

0

wT(t)w(t)dt ≤ 1
δ

}
. (2)

This study aims to ensure the stability of the closed-loop system with a finite L2 gain (stability problem),
construct the largest set of initial conditions that closed-loop system can tolerate with ensuring the closed-loop
stability and construct the largest set of initial conditions that closed-loop system can tolerate with ensuring
the closed-loop stability with a control law of u(ρ(t), t) = F (ρ(t))x(t) when all initial conditions are different

from zero (x0 �= 0):
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3. Mathematical background and notation

For given positive definite matrix, P = P T ∈ R
n×n and positive number, r , ellipsoid, E is defined as,

E(P, r) :=
{
x ∈ R

n : xTPx ≤ r
}

. On the other hand, we define the set of states for which saturation does

not occur as, L(D) := {x ∈ R
n : |Dix| ≤ 1 i = 1, . . . , m} , where, Di represents ith row of gain matrix,D .

In this paper, to be able to reach the control objectives listed in the previous section, nonlinear saturation
function, sat(·), is forced to be defined in a convex hull of linear feedbacks. Thanks to this so that a nonlinear
controller design problem could be transformed to a convex optimization problem.

The following definitions and lemmas are of utmost importance to provide the main contribution of the

paper: The convex hull of points of such c1, c2, . . . , cr , can be defined as, co{ci : i ∈ [1, r]} :=
{∑r

i=1 αic
i :

∑r
i=1 αi = 1 , αi ≥ 0

}
.

Lemma 1 [8]. Let us assume that Ti ∈ T , is m×m dimensional, and diagonal matrix whose diagonal entries

are either 1 or 0 . Besides,we define T−
i := I − Ti where I stands for an identity matrix in appropriate

dimension. Evidently, the set T has 2m different elements and it is obvious that if Ti ∈ T then T−
i ∈ T .

Lemma 2 [6] Let u, v ∈ R
m are given. Suppose that |vi| ≤ 1 ∀i ∈ [1, m] , then

sat(u) ∈ co{Tiu + T−
i v : i ∈ [1, 2m]}. (3)

Corollary 3 Let us assume that F, D ∈ R
m×n are feedback gain matrices and, ‖Dx‖∞ ≤ 1 . Then, sat(Fx) ∈

co
{
TiFx + T−

i Dx : i ∈ [1, 2m]
}
.

Notation In this study, standard notation is used, P = P T 	 0 (P = P T 
 0) represents strictly positive

Hermitian matrices. The rows of D ∈ R
m×n are shown as Di , i = 1, . . . , m . Symmetric blocks induced by

off-diagonal elements of a symmetric matrix are labeled as ∗ . Besides, ∗ also stands for the transposed version

of an unsymmetrical matrix. For example X + XT = X + ∗ . If R denotes the set of real numbers, p × n

dimensional real matrix is symbolized with R
p×n . Finally, while Ir×r , represents r × r dimensional identity

matrix, 0 represents appropriate dimensional null matrix.

4. Main results

Theorem 4 For a given control law u(t) = Fx(t) , consider the system given in (1). Also, assume that

disturbance, w , penetrates from the set of W which is bounded by 1/δ . For given gain, γ and constant η > 0 ,

if feasible P = P T 
 0 and D ∈ R
m×n matrices can be found satisfying

PAi + AT
i P +

1
η
PB2B

T
2 P +

1
γ2

CTC � 0 ∀i ∈ [1, 2m] (4)

and

E(P,
η

δ
+ 1) ⊂ L(D) ∀t ≥ 0 E(S, �) ⊂ E(P, 1) (5)
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where Ai := (A + B1(TiF + T−
i D)) , then the closed-loop system will be bounded gain L2 stable from input

w to output z for every initial conditions, x(0) ∈ E(P, 1) . Moreover, ‖z‖2 ≤ γ2
(

η
δ + 1

)
∀t ≥ 0 and state

trajectories that start from inside the ellipsoid E(P, 1) will always remain inside E(P, η
δ + 1) ellipsoid for every

w ∈ W .

Proof Let us choose a Lyapunov function candidate as V = xTPx . Then, in the light of definition of E ,
∀x ∈ E(P, η

δ
+ 1)),

V̇ = ẋTPx + xTP ẋ = 2xTP [Ax + B1sat(Fx) + B2w]

≤ max
i∈[1,2m]

2xTP [Ax + B1(TiF + T−
i D)x + B2w]. (6)

On the other hand, for any positive scalar η , xTPB2w + wTBT
2 Px ≤ 1

η
xTPB2B

T
2 Px + ηwTw. Then assuming

(4) is satisfied, V̇ ≤ − 1
γ2 xTCTCx + ηwTw ∀t ≥ 0. Integrating both sides from 0 to t , one obtains

V (x(t)) ≤ − 1
γ2

∫ t

0

z(τ )Tz(τ )dτ + η

∫ t

0

w(τ )Tw(τ )dτ + 1 ∀t ≥ 0. (7)

Here, since disturbance, w satisfies w ∈ W condition and (5) is valid then taking the limit t → ∞ let us write

V (x(t)) ≤ η
δ

+ 1 ∀t ≥ 0, which is equivalent to x(t) ∈ E(P, η
δ

+ 1), ∀t ≥ 0. Besides, since through (7), ∀t ≥ 0

V (x(t)) ≥ 0, one obtains ‖z‖2 ≤ γ2
(

η
δ + 1

)
∀t ≥ 0. which concludes the proof. �

Remark 5 If the disturbance acting on the system is equivalent to zero ∀t ≥ 0 and if the negative condition

in V̇ ≤ − 1
γ2 xTCTCx + ηwTw is replaced with its strict counterpart, then we obtain V̇ (x(t)) < − 1

γ2 ‖z‖2
2 ≤

0, ∀x(t) ∈ E(P, 1) . This result leads to a conclusion that all trajectories of x(t) originating inside ellipsoid

E(P, 1) , will asymptotically converge to x = 0 for t → ∞ . Based on this finding, it should be remarked that

inside of ellipsoid E(P, 1) will be the region of attraction for the origin.

Theorem 6 (Optimal controller synthesize of minimizing L2− gain) Let us assume that S = ST 	 0 ∈ R
n×n ,

η > 0 and � > 0 are given. Also let all initial conditions are inside E(P, 1) . Then,

min
Q�0,Y,Z

γ

⎛
⎝ AQ + B1TiZ + B1T

−
i Y + ∗ B2 QCT

BT
2 −ηI 0

CQ 0 −γ2I

⎞
⎠ � 0

∀i ∈ [1, 2m] (8)(
δ

η+δ
Yi

Y T
i Q

)

 0 ∀i ∈ [1, m] (9)

(
1
�S I

I Q

)

 0. (10)

If there exist feasible solutions Q = QT 	 0 , Y , Z to the optimization problem, then L2 gain of the closed-loop

system which is obtained by the control law, u = ZQ−1x , will be always less than γ
√

η + δ .
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Proof Assume (4) holds. Then, pre- and post multiplying (4) by Q � P−1 yields,

Q(A + B1TiF )T + (A + B1TiF )Q + B1T
−
i DQ + (B1T

−
i DQ)T +

1
η
B2B

T
2 +

1
γ2

QCTCQ � 0

∀i ∈ [1, 2m] (11)

By the use of definitions Z � FQ and Y � DQ , one can rewrite (11) as

AQ + B1TiZ + QAT + ZTTiB
T
1 + B1T

−
i Y + Y T−

i BT
1 +

1
η
B2B

T
2 +

1
γ2

QCTCQ � 0

∀i ∈ [1, 2m]. (12)

Applying the Schur complement formula [9], immediately leads to the inequality (8). It is obvious that

E(P,
η

δ
+ 1) ⊂ L(D) ∀t ≥ 0 ⇔ DT

i Di � P

(
δ

η + δ

)
∀t ≥ 0 ∀i ∈ [1, m]

⇔
(

η + δ

δ

)
DT

i Di � P ∀t ≥ 0 ∀i ∈ [1, m] ⇔
(

P DT
i

Di
δ

η+δ
I

)

 0 ∀t ≥ 0, ∀i ∈ [1, m]

⇔ δ

η + δ
I 
 DiP

−1DT
i ∀t ≥ 0, ∀i ∈ [1, m]

⇔ δ

η + δ
I − DiQQ−1QDT

i 
 0 ∀t ≥ 0, ∀i ∈ [1, m]

⇔
(

δ
η+δ Yi

Y T
i Q

)

 0 ∀t ≥ 0, ∀i ∈ [1, m]. (13)

Moreover, if we let E(S, �) ⊂ E(P, 1) so that the ellipsoid E(S, 1) includes all initial conditions, then it is clear
that;

E(S, �) ⊂ E(P, 1) ⇔ 1
β

S 
 P. (14)

Applying Schur complement formulation yields;

E(S, �) ⊂ E(P, 1) ⇔
(

S 1
β I

I Q

)

 0. (15)

It is concrete that in order to enlarge set of initial conditions, set of E(P, 1) has to be enlarged first.

But, it is only possible by enlarging set of E(S, �). Meaning, the set of E(P, 1) will be enlarged by the result of

enlarging the set of E(S, �).

Among the other parameters acting on L2 gain of the system, η not only can be simply chosen as very
small positive constant but also chosen as optimization parameter. In this case it is obvious that the degree of
freedom of the optimization problem will be increased.

One approach to enlarge the set of E(S, �) which includes initial conditions, is to increase directly constant

β without enlarging the volume of the ellipsoid. To do so, assuming S = ST is large enough and known positive
definite matrix, and constant η > 0 then;

min
c>0,Q�0,Y,Z

(σ1r + σ2c)
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⎛
⎝ AQ + B1TiZ + B1T

−
i Y + ∗ B2 QCT

BT
2 −ηI 0

CQ 0 −rI

⎞
⎠ � 0

∀i ∈ [1, 2m] (16)

(
δ

η+δ
Yi

Y T
i Q

)

 0 ∀i ∈ [1, m] (17)

(
cS I
I Q

)

 0 (18)

optimization problem should be solved along with it.

Here, it is defined that c := 1/� . For the sake of simplicity, S can be chosen as unity sphere (x = 0

centered circle in two dimension). On the other hand, σ1 , σ2 are weighting of optimization problem which are
nonnegative constants and can be tuned by controller designer accordingly.

5. L2 control of LPV systems with saturating actuators

Now, consider the following LPV system with a saturated control input,

ẋ = A(ρ(t))x + B1(ρ(t))sat(u) + B2(ρ(t))w

z = C(ρ(t))x x(0) = x0 (19)

where online measurable or computable parameter vector ρ(t) =
[
ρ1(t) · · · ρq

]T and ρ̇(t) =
[
ρ̇1(t) · · · ρ̇q

]T
vary in compact parameter sets R and D , respectively where these sets are covered by hyper-rectangles

formed by the vertices of parameter bounds as Rvex =
{

ρv
i : ρv

i = ρ̄i or ρv
i = ρi

v, ∀i = 1, . . . , q

}
and

Dvex =
{

ρ̇v
i : ρ̇v

i = ¯̇ρi or ρ̇v
i = ρ̇i

v, ∀i = 1, . . . , q

}
. Also assume that the system we consider has state-space

matrices as affine parameter functions, i.e., A(ρ) = A0 +ρ1A1 + · · ·+ρqAq , B1(ρ) = B10 +ρ1B11 + · · ·+ρqB1q ,

B2(ρ) = B20 + ρ1B21 + · · · + ρqB2q and C(ρ) = C0 + ρ1C1 + · · · + ρqCq . Then our goal is to find a suitable

state-feedback control law in the form of u(ρ(t), x(t)) = F (ρ(t))x(t) so that the closed-loop system exhibits the

control performance criteria listed in Section 1 for all (ρ(t), ρ̇(t)) ∈ (Rvex × Dvex). The following theorem is

the direct extension of Theorem 4 to the LPV systems in the form of (19).

Theorem 7 Consider the system given in (19). For given positive scalars γ , η and control law u(ρ(t), x(t)) =

F (ρ(t))x(t) , the closed-loop system is finite-gain L2 stable for any initial condition x(0) ∈ E(P (ρ), 1) and any

disturbance w ∈ W if there exist P (ρ) = P T (ρ) 	 0 in the form of P (ρ) = P0 +
∑q

i=1 ρiPi and matrix D(ρ)

in the form of D(ρ) = D0 +
∑q

i=1 ρiDi such that

P (ρ)(A(ρ) + B1(ρ)(TiF (ρ) + T−
i D(ρ))) + (A(ρ) + B1(ρ)(TiF (ρ) + T−

i D(ρ)))TP (ρ)

+
1
η
P (ρ)B2(ρ)BT

2 (ρ)P (ρ) + Ṗ (ρ̇) +
1
γ2

CT(ρ)C(ρ) ≺ 0 ∀i ∈ [1, 2m] ∀ρ ∈ R, ∀ρ̇ ∈ D (20)
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and E(P (ρ), η
δ + 1) ⊂ L(D(ρ)) ∀t ≥ 0, ∀ρ ∈ R. If such a feasible solution set is obtained, then

‖z‖2 ≤ γ2
(η

δ
+ 1

)
∀t ≥ 0 (21)

and any state-trajectory starting inside E(P (ρ), 1) always stays inside the ellipsoid E(P (ρ), η
δ + 1)

Proof Similar to the proof of Theorem 4, and thus it is omitted. �
Note that the matrix inequality conditions given in the previous theorem are not in the form of LMIs.

Besides, the problem requires infinite-dimensional search with respect to its variables. Hence, the conditions
in the previous theorem need to be reduced to finite-dimensional LMI conditions. Next theorem allows us to
obtain a sub-optimal L2 controller by a search in infinite-dimensional parameter space.

Theorem 8 Given S = ST 	 0 ∈ R
n×n , η > 0 and � > 0 , For all initial conditions which reside

in E(S, 1) , if there exists a feasible solution set {Q(ρ) = QT(ρ) 	 0 , Y (ρ) , Z(ρ)}, each in the form of

Q(ρ) = Q0 +
∑q

i=1 ρiQi , Y (ρ) = Y0 +
∑q

i=1 ρiYi , Z(ρ) = Z0 +
∑q

i=1 ρiZi , satisfying the following optimization

problem

min
Q(ρ),Y (ρ),Z(ρ)

γ2

⎛
⎝ A(ρ)Q(ρ) + B1(ρ)TiZ(ρ) + B1(ρ)T−

i Y (ρ) − Q̇(ρ̇) + ∗ B2(ρ) Q(ρ)CT(ρ)
BT

2 (ρ) −ηI 0
∗ 0 −γ2I

⎞
⎠ � 0

∀i ∈ [1, 2m] ∀(ρ, ρ̇) ∈ R ×D (22)

(
δ

η+δ
ithrow of Y (ρ)

∗ Q(ρ)

)

 0 ∀i ∈ [1, m] , ρ ∈ R (23)

( 1
�S I

I Q(ρ)

)

 0 ∀ρ ∈ R (24)

then the closed-loop system formed by the LPV control law u(t) = Z(ρ)Q−1(ρ)x(t) , always exhibits an closed-

loop L2 gain less than γ
√

η + δ .

Proof Since the proof is very similar to the proof Theorem 6, it is omitted. �
Utilizing the multi-convexity argument proposed in [10], Theorem 8 can be treated as a finite-dimensional

LMI optimization problem as follows:

min
c>0, Q(ρ), Y (ρ), Z(ρ)

(σ1r + σ2c)

⎛
⎝ A(ρ)Q(ρ) + B1(ρ)TiZ(ρ) + B1(ρ)T−

i Y (ρ) − Q̇(ρ̇) + ∗ B2(ρ) Q(ρ)CT(ρ)
BT

2 (ρ) −ηI 0
∗ 0 −rI

⎞
⎠ � 0

∀i ∈ [1, 2m] ∀(ρ, ρ̇) ∈ Rvex ×Dvex (25)
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(
δ

η+δ ithrow of Y (ρ)
∗ Q(ρ)

)

 0 ∀i ∈ [1, m] , ρ ∈ Rvex (26)

(
cS I
I Q(ρ)

)

 0 ∀ρ ∈ Rvex (27)

(
AjQj + B1j TiZj + B1j T

−
i Yj + ∗ QjC

T
j

∗ 0

)

 0

∀i ∈ [1, 2m], ∀j = [1, . . . , q] (28)

where c := 1/� .

Note that (28) comes from the multi-convexity argument.

6. Simulation studies

To demonstrate effectiveness of the proposed theory, single track vehicle dynamics is modeled as an application,
and it has been focused on minimizing problem of L2 gain from disturbances to performance outputs, z [11],

[12].

Assuming v̇ = 0, x cos δ = 0, x sin δ = 0 the single track vehicle model [13], [14] is obtained as

Mv(β̇ + ψ̇) = cF Π1 + cRΠ2

JZ ψ̈ = cF LF Π1 − cRLRΠ2. (29)

where Π1 =
(
δW − β − LF ψ̇

v

)
and Π2 =

(
−β + LRψ̇

v

)
. Here, δW represents wheel turning-angle in radians.

The other terms are; cF = cR = 34377N/rad, LF = 1.4m, LR = 1.7m, M = 1500kg and kG = 1.3m is turning

radius. Accordingly, the inertia in the direction of z axis is defined as JZ = Mk2
G . During the simulation

studies for the non-LPV model, reverse driving is considered and vehicle speed is assumed to be constant at
v = −30km/hr. While positive speed is considered as vehicle in forward direction and stable, negative speed is
considered as vehicle in backward direction and always unstable. In this study, disturbances acting on system

are assumed to be sensor noises added on β̇ . Controlled outputs are β and ψ̇ . Wheel angle is assumed to be
as control input, δW , and it is assumed to be bounded as −π/4 ≤ δW ≤ π/4.

During computer simulations which are carried out under MATLAB, it is assumed that η = 1 and

disturbance signal w =
√

2.5(s(t) − s(t − 0.4)) is used. Here Here s(t) is the well-known unit step function.

Choosing state variables as, x =
(

ψ̇ β
)T

matrices for generalized system are;

A =
(

2.192 4.068
−0.992 1.528

)
, B1 =

(
18.985
−0.764

)
× π

4
, B2 =

(
0
1

)
, C = I2×2. (30)

The controller design problem for the system is coded through YALMIP interface under MATLAB and solved
with SEDUMI solver. The values of the variables at the end of design are obtained as: γ = 3.31, � = 0.1574

Under these circumstances, state feedback controller gain vector is obtained to be as F =
(
−1835 5832.4

)
.

Accordingly, the ellipsoids are as in Figure 1 where the dashed line represents ellipsoid E(S, �) which is used

for enlarging initial conditions space, E(P, 1).
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Figure 1. Ellipsoidal Surfaces and Trajectory of closed loop β(t)

Notably, all states originating from set of E(P, 1), solid line, will result in the larger outer ellipsoid

E(P, η
δ

+ 1), dashed line, under unity energy level disturbances. It can be claimed that simulation results are in

favor of analytical approach.

Figure 1 demonstrates state trajectory β(t). Here, it should be noted that the initial conditions are

chosen as β(0) = π/6. Also, the other optimization parameters σ1 andσ2 are chosen as σ1 = σ2 = 1, S = I

and η = 1. If the optimization problem is only focused on enlarging ellipsoid of initial conditions, E(P, 1), then

the ellipsoid E(P, 1) is obtained as a larger ellipsoid where � = 0.4665. But in such case, L2 gain of the system

is get worse (γ = 13844). In short, there is a trade off between enlarging ellipsoid of initial conditions, E(P, 1),
and L2 gain of the system and the range of the trade off is defined by σ1 and σ2 .

In order to demonstrate the application of LPV counterpart of the proposed theory, we consider the
system in (29) where the parameter v is time-varying. In this sense, considering the scheduling parameter

vector as ρ =
[
1/v 1/v2

]T , one obtains the LPV system in state-space form as

ẋ =

(
−CF L2

F −CRL2
R

JZ
ρ1

−CF LF +CRLR

JZ−LF CF +CRLR

M ρ2 − 1 −CF −CR

M ρ1

)
x +

(CF LF

JZ
CF

M ρ1

)
× (

π

4
)sat(u) +

(
0
1

)
w

z =
(

1 0
0 1

)
x

It is assumed that the vehicle speed varies in the range of v ∈ [−10, −50][km/h] . However, we assume that

we do not have any information for the bound of dv/dt . Here, we focus only on the minimization of L2 gain,
γ . Applying the multi-objective controller design procedure presented in the previous section by selecting the
constants as η = 1, δ = 1, σ1 = σ2 = 1, the worst case L2 gain from w to z is obtained as γ = 1.55 under
the affect of the same disturbance presented in the previous nominal control example. On the other hand, � is
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obtained as 0.26. The other semi-definite programming variables are found as

Q0 =
(

6.1644 0.8188
0.8188 0.4315

)
, Q1 =

(
−0.0337 3.2349
3.2349 2.2584

)
, Q2 =

(
0.0000 0.0001
0.0001 −3.5614

)
,

Z0 =
(
−1.0087 0.1399

)
, Z1 =

(
20.0581 5.8738

)
, Z2 =

(
−85.4383 1.6309

)
.

Figure 2 demonstrates the closed-loop state trajectory β(t) when the LPV controller

u(ρ(t), x(t)) =
(
Z0 +

2∑
i=1

ρi(t)Zi

)(
Q0 +

2∑
i=1

ρi(t)Qi

)−1
x(t)

is applied to the system. Again the initial conditions for the states are chosen as β(0) = π/6[rad] and ψ̇(0) = 0.
Note that better disturbance attenuation rates and larger initial condition sets are obtained for the LPV
controller when compared with the non-LPV counterpart.
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Figure 2. Trajectory of closed loop β(t) with multi-objective optimization methodology and LPV control.

7. Conclusions

In this study, an approach to the optimal state-feedback controller design which minimizes L2 gain from
disturbances to performance output for both Linear Time Invariant (LTI) systems and LPV systems having
saturating actuators is presented. In addition, the controller design procedure includes enlarging the set of
initial conditions. It should be underlined that nonlinear actuator model in the problem is represented with
LMIs through convex hull representation of some linear feedback. After presenting theoretical background of the
approach, in order to demonstrate the success of optimizing method, simulation studies are given for a single
track vehicle model. It has been successfully shown that the proposed method can be used for disturbance
rejection problems in such LTI and LPV systems with saturating actuators. For future studies one can try to
enlarge the set of disturbances affecting system, W . But, in this case, the optimization problem will be bilinear
with respect to its variables. Note that to be able to solve such a problem one may use cone-complementary
methods and BMI kind of solvers.
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