
Turk J Elec Eng & Comp Sci, Vol.20, No.1, 2012, c© TÜBİTAK

doi:10.3906/elk-0909-233

Energy savings in simultaneous multi-threaded

processors through dynamic resizing of datapath

resources

Gürhan KÜÇÜK∗, Mine MESTA
Department of Computer Engineering, Yeditepe University,

Ataşehir, İstanbul-TURKEY
e-mails: gkucuk@cse.yeditepe.edu.tr, mmesta@cse.yeditepe.edu.tr

Received: 29.09.2009

Abstract

Nowadays, all the designers of systems from high-performance servers to battery-operated handheld devices

aim for reliability, high-performance and longevity. Central within these aims the issue of processor power

consumption is becoming increasingly important. In this study, we aim to adapt our already-provenmethod for

single-threaded superscalar processors to simultaneous multi-threaded (SMT) processors for energy savings.

The original method focused on resizing datapath resources according to the demands of running applications.

To achieve this, the targeted resources are physically divided into multiple partitions, and turned on and

off according to the needs of the applications. Since, the energy consumption of the turned-off datapath

resources is quite low, as a result, it becomes possible to have great amount of energy savings within a

processor. However, special care must be taken when there are multiple threads racing against each other

to gain access to shared datapath resources. As a result, our proposed microarchitectural technique achieves

0.5% Instructions Per Cycle (IPC) and 3.2% Total number of instructions Per Cycle (TPC) improvement,

while it turns off 45% of the Reorder Buffer (ROB), 59% of the Load-Store Queue (LSQ), 43% of the Issue

Queue (IQ), 30% of the integer Physical Register Files (PRF) and, finally, 48% of the floating PRF, on the

average across all simulated benchmarks. According to our estimates, the total processor power is reduced by

12%, on the average.

Key Words: Microarchitectural techniques, energy reduction, simultaneous multi-threaded processors

1. Introduction

Processors get faster and more complex, becoming more and more energy-hungry. In [1], it is mentioned that
power densities of new generation processors approach the power densities of nuclear power plants. Lacking

∗Corresponding author: Department of Computer Engineering, Yeditepe University, Ataşehir, İstanbul-TURKEY

This research has been funded by TÜBİTAK under grant no: 107E196.

125

Turk J Elec Eng & Comp Sci, Vol.20, No.1, 2012

intervention, the heat that comes out from the processors, working with this power density, would give rise to
mechanical and electrical problems. The famous Arrhenius equation shows that with each 10 ◦C increase in
processor temperature, the possibility of malfunction doubles. Additionally, low energy dissipation in processors
has additional positive outcomes, such as reduction in cost of cooling, increased systems ergonomics, improved
processor lifetime and performance, and even positive effects over electricity bills. Thus, any solution intended
for energy savings is intensely valuable for today’s processors.

Two methods are popular for solving processor heat-related problems. One method suggests not to change
the processors, but to run the processors at desired performance levels by just cooling them better. This solution
increases both the physical size of the processor’s cooling system and the processor cost. Such thinking offers
no definite advantage over cost of power, since the processor dissipates the same amount of power. The second
method aims to minimize the disadvantages caused by the cooling system and reduce the power consumption,
system ergonomics, system reliability, and the system’s lifetime by lowering the energy dissipation of processors.
This second method has two alternative approaches.

The first approach, known as Dynamic Voltage/Frequency Scaling (DVFS), decreases energy dissipation
by reducing the voltage parameter and hence power dissipation, as per the following equation relating the
amount of energy held by a system exhibiting a characteristic capacitance C at rms voltage V :

E = αCV 2 (1)

where α is the activity factor. Besides being simple, this approach is also very effective for decreasing the energy
dissipation of the system, and, thus, it is widely used. The disadvantage of this approach is the transistors are
switched more slowly with the low voltage values, and because of this frequency f should also be reduced.
Considering the CPU iron-law,

Texec = (N × CPI)/f, (2)

for calculating the execution time of an application, in which the execution time is directly proportional to the
number of instructions N and cycles per instruction (CPI), and inversely proportional with the processor’s
frequency f . As a result, the first approach guarantees approximately three times power savings with a linear
decrease in processor’s performance:

P = αCV 2f. (3)

The second approach aims at energy savings by decreasing the capacitance C and the constant, activity factor
α . This method is shortly named as the architectural solution. In this method activity factor is directly related
with capacitors’ switching count, capacitance is directly related with capacitors’ sizes and wire length. These
two alternative methods are orthogonal, and therefore, can be utilized at the same time to achieve greater energy
savings. The study in this paper is in the architectural solution category, and specifically targets simultaneous
multi-threaded processors.

Simultaneous Multi-Threaded (SMT) processors are very popular due to their improved throughput
when running multiple threads and their simplistic design which requires minor modifications to the existing
superscalar datapaths. Today, we find examples of SMT processors on server machines such as Intel Xeon as well
as inexpensive netbook computers such as the Intel Atom. These SMT processors dissipate considerable amount
of energy, which recently became a major issue to be solved to improve the lifetime, reliability, performance
and even the die size of these processors.

In SMT processors, there are many datapath resources which are shared (i.e. issue queue, physical register

files and caches), and replicated (i.e. reorder buffer, load/store queue and architectural register files). The shared

126

KÜÇÜK, MESTA: Energy savings in simultaneous multi-threaded processors through...,

resources are designed to be larger in size to accommodate the entries coming from multiple threads, whereas
replicated resources introduce additional challenges in routing related entries increasing complexity within the
processor. As a result, complexity reduction is beneficial for both improving the performance and reducing the
energy dissipation on these processors.

In this study, we propose adaptive resizing of issue queue, physical register files, reorder buffer and
load/store queue in SMT processors for energy reduction. The proposed method physically partitions a given

datapath resource into multiple pieces, and turns off unused (or underutilized) partitions of that resource to
reduce the energy dissipation on the processor. The main idea is to achieve maximum energy savings without
impacting the performance of the processor. The idea of adaptive resizing of datapath resources is not new. It
has been studied for single-threaded superscalar processors before [2–4]. Main contributions of this study are
as follows.

• This paper studies the adaptation of the existing algorithms to the SMT processors. To the best of our
knowledge, this is one of the first studies that focus on the adaptive resizing of datapath resources in such
processors.

• SMT processors are modified superscalar processors that accept instructions from multiple threads into
the same instruction pipeline. As a result, some of the datapath resources are shared among multiple
threads, and these threads compete for these resources. In this study, we show that a simple control
mechanism, which is based on “resource occupancy” and “thread stall”-based statistics is sufficient to
save considerable energy on such structures with slight performance gains. These performance results are
quite unexpected, especially when they are compared with the findings of superscalar processor study in
which similar savings are achieved with an average performance penalty of about 5%.

• The superscalar study in [2–4] targets Pentium-III like processors that combines physical register files
and reorder buffers in a single structure. This study, on the other hand, focuses on more contemporary
processors used in SMT machines with separate physical register files and reorder buffers. In multithreaded
workloads the reorder buffer and physical register requirements may not be correlated at all times, and
separate control mechanisms for these resources are proposed in this study.

Remainder of this paper is organized as follows. Section 2 gives detailed background information about energy-
efficiency targeting studies. Section 3 describes our methodology. In Section 4, we describe our dynamic resizing
algorithm for both queue-type and buffer-type structures. In Section 5, simulation results are discussed. Finally,
Section 6 concludes our paper.

1.1. Related work

One of the first works of DVFS is done by Marculescu who suggests using cache misses as a clue for voltage
scaling [5]. In this work when a cache miss is discovered it is expressed that processor’s activity is separated into

two phases: a) independent phase and b) dependent phase. First phase is independent from the instructions
which causes cache misses, whereas the second phase depends on these instructions. As a result, while the cache
is updated from main memory instructions, the dependent phase waits for the process to complete. At the
same time, instructions in the independent phase may continue to execute. However, executing independent
instructions with the maximum system voltage supply causes the independent instructions to be finished much
earlier than the cache update and causes system to use additional, unnecessary energy consumption. Hence,

127

Turk J Elec Eng & Comp Sci, Vol.20, No.1, 2012

Marculescu suggests slowing down the processor (decrease Voltage / Frequency) right after cache misses.
Consequently it may be provided that execution of the independent instructions and cache updates will be
finalized concurrently.

Weissel and Bellosa [6] offer another approach that adapts the fulfillment frequencies of different hardware
incidents like cache misses to running threads. The idea is when OS scheduler makes a context switch, increase
or decrease the frequency according to the previously evaluated incident fulfillment frequencies.

Kondo and Nakamura [7] proposes a method which sums up the cache misses periodically and at the end

of the periods updates one of the three counters according to the results (being zero, one or more than one).
A cost function grades the memory dependence of the executing code upon the weighted summation of these
three counters. The voltage and frequency is decreased if the memory dependence of the code is bigger than an
upper threshold or increased if the memory dependence of the code is smaller than a lower threshold.

Poellabauer and his crew divide the execution time of an application into two: a) time for calculations and

b) memory access time [8]. To estimate the memory dependency of an application, they introduce a new metric
that they called memory access rate. This metric evaluates the average cache miss count for each executed
instruction. A previously prepared table keeps the resizing factors for each memory access rate, and during the
execution time processor is slowed down or speeded up.

Architectural solutions for conserving energy in processors can be categorized into three groups: a)

decreasing the activity factor by decreasing the access count to the datapath structures; b) focusing on

partitioning the datapath resources into smaller partitions to decrease capacitance factor; and c) decreasing
both capacitance factor and the activity factor. The main target of studies of each approach is to gain more
than three times power savings (as opposed to linear performance loss). Since an ordinary DVFS algorithm
can naturally support this constraint, any work which does not support this constraint becomes totally useless
when compared to a standard DVFS algorithm.

Sherwood and Calder have reported datapath resource usage ratios and evaluation using SPEC 95 [9],

involving the dynamic behaviors of applications using the popular Simplescalar simulator [10, 11]. In this

project three separate structures (i.e., issue queue, physical register files, and reorder buffer) are united into

one structure called the register update unit (RUU). The relation through IPC, RUU occupancy ratio, cache
misses, branch prediction, value prediction, and address prediction is studied.

Dynamic resizing of the issue queue structure can be considered as one of the first studies similar to
our study. In the study by Buyuktosunoglu et al., the issue queue is divided into independent partitions, and
the authors aimed for energy savings by turning off the unused partitions according to the instruction level
parallelism (ILP) degree [12, 13]. Activity in the issue queue is determined according to the number of ready
instructions and it is claimed that this number is directly related to the application’s requests. As explained in
[2–4], the requests of the application is more related to the number of instructions kept in the structures other
than the number of instructions ready to execute on these structures.

In the same year, Folegnani and Gonzalez designed the issue queue as FIFO type queue that allows the
out of order execution [14]. In this study, issue queue is partitioned into regions. The queue is of FIFO type,
and the region that the instructions inserted is called the youngest part. Number of instructions executed and
terminated in that part is used as a determination factor for total size of the issue queue needed for the number
of partitions. It is suggested to turn on one of the closed regions not influenced by the performance loss.

The first study investigating simultaneous resizing of multiple datapath resources was done by Ponomarev
et al. [2–4]. In these studies, dynamic resizing of the partitioned structures by utilization of the average

128

KÜÇÜK, MESTA: Energy savings in simultaneous multi-threaded processors through...,

occupancy ratios of the datapath resources is suggested. Average power savings of 42% in issue queue, 74%
in ROB including the PRF (physical register file), and 41% in LSQ (load/store queue) is achieved in a 4-way

single-threaded superscalar processor. Average performance loss to provide this savings was limited to 5%.

The work proposed above is supported by Dropsho and his team, using a limited histogram in place of
using average occupancy values of resources [15]. However, the system becomes complicated with the histogram
mechanism used in that study. There is a processor’s configuration difference when two methods are compared.
Dropsho et al. preferred a processor with separate ROB and PRF structures, whereas Ponomarev et al. studied
combined ROB and PRF structures. Dropsho et al. also resized the cache structures.

Some of the initial works that aim to optimize datapath resources and study several fetch policies for
optimizing the throughput by evaluating the requests of the threads executing on simultaneous multi-threaded
(SMT) processors are [16–20]. Among them, one work is called Dynamically Controlled Resource Allocation

(DCRA), in which threads are classified according to their resource requests and resources are tried to be shared

evenly through threads [20]. The methodology aims to increase memory-level parallelism by allocating more
resources to the memory bounded threads and allowing multiple cache misses to overlap other than to stall or
to remove instructions from the processor.

Robatmili investigated the effect of the several methods, from which suggesting resource partitioning on
the processor’s performance [21]. The oldest-first based issue queue is separated into multiple partitions for

each thread. A similar work is done for single-threaded superscalar processors using ROB [22, 23]. Raasch and
Reinhardt studied the structure of ROB in SMT processors, to see whether a bigger structure shared through
threads or smaller replicated structures has advantages [24]. As a result, it is found that having partitioned
ROB has better performance.

One of the closest studies to this work is done by Sharkey and Ponomarev [25]. By focusing only on
ROB, Sharkey suggested dynamic resizing of smaller homogeneous logical partitions of replicated ROBs for
each thread. But unlike our study, in that project performance improvement is aimed and no evaluation is done
related to energy savings.

2. Dynamic resizing mechanism

In this section, the details of our dynamic resizing mechanism are given. The mechanism is distributed over
datapath resources rather than being implemented as a centralized controller. For each of the studied datapath
resources, a dedicated finite state machine is utilized.

ROB and LSQ structures in SMT processors are usually replicated (and not shared) for each thread.
Both of these structures are in circular FIFO queue type. ROB structure keeps all in-flight instructions in the
processor in program order. LSQ structure does the same thing for only memory instructions. Both structures
have two pointers indicating the head (H) and the tail (T). Tail pointer indicates the next free entry that the
new instruction can be inserted to the structure and head pointer indicates the oldest instruction that can retire
or commit.

We divide all targeted datapath resources into equal partitions (Figure 1) to dynamically resize. Thereby
energy savings is aimed by bypassing the unused resource partitions. It should be noticed that in Figure 1, the
system allows any partition to be turned off. Applying this property to a FIFO queue structure might cause
logical problems. Consider partition 1 in Figure 1 is turned off, and queue structure starts from partition 0 and
continues to partition 2. In that case, the reactivation of partition 1 for reuse, will damage the integrity of the

129

Turk J Elec Eng & Comp Sci, Vol.20, No.1, 2012

queue structure. To prevent such problems, we only allow the activation and turning off of the last available
partition for all structures we studied.

 precharger array

Associative part Non-associative part

Input/output drivers

bypass switch array

 precharger array

Associative part Non-associative part

Input/output drivers

bypass switch array

 precharger array

Associative part Non-associative part

Input/output drivers

bypass switch array

 precharger array

Associative part Non-associative part

Input/output drivers

bypass switch array

Partition 0

Partition 1

Partition 2

Partition 3

Through lines

Status update bus lines Bit lines

Through line

Bypass switch

Bit line or bus line
within a partition

Figure 1. Partitioned resource structure.

The finite state machine for ROB and LSQ structures is shown in Figure 2. Starting from the stable
phase, the algorithm attempts upsize or downsize phases. Unfortunately, these decisions cannot be satisfied
immediately for circular FIFO queue structures due to possible integrity problems. It is quite possible that
these phases cannot be serviced in a single clock cycle, and, meanwhile, new decisions might be taken. For
instance, during a Resource Downsize Phase, a Resource Upsize Decision can be taken, or vice versa. In those
cases, we give priority to Resource Upsize Decision because of our performance concerns.

Furthermore, in our current control mechanism, we aim to activate or deactivate one partition at a time.
In an alternative method, more than one partition (or maybe all) can be activated or deactivated. However, we
found that these aggressive techniques can create oscillations in the control mechanism and harm the system
stability and performance. A more thorough and detailed study is needed to investigate their integration to the
current control mechanism.

The instant positions of the Head (H) and Tail (T) pointers directly affect the time required to accomplish

the resource resizing process. In the scenario given in Figure 3(a), the resource upsize or downsize is not
immediately possible. If a resource downsize decision is taken, the position of the head should be lower than
the position of the tail. In Figure 3(b), this is the case, and both the activation and deactivation of the last
partition is possible.

130

KÜÇÜK, MESTA: Energy savings in simultaneous multi-threaded processors through...,

Resource upsize
decision

Resource downsize
decision

Resource upsize
decision

Resource
downsize

completed

Resource
upsize
completed

Resource
downsize
decision

Resource
upsize

decision

Stable
phase

Resource
upsize
phase

Resource
downsize

phase

Figure 2. Resizing algorithm for queue structures.

(a) (b)

 0 1 2 ... n-1 0 1 2 ... n-1

T T H H

Figure 3. Two scenarios for resource resizing in queue-type structures.

The Resource Downsize Decision can be taken at the end of predefined Sampling Periods. In our tests, the
sampling period is chosen to be 32 Kcycles. Before taking the decision, average resource occupancies within the
preceding period are collected and then these numbers are compared with the occupancies inside the currently
active partitions. For instance, let us consider the datapath resource depicted in Figure 1, and assume that the
first three partitions are active and the last one is gated off at the end of a sampling period. When it is found
that the average resource occupancy can fit in only the first two partitions at that time, then the current last
partition (partition 2) is decided to be turned off (i.e. a Resource Downsize Decision is taken). Otherwise, the
Resource Downsize Decision is not taken, and the resizing mechanism continues with its existing configuration.

For the Resource Upsize Decision, our past experiences show that waiting until the end of a specific
period may degrade the system performance. Therefore, we decided to apply the same upsizing technique that
we use for single-threaded superscalar processors. In that case, the Resource Upsize Decision can be taken at
any time. To be able to trigger an upsize decision, a new counter is added to count the number of stalls for each
datapath resource. This counter is checked at every cycle, and when it exceeds a predefined threshold value, the
Upsize Threshold, the Resource Upsize Decision is taken. After the decision, the corresponding stall counter is
immediately reset. For instance, again, let us consider the datapath resource depicted in Figure 1, and assume
that the first three partitions are active and the last one is turned off at some point during execution. When a
new allocation request arrives and all active partitions are full, the new item cannot be immediately inserted,
and, as a result, a stall occurs. After each resource stall, the corresponding stall counter is incremented. When,

131

Turk J Elec Eng & Comp Sci, Vol.20, No.1, 2012

the counter exceeds its threshold value, the last partition (partition 3) is decided to be activated (i.e. a Resource

Upsize Decision is taken).

IQ and PRF datapath resources are shared among all the threads in SMT processors. Moreover, they
contain instructions and data in an out-of-program-order fashion and, therefore, are both implemented in
buffer structures. Resizing of these resources has fewer complications compared to that of ROB and LSQ. For
instance, a resource upsize can be performed right after a Resource Upsize Decision without any need for a
specific Resource Upsize Phase. After a resource downsize decision, on the other hand, the mechanism still
requires a similar (but somewhat less complicated) Resource Downsize Phase for waiting the last partition to
be completely unoccupied. In Figure 4, the finite state machine for these buffer structures is depicted.

Resource downsize
decision

Resource upsize
decision and

resource upsize

Resource
downsize

completed

Resource
downsize
decision

Resource
upsize
decision
and
resource
upsize

Stable

phase

Resource

downsize

phase

Figure 4. Resizing algorithm for buffer structures.

When an upsize or downsize decision is made, and the corresponding phase is over, the partition cannot
be immediately turned on or off, since this type of operation can easily create di/dt spikes on the processor.
In our simulation, we accounted the possibility of this problem, and allowed 300 cycles for completely turning
on and off a partition.

3. Methodology

In this study several datapath statistics, such as resource occupancies, cache miss rates, branch misprediction
rates, applications types (i.e. memory- or CPU-intensive), fairness of resource sharing through threads, and
other similar metrics are collected and examined separately or together to investigate the effects of dynamic
resizing mechanism. For the SMT simulation we used the M-Sim simulator [26]. This simulator also provides

an integrated power estimator tool called Wattch [27].

In Table 1, the simulation parameters are given, in detail. Note that the Sampling Period value is chosen
as 32 Kcycles, and the Upsize Threshold value is chosen as 32 Kstalls (i.e. there should be 32 K stalls to each

resource, until a resource upsizing decision is triggered.) These are empirically determined values, which gave

132

KÜÇÜK, MESTA: Energy savings in simultaneous multi-threaded processors through...,

near optimal results in our tests. We ran all simulations in SimPoint [28] ranges. We arranged 12 mixtures,

application couples, as a result of our literature survey [18–21]. Mixtures are formed of integer (INT) and floating

point (FP) applications, and they are also selected according to their characteristics, such as their instruction

level parallelism (ILP) degree, memory-boundedness (MEM), and a mixture of both ILP and memory bounded

(MIXT). The details of these application mixtures are given in Table 2.

Table 1. Processor configuration used throughout the tests.

Parameter Configuration
Machine
width

8-wide fetch, 8-wide issue, 8-wide commit

Window size 64-entry IQ, 96-entry ROB, 48-entry LSQ, 192-entry PRF
L1 I-Cache 512KB, 32- cache block size, 2-way set associative, least recently used (LRU) block replace-

ment strategy
L1 D- Cache 512KB, 32-cache block size, 4-way set associative, LRU block replacement strategy
L2 Cache 1024KB, 128- cache block size, 8-way set associative, LRU block replacement strategy
TLB (I) 16-entry, 4096-page size, 4-way set associative, LRU block replacement strategy, (D)

32-entry, 4096- page size, 4-way set associative, LRU block replacement strategy
Functional
Units

8-INT ALU, 3-INT MULT, 8-FP ALU, 3-FP MULT

Sampling
Period

32 Kcycles

Upsize
Threshold

32 Kstalls

Table 2. Application mixtures.

Mix # Appl.#1 Appl.#2 Characteristic Type #1 Type #2
Mix1 Twolf Art MEM INT FP
Mix2 Equake Parser MEM FP INT
Mix3 Mgrid Mcf MEM FP INT
Mix4 Gzip Bzip2 ILP INT INT
Mix5 Gcc Mesa ILP INT FP
Mix6 Vortex Wupwise ILP INT FP
Mix7 Twolf Gzip MIXT INT INT
Mix8 Art Bzip2 MIXT FP INT
Mix9 Equake Gcc MIXT FP INT
Mix10 Parser Mesa MIXT INT FP
Mix11 Mgrid Vortex MIXT FP INT
Mix12 Mcf Wupwise MIXT INT FP

4. Tests and results

In this section, we discuss the results of the proposed resizing mechanism, in detail. First, in Figures 5 and
6, we show the simulation results of two application mixtures (Mix1 and Mix3) in a short execution window,

respectively. Mix1 (see Figure 5) is a nice example for showing that sudden changes in benchmark behavior are
possible. Here, resource usage increases and decreases, instantly. Applications with such behavior are tricky
to handle for any control mechanism causing it to be unstable, oscillate, and, as a result, degrade processor
performance. However, for our chosen sampling period and the upsize threshold, we successfully capture the

133

Turk J Elec Eng & Comp Sci, Vol.20, No.1, 2012

behavior of all mixtures, as the dynamic sizes of the resources (the right-hand side graphs) successfully track

down the changes in the resource occupancies (the left-hand side graphs).

MIX1

0
20
40
60
80

100
120

3
2

6
3

6
8

1
2

7
0

4

1
9

0
4

0

2
5

3
7

6

3
1

7
1

2

3
8

0
4

8

4
4

3
8

4

5
0

7
2

0

5
7

0
5

6

6
3

3
9

2

6
9

7
2

8

7
6

0
6

4

Cycle(K)

R
O

B
 O

cc
u
p
an

cy

twolf art

MIX1

0
20
40
60
80

100
120

3
2

6
3
6
8

1
2
7
0
4

1
9
0
4
0

2
5
3
7
6

3
1
7
1
2

3
8
0
4
8

4
4
3
8
4

5
0
7
2
0

5
7
0
5
6

6
3
3
9
2

6
9
7
2
8

7
6
0
6
4

Cycle(K)

R
O

B
 R

es
iz

e twolf art

MIX1

0
10
20
30
40
50
60

3
2

6
2
4
0

1
2
4
4
8

1
8
6
5
6

2
4
8
6
4

3
1
0
7
2

3
7
2
8
0

4
3
4
8
8

4
9
6
9
6

5
5
9
0
4

6
2
1
1
2

6
8
3
2
0

7
4
5
2
8

8
0
7
3
6

Cycle(K)

L
S

Q
 O

cc
u

p
an

cy

twolf art

MIX1

0
10
20
30
40
50
60

3
2

6
2
4
0

1
2
4
4
8

1
8
6
5
6

2
4
8
6
4

3
1
0
7
2

3
7
2
8
0

4
3
4
8
8

4
9
6
9
6

5
5
9
0
4

6
2
1
1
2

6
8
3
2
0

7
4
5
2
8

8
0
7
3
6

Cycle(K)

L
S

Q
 R

es
iz

e

twolf art

MIX1

0

50

100

150

200

32

63
68

12
70

4

19
04

0

25
37

6

31
71

2

38
04

8

44
38

4

50
72

0

57
05

6

63
39

2

69
72

8

76
06

4

Cycle(K)

P
R

F
 O

cc
up

an
cy

PRF INT PRF FP

MIX1

0

50

100

150

200

32

63
68

12
70

4

19
04

0

25
37

6

31
71

2

38
04

8

44
38

4

50
72

0

57
05

6

63
39

2

69
72

8

76
06

4
Cycle(K)

P
R

F
 R

es
iz

e

PRF INT PRF FP

MIX1

0
10

20
30
40

50

60
70

32

62
40

12
44

8

18
65

6

24
86

4

31
07

2

37
28

0

43
48

8

49
69

6

55
90

4

62
11

2

68
32

0

74
52

8

80
73

6

Cycle(K)

IQ
 O

cc
up

an
cy

MIX1

0

10

20

30
40
50
60

70

32

62
40

12
44

8

18
65

6

24
86

4

31
07

2

37
28

0

43
48

8

49
69

6

55
90

4

62
11

2

68
32

0

74
52

8

80
73

6

Cycle(K)

IQ
 R

es
iz

e

Figure 5. MIX 1 (twolf – art) results.

In Figure 6, IQ graphs show an interesting behavior in Mix3. In spite of IQ is a shared resource, for
some periods its usage is at minimum. As a result, we find that even shared resources give promising results
for resource downsizing in SMT processors. Similar savings are also observed in other shared resources, i.e.
physical register files, as well.

The performance results and fraction of active occupancy of resources are given in Table 3 and Table 4,
respectively. These results give a general idea of performance and energy savings that can be achieved by the

134

KÜÇÜK, MESTA: Energy savings in simultaneous multi-threaded processors through...,

MIX3

0
20
40
60
80

100
120

32

68
80

13
72

8

20
57

6

27
42

4

34
27

2

41
12

0

47
96

8

54
81

6

61
66

4

68
51

2

75
36

0

82
20

8

89
05

6

95
90

4

10
27

5

10
96

0

11
64

4

Cycle(K)

R
O

B
 O

cc
up

an
cy

mgrid mcf

MIX3

0
20
40
60
80

100
120

32

68
48

13
66

4

20
48

0

27
29

6

34
11

2

40
92

8

47
74

4

54
56

0

61
37

6

68
19

2

75
00

8

81
82

4

88
64

0

95
45

6

10
22

7

10
90

8

11
59

0

Cycle(K)

R
O

B
 R

es
iz

e

mgrid mcf

MIX3 MIX3

0
10
20
30
40
50
60

32

67
52

13
47

2

20
19

2

26
91

2

33
63

2

40
35

2

47
07

2

53
79

2

60
51

2

67
23

2

73
95

2

80
67

2

87
39

2

94
11

2

10
08

3

10
75

5

11
42

7

Cycle(K)

LS
Q

 O
cc

up
an

cy

mgrid mcf

0
10
20
30
40
50
60

32

67
20

13
40

8

20
09

6

26
78

4

33
47

2

40
16

0

46
84

8

53
53

6

60
22

4

66
91

2

73
60

0

80
28

8

86
97

6

93
66

4

10
03

5

10
70

4

11
37

2

Cycle(K)

LS
Q

 R
es

iz
e

mgrid mcf

MIX3

0

50

100

150

200

32

68
48

13
66

4

20
48

0

27
29

6

34
11

2

40
92

8

47
74

4

54
56

0

61
37

6

68
19

2

75
00

8

81
82

4

88
64

0

95
45

6

10
22

7

10
90

8

11
59

0

Cycle(K)

PR
F

O
cc

up
an

cy

PRF INT PRF FP

MIX3

0

50

100

150

200

32

68
80

13
72

8

20
57

6

27
42

4

34
27

2

41
12

0

47
96

8

54
81

6

61
66

4

68
51

2

75
36

0

82
20

8

89
05

6

95
90

4

10
27

5

10
96

0

11
64

4

Cycle(K)

PR
F

R
es

iz
e

PRF INT PRF FP

MIX3

0
10
20
30
40
50
60
70

32

67
52

13
47

2

20
19

2

26
91

2

33
63

2

40
35

2

47
07

2

53
79

2

60
51

2

67
23

2

73
95

2

80
67

2

87
39

2

94
11

2

10
08

3

10
75

5

11
42

7

Cycle(K)

IQ
 O

cc
up

an
cy

MIX3

0
10
20
30
40
50
60
70

32

67
20

13
40

8

20
09

6

26
78

4

33
47

2

40
16

0

46
84

8

53
53

6

60
22

4

66
91

2

73
60

0

80
28

8

86
97

6

93
66

4

10
03

5

10
70

4

11
37

2

Cycle(K)

IQ
 R

es
iz

e

Figure 6. MIX 3 (mgrid – mcf) results.

utilization of our proposed mechanism. From Table 4, it can be noticed that average occupancy percentages,
which are compared to the baseline processor, may differ for each application and each resource. Instructions
per cycle (IPC) and total instructions per cycle (TPC) drop percentages can be both negative (performance

gain) and positive (performance drop).

At first, performance improvements might be found as an interesting outcome, especially when the
resources are downsized. However, this is quite usual for speculative, out-of-order superscalar processors. When
resource sizes are decreased, speculative instructions are prevented to be inserted into resources. This way
removing misspeculated instructions from resources can be done quicker since the resource sizes are smaller.
When the results are evaluated we also found that aggressive upsizing mechanism, for performance concerns,
keeps resource sizes higher.

135

Turk J Elec Eng & Comp Sci, Vol.20, No.1, 2012

Table 3. Performance comparison of baseline processor and the one that integrates the proposed configuration.

Mix Benchmark
IPC IPC IPC TPC TPC TPC

Baseline prop.conf. Drop% Baseline prop.conf. Drop%

Mix1
Twolf 0.38 0.39 -2.63

0.67 0.66 1.49Art 0.29 0.27 6.90

Mix2
Equake 0.37 0.39 -5.41

1.16 1.14 1.72Parser 0.79 0.75 5.06

Mix3
Mgrid 0.26 0.29 -11.54

0.29 0.32 -10.34Mcf 0.03 0.03 0.00

Mix4
Gzip 1.50 1.74 -16.00

2.74 2.34 14.60Bzip2 1.24 0.60 51.61

Mix5
Gcc 1.29 1.21 6.20

2.81 2.61 7.12Mesa 1.52 1.40 7.89

Mix6
Vortex 1.38 1.29 6.52

2.76 2.44 11.59Wupwise 1.38 1.15 16.67

Mix7
Twolf 0.50 0.50 0.00

1.70 1.79 -5.29Gzip 1.20 1.29 -7.50

Mix8
Art 0.34 0.31 8.82

1.56 1.48 5.13Bzip2 1.22 1.17 4.10

Mix9
Equake 0.41 0.41 0.00

1.58 1.48 6.33Gcc 1.17 1.07 8.55

Mix10
Parser 0.82 0.82 0.00

2.08 2.03 2.40Mesa 1.26 1.21 3.97

Mix11
Mgrid 0.87 0.83 4.60

2.41 2.19 9.13Vortex 1.54 1.36 11.69

Mix12
Mcf 0.03 0.03 0.00

0.12 0.22 -83.33Wupwise 0.09 0.19 -111.1

Here, we focus on one of the mixtures, and discuss the results, in detail. However, these findings are
similar in all the mixtures that we studied. When we check the results of Mix3, from both Table 3 and Table
4, we see that mcf has more LSQ occupancy than mgrid, on average . We may conclude that mcf executes
more memory-bounded instructions than mgrid. Thus, mcf waits for stalls which decrease its IPC value and
throughput. We also see that the ROB occupancy of mcf is quite high (98.96%). Since any instruction inserted
into the ROB cannot be removed before its execution finished. That causes mcf ’s ROB to get full in a short
period of time. Memory instructions, which stay at the head of ROB but cannot commit due to cache misses,
affects the IPC value of mcf. Mgrid, on the other hand, executes more instructions per cycle, and it retires more
instructions from its ROB and other related resources.

When we focus on the IQ, which is not a replicated resource, we see that mcf fills the IQ with its
instructions, and causes 98.44% occupancy. However, we see that we still have some energy savings on this
resource. Finally, when we check the integer physical register file (INT-PRF) and the floating-point physical

register file (FP-PRF) structures, we see that occupancy percentage of the INT-PRF is higher than occupancy
percentage of the FP-PRF. Table 2 clarifies the reason behind this observation: the mcf is an INT-type
application, whereas mgrid is a FP-type one. Since mcf cannot commit its instructions as fast as mgrid, INT-
PRF occupancy percentage stays high. Since TPC does not decrease, we may gain energy savings without any
performance loss.

136

KÜÇÜK, MESTA: Energy savings in simultaneous multi-threaded processors through...,

Table 4. Average occupancy percentages of resized structures.

Mix Benchmark
Average occupancy, %

ROB LSQ IQ INT-PRF FP-PRF

Mix 1
Twolf 72.92 52.08

70.31 82.29 60.94Art 77.08 54.17

Mix 2
Equake 86.46 83.33

85.94 74.48 68.75Parser 59.38 39.58

Mix 3
Mgrid 18.75 16.67

98.44 79.17 42.71Mcf 98.96 56.25

Mix 4
Gzip 34.38 20.83

32.81 61.98 33.33Bzip2 23.96 16.67

Mix 5
Gcc 35.42 31.25

25.00 60.42 43.75Mesa 37.50 33.33

Mix 6
Vortex 44.79 35.42

20.31 63.02 51.56Wupwise 44.79 29.17

Mix 7
Twolf 68.75 50.00

60.94 76.56 39.06Gzip 28.13 18.75

Mix 8
Art 81.25 66.67

56.25 77.60 58.85Bzip2 63.54 45.83

Mix 9
Equake 92.71 87.50

78.13 59.38 78.13Gcc 31.25 29.17

Mix 10
Parser 65.63 39.58

50.00 70.31 40.63Mesa 30.21 25.00

Mix 11
Mgrid 76.04 62.50

12.50 55.21 71.88Vortex 41.67 33.33

Mix 12
Mcf 98.96 56.25

98.44 83.33 40.10Wupwise 19.79 10.42

Table 5. Power results of all mixtures.

Average Total Power per Instruction
Baseline Proposed configuration Power Reduction, %

mix1 345.86 310.33 10.27
mix2 63.27 53.79 14.98
mix3 114.76 104.55 8.90
mix4 75.37 65.49 13.11
mix5 62.08 52.40 15.58
mix6 63.52 55.94 11.93
mix7 47.99 42.05 12.38
mix8 315.14 285.20 9.50
mix9 64.73 54.47 15.86
mix10 60.00 51.58 14.03
mix11 118.69 105.50 11.11
mix12 48.93 45.16 7.70

Finally, Table 5 shows the average values of total power per instruction for the baseline and the proposed
configuration in all mixtures. Here, we see that, by the application of our proposed mechanism on SMT
processors, we get consistent power savings for all simulated mixtures, and the total processor power reduction
is more than 12%, on the average.

137

Turk J Elec Eng & Comp Sci, Vol.20, No.1, 2012

5. Conclusion

In this study, we propose the adaptation of an architectural technique that was originally proposed for super-
scalar processors, to SMT processors, for reducing their energy dissipation. The aim is to conserve energy by
physically partitioning replicated datapath resources such as reorder buffers (ROB), load/store queues (LSQ)

as well as shared resources such as the issue queue (IQ) and physical register files (PRF), and then dynami-

cally turning off unused partitions on each of these resources. The dynamic resizing algorithm turns off 45%
of the ROB, 59% of the LSQ, 43% of the IQ, 30% of the integer PRF and, finally, 48% of the floating PRF,
on the average. These numbers are directly related to the average energy savings we can achieve by utilizing
our proposed method. As a result, our method reduces total processor power by more than 12% on the aver-
age, while improving processor performance by 3.2%, on the average across all simulated application mixtures.
These energy savings are aligned with our previous findings for superscalar processors. Performance-wise, the
mechanism proposed in this study gives better results compared to our previous study.

References

[1] Pollack, F., “New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies,”

Micro32 conference key note, 1999.

[2] Ponomarev, D., Kucuk, G., Ghose, K., “Reducing Power Requirements of Instruction Scheduling through Dy-

namic Allocation of Multiple Datapath Resources,” in Proceedings of the 34th International Symposium on

Microarchitecture,2001.

[3] Ponomarev, D., Kucuk, G., Ghose, K., “Dynamic Allocation of Datapath Resources for Low Power,” in Proceedings

of the Workshop on Complexity-Effective Design, held in conjunction with ISCA-28,2001.

[4] Ponomarev, D., Kucuk, G., Ghose, K., “Dynamic Resizing of Superscalar Datapath Components for Energy

Efficiency,” in IEEE Transactions on Computers, vol. 55, No. 2, Feb 2006, pp.192-213.

[5] Marculescu, D., “On the Use of Microarchitecture-Driven Dynamic Voltage Scaling,” in Proceedings of the Workshop

on Complexity-Effective Design, 2000.

[6] Weissel, A., Bellosa, F., “Process Cruise Control: Event-Driven Clock Scaling for Dynamic Power Management,” in

Proceedings of the International Conference on Compilers, Architecture, ad Synthesis for Embedded Systems, 2002.

[7] Kondo, M., Nakamura, H., “Dynamic Processor Throttling for Power Efficient Computations,” in Proceedings of

the Workshop on Power-Aware Computer Systems, 2004.

[8] Poellabauer, C., Singleton, L., Schwan, K., “Feedback Based Dynamic Voltage and Frequency Scaling for Memory-

Bound Real-Time Applications,” in IEEE Real Time and Embedded Technology and Applications Symposium, 2005.

[9] Standard Performance Evaluation Corporation, http://www.spec.org

[10] Simplescalar LLC, http://www.simplescalar.com

[11] Sherwood, T., Calder, B., “Time Varying Behavior of Programs,” Technical Report No. CS99-630, Dept. of

Computer Science and Engineering, University of California San Diego, 1999.

[12] Buyuktosunoglu, A., Schuster, S., Brooks, D., Bose, P., Cook, P., Albonesi, D., “An Adaptive Issue Queue for

Reduced Power at High Performance,” in Proceedings of the Workshop Power-Aware Computer Systems, 2000.

138

KÜÇÜK, MESTA: Energy savings in simultaneous multi-threaded processors through...,

[13] Buyuktosunoglu, A., Albonesi, D., Schuster, S., Brooks, D., Bose, P., Cook, P., “A Circuit Level Implementation

of an Adaptive Issue Queue for Power-Aware Microprocessors,” in Proceedings of the Great Lakes Symposium VLSI

Design, 2001.

[14] Folegnani, D., Gonzalez, A., “Energy-Effective Issue Logic,” in Proceedings of the International Symposium on

Computer Architecture, 2001.

[15] Dropsho, S. et al., “Integrating Adaptive On-Chip Structures for Reduced Dynamic Power,” in Proceedings of the

International Conference on Parallel Architectures and Compilation Techniques, 2002.

[16] Tullsen, D. et al., “Exploiting Choice: Instruction Fetch and Issue on an Implementable Simultaneous Multithread-

ing Processor,” in Proceedings of the International Symposium on Computer Architecture, 1996.

[17] Tullsen, D. et al., “Handling Long-Latency Loads in a Simultaneous Multi-Threaded Processor,” in Proceedings of

the International Symposium on Microarchitecture, 2001.

[18] Cazorla, F. et al., “Improving Memory Latency Aware Fetch Policies for SMT Processors,” in Proceedings of the

International Symposium on High Performance Computing, 2003.

[19] El-Moursy, A., Albonesi, D., “Front-End Policies for Improved Issue Efficiency in SMT Processors,” in Proceedings

of the International Symposium on High-Performance Computer Architecture, 2003.

[20] Cazorla, F. et al., “Dynamically Controlled Resource Allocation in SMT Processors,” in Proceedings of the Inter-

national Symposium on Microarchitecture, 2004.

[21] Robatmili, B. et al., “Thread-Sensitive Instruction Issue for SMT Processors,” in Computer Architecture News,

2004.

[22] Kucuk, G., Ergin, O., Ponomarev, D., Ghose, K., “Distributed Reorder Buffer Schemes for Low Power,” in

Proceedings of the International Conference on Computer Design, 2003.

[23] Kucuk, G. Ponomarev, D., Ergin, O., Ghose, K., “Complexity-Effective Reorder Buffer Designs for Superscalar

Processors,” in IEEE Transactions on Computers, vol. 53, No. 6, 2004, pp.653-665.

[24] Raasch, S., Reinhardt, S., “The Impact of Resource Partitioning on SMT Processors,” in Proceedings of the

International Conference on Parallel Architectures and Compilation Techniques, 2003.

[25] Sharkey, J., Balkan, D., Ponomarev D., “Adaptive Reorder Buffers for SMT Processors,” in Proceedings of the

International Conference on Parallel Architectures and Compilation Techniques, 2006.

[26] Sharkey, J., Ponomarev, D., Ghose, K., “M-Sim: A Flexible, Multithreaded Architectural Simulation Environment,”

Technical Report CS-TR-05-DP01, Department of Computer Science, State University of New York at Binghamton,

October 2005.

[27] Brooks, D., Tiwari, V., Martonosi, M., “Wattch: A Framework for Architecture-Level Power Analysis and Opti-

mizations,” in Proceedings of the International Symposium on Computer Architecture, pp.83-94, 2000.

[28] Hamerly, G., Perelman, E., Calder, B., “How to Use SimPoint to Pick Simulation Points,” ACM SIGMETRICS

Performance Evaluation Review, 2004.

139

