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Abstract

In this paper, a new distributed power-control (DPC) scheme is suggested to improve convergence speed

and system robustness against carrier-to-interference-ratio (CIR) estimation errors. To expedite the CIR

balancing in our DPC scheme, an instability detection rule was used. As compared with Foschini’s DPC

(FDPC) method, numerical results indicated that the proposed algorithm achieves performance improvements

in terms of outage probability as well as in the algorithm’s convergence speed. More specifically, by appropriate

selection of some parameters, the algorithm speed reduces from about 90 iterations in FDPC to 9 iterations

in the proposed algorithm. The system robustness against CIR estimation errors was also explored.
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1. Introduction and related work

Frequency reuse in wireless cellular networks results in increased system capacity. It increases, however, the
cochannel interference that imposes limitations on the minimum reuse distance. An efficient technique in
reducing the cochannel interference is to control the transmitted power in order to provide each receiver with a
satisfactory reception. A commonly used measure of the quality of communications is the carrier-to-interference
ratio (CIR) at the receiver.

The principle idea of power control was first introduced by Aein [1] for CIR balancing in satellite systems.

After that, Nettleton and Alavi [2,3] applied the idea to spread-spectrum cellular satellite systems. Evolution in

power-control schemes was then constructed by Zander [4], who reformulated the problem of power control and
CIR balancing in terms of eigenvalues and eigenvectors of the transmit gain matrix in the absence of background
noise. Zander developed an optimum power-control scheme to minimize system outage probability, which is the
probability of a randomly chosen mobile having a CIR less than the system protection ratio. Although Zander’s
power-control scheme was not implemented in practice, since it was a central power-control (CPC) method and
required all path-gain information and a central controller to process a huge amount of data, CPC analysis
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can be used for providing theoretical limits and performance evaluation of distributed power-control (DPC)

schemes. The DPC schemes [5-13] have been developed to cope with computational complexities arising from

CPC schemes. A framework on the convergence of generalized uplink power control was provided by Yates [14]

and extended by Huang and Yates [15]. The results in [14] and [15] were a breakthrough, providing guidelines
for designing and analyzing new algorithms.

In the present paper, we present a new DPC algorithm that achieves CIR balancing with unit probability.
Numerical analysis through computer simulations indicated that our algorithm, in conjunction with the use of
the instability detection rule, has excellent performance compared to Foschini’s DPC algorithm (FDPC) in
terms of outage probability and convergence speed.

2. System model

The cellular mobile system assumptions and notations in this paper are the same as those made in [7]. Let us

consider a set containing K cells sharing a particular (reused) channel. It is assumed that the mobiles have
been evenly deployed throughout the system. Suppose that Pi and Gij denote the power transmitted by the

ith mobile and the link gain from the j th mobile to the ith base station (BS), respectively. The CIR at the
ith BS, Γi , can be expressed as:

Γi =
GiiPi

K∑
j = 1
j �= i

GijPj + νi

, i = 1, 2, ..., K. (1)

Assuming a snapshot model assumption in this paper, the gain matrix, G = [Gij] , is a K×Kmatrix of random
elements, and Γi is a random variable. For successful base-to-mobile transmissions, the following criterion should
be satisfied:

Γi ≥ γ0, i = 1, 2, ..., K, (2)

in which γ0 is called the system protection ratio or the user’s minimum required (target) CIR. If Eq. (2) is met,
a corresponding effective power vector for a simultaneous satisfactory transmission quality can be defined as:

P∗ = [P ∗
1 , P ∗

2 , ..., P ∗
K ] > 0. (3)

In situations in which Eq. (2) is not met, one or more users must be required to be disconnected or handed over
to other channels in order to maintain transmission quality. This is achieved through the cell-removal process.

3. Cell-removal and instability detection rule

Let us assume that the DPC algorithm meets Eq. (2) after L iterations. Thus, P∗ would be the effective

power vector, and the system is called stable at the current state. Otherwise, if Γ(L)
i < γ0 , the cell-removal

process is invoked, so that all users remaining maintain a minimum CIR ofγ0 . In [4] and [7], the cell-removal
process was used to improve the system performance in terms of the outage probability in conjunction with
CIR balancing and a DPC algorithm. In the following section, we proceed with an augmented DPC algorithm
using the cell-removal process.
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Table. Outage probability mean number of iterations.

25 dB 23 dB 20 dB Target CIR → DPC algorithm
113.08 75.616 26.814 Mean no. of iterations

AFM0.3194 0.2083 0.0656 Outage probability
0.3203 0.2104 0.0667 Outage probability

AFMD112.57 75.104 26.312 Mean no. of iterations
100.52 69.740 26.312 Mean no. of iterations

APM0.2774 0.1774 0.0569 Outage probability
0.2795 0.1797 0.0584 Outage probability

APMD77.097 53.616 20.906 Mean no. of iterations

4. Augmented DPC algorithm

The augmented DPC (ADPC) algorithm [8] can be summarized in the following steps.

• Step 1 (initialization): For all users, choose an initial power vector P0 =
[
p0

i

]
K×1

, and measure and store

the initial CIR vector Γ0 =
[
Γ0

i

]
K×1

. If:

Γ0
i > γ0, for all i, (4)

then stop. Otherwise, go to step 2.

• Step 2 (CIR balancing): Perform a DPC algorithm for a maximum of L iterations. If, at iterationν (ν ≤
L), and for any i , Γν

i ≥ γ0 , then stop. Otherwise, go to step 3.

• Step 3 (cell removal): Remove the ith cell with smallest CIR,Γ0
i , and return to step 1.

To expedite the CIR balancing, we benefit from the instability detection rule [8] and use it as Step 2 in the
ADPC algorithm. Let us assume that ε1 and ε2 are 2 small positive numbers. The cell-removal process will
then be evoked if the following constraints are met:

∣∣∣Γ(ν+1)
i

/
Γ(ν)

i − 1
∣∣∣ < ε1 and Γ(ν+1)

i < (1 − ε2) γ0, (5)

in which the first constraint checks the convergence of the power levels and the second inspects whether or not
the target CIR, γ0 , is being obtained.

5. The proposed DPC algorithm

The DPC algorithms in [5-12] provide CIR balancing with a probability of 1. They were developed in order to
adjust the transmitted power level in accordance with the received interference power level. Although the FDPC
algorithm in Foschini and Miljanic’s method [6] exhibited faster convergence than the distributive balancing

(DB) algorithm of Zander’s method [7], their convergence trajectories fluctuate so much that they make these
methods quite sensitive to CIR estimation errors. To improve the system performance, we introduce, in the
sequel, a new DPC algorithm that achieves improved system performance, compared to FDPC, in terms of
higher convergence speed and less sensitivity to CIR estimation errors.
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Our principle idea behind the proposed DPC algorithm is based on the assumption that there would
always be a fixed CIR improvement at the present iteration, with respect to a fraction (α) of the CIR obtained
at the previous one:

Γ(ν+1)
i − αΓ(ν)

i = βγ0, (6)

in which 0 < α ≤ 1 and β > 0. Since the power at iteration (ν + 1) can be calculated using its value at

iteration (ν) from K − 1 other users, we then have:

GiiP
(ν+1)
i

K∑
j = 1
j �= i

GijP
(ν)
j + νi

− αΓ(ν)
i = βγ0 . (7)

Eq. (7) can be rewritten as:

P
(ν+1)
i = ζP

(ν)
i

(
α +

βγ0

Γ(ν)
i

)
, (8)

where ζ is used to rescale the power vector. It is worth noting that with β = (1 − τΓ(ν)
i ), −∞ < τ < −1, and

α = 1 in Eq. (7), the proposed algorithm would be equivalent to the group of algorithms in [5]. Also, with

α = 1 in Eq. (7), the constraint improvement power-control (CIPC) algorithm in [8] would be a special case of
the proposed algorithm.

Theorem 1: If γ0 is achievable, then by choosing ζ = 1/(1 + β) and β > 0, the proposed algorithm will

definitely achieve the effective power vector irrespective of the value of the initial power vector, P0 , or:

lim
ν→∞

P(ν) = P∗, ∀P0. (9)

See proof in Appendix.

6. Numerical results

The simulations regarding the proposed DPC algorithm in this paper were performed for a 2D hexagonal cellular
system with 19 cochannel cells and a cluster size of 7. In order to calculate the outage probability, we used the
Monte Carlo simulation for 1000 independent runs for different sets of parameters. It was also assumed that
the mobiles were evenly deployed on a cell area, and the path gains regarding each link in the environment of
propagation were calculated from:

Gij =
Aij

da
j

, (10)

in which dij is the distance between the mobile at the ith cell and the BS at the j th cell and a = 4, which

obeys the transmitter-decay law with an exponent of 4. Aij is the attenuation factor and indicates the changes

in power caused by shadowing. It is modeled as a random log-normal variable with a zero mean (μ = 0) and

a standard deviation of 6 dB (σ = 6 dB). The background noise is neglected. It can be seen from Figure 1
that our algorithm has a higher convergence speed compared to FDPC and DB algorithms. Figure 2 shows the
mean number of iterations versus α , required for the algorithm to reach a CIR within 99% of the optimal one.
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The appropriate choice ofαexpedites convergence. For example, by choosingα = 0.35, the mean number of
iterations reduces from 89.5 in FDPC to 8.68 in the proposed algorithm. It is worth noting that a value of 0.5
has been considered forα throughout the simulations. This has led to less sensitivity against estimation errors
while the number of iterations has remained almost unchanged. In Figures 3 and 4, we demonstrate the ADPC
scheme combined with our proposed algorithm and FDPC. A variety of DPC schemes have been compared,
including Zander’s limited-information stepwise removal algorithm (LI-SRA), the augmented FDPC method

(AFM), AFM with instability detection rule (AFMD), the augmented proposed method (APM), and APM

with instability detection rule (APMD). The maximum number of iterations, L , is 20, andε1 = ε2 = 0.001.
Figure 3 depicts the convergence speed for different DPC schemes. It indicates that the proposed algorithm is
able to find the effective power vector,P∗ , more quickly with or without usage of the detection rule. Graphs of
the outage probability as a function of target CIR are depicted in Figure 4 for various DPC schemes. It is worth
noting that, referring to the Table and Figures 3 and 4, APMD has a faster convergence, but APM is better
in terms of outage probability. In order to evaluate the impact of CIR estimation errors on the performance of
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Figure 1. Convergence speed versus number of iterations. Figure 2. Convergence speed versus α .
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Figure 3. Convergence speed versus CIR target (γ0) . Figure 4. Outage probability versus CIR target (γ0) .
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various DPC algorithms, the estimation error model used in [7] and [8] was exploited in this paper. It is stated
as:

(Γ(υ)
i )e = η

(υ)
i Γ(υ)

i , (11)

in which η
(υ)
i is a zero-mean random log-normal variable with log variance σm .

Figures 5 and 6 represent the outage probability comparison for a variety of DPC algorithms in the
presence of CIR estimation errors. The algorithms were tested for σm = 3 and 5 dB. As is illustrated in Figures
5 and 6, the proposed algorithm dominates the FDPC algorithm in terms of convergence speed and outage
probability. Using the detection rule, it also shows less sensitivity against CIR estimation errors.
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Figure 5. Convergence speed versus CIR target (γ 0) . Figure 6. Outage probability versus γ0 in the presence

of CIR estimation error.

7. Conclusions

In this paper, we proposed a distributive power-control algorithm and compared it with the FDPC algorithm
in terms of convergence speed and sensitivity to estimation errors. Results of simulations show that with the
proper choice of α = 0.35, the proposed DPC algorithm has a mean convergence speed of about 10 times that of
the FDPC algorithm. We have also shown that by using the instability detection rule, our algorithm, compared
to others, achieves a faster convergence while having the lowest sensitivity against CIR estimation errors.

Appendix

If γ0 is achievable, then an effective power vector, P∗ , is calculated by solving the following equation:

(dI + aC)P∗ = aη, (A1)

in which a and d are constants, I is the unit matrix of dimension K × K ,
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C =

⎡
⎢⎢⎢⎢⎢⎣

1 −γ0
G12
G11

... −γ0
G1k

G11

−γ0
G21
G22

1 · · · −γ0
G2k

G22
...

...
. . .

...
−γ0

Gk1
Gkk

−γ0
Gk2
Gkk

· · · 1

⎤
⎥⎥⎥⎥⎥⎦

K×K

, and η =

⎡
⎢⎢⎢⎣

γ0
υ1

G11

γ0
υ2

G22
...

γ0
υk

Gkk

⎤
⎥⎥⎥⎦

K×1

. (A2)

Here, we show that the proposed algorithm approaches an effective power vector of:

P∗ = (dI + aC)−1
aη, (A3)

in which a = β/(1 + β)andd = (1 − α)/(1 + β).

In order to prove Eq. (A3), we benefit from [8] and [16] and the theorems therein.

Proof. Let the power rescaling factor be ζ = 1/(β + 1). Thus, Eq. (7) is rewritten as:

P
(υ+1)
i =

−β

1 + β
(1 − γ0

Γ(υ)
i

)P (υ)
i + (

β + α

1 + β
)P (υ)

i . (A4)

Now, substituting for Γ(ν)
i from Eq. (1), we have:

P
(ν+1)
i =

−β

1 + β

⎛
⎝ K∑

j=1

cijP
(υ)
j

− ηi

⎞
⎠ + (

β + α

1 + β
)P (υ)

i , (A5)

where cij and ηiare elements of matrix C and vector η , respectively. Equivalently, using the matrix notation,
we have:

P(υ+1) = −aCP(υ) + aη + bP(υ), (A6)

where b = (β + α)/(1 + β). Accordingly, solving the recursive Eq. (A5), we obtain:

P(υ) =
(
I + D + D2+L + Dυ+1

)
aη + DυP0, (A7)

where D = (bI + aC). Since C is diagonalizable, there is a matrix Q such that:

C = QΛQ−1, (A8)

where Λ is a diagonal matrix, all of whose entries have positive real parts. Thus:

Dυ = bυQ
(
I − a

b
Λ

)υ

Q−1, (A9)

where the diagonal entries of (I− (a/b)Λ) are the eigenvalues of D . Since 0 < a/b < 1 for β > 0, 0 < α ≤ 1,

then the modulus of each eigenvalue of D is strictly less than 1 (Lemma 3 in [8]). Using the geometric series
formula:

lim
υ→∞

P(υ) = (I −D)−1
aη

= (dI + aC)−1
aη = P∗

. (A10)
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