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34320 Avcılar, İstanbul-TURKEY
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Abstract

In this paper, a parameter and uncertainty bound estimation functions for adaptive-robust control of

robot manipulators are developed. A Lyapunov function is defined and parameters and uncertainty bound

estimation functions are developed based on the Lyapunov function. Thus, stability of an uncertain system is

guaranteed and uniform boundedness of the tracking error is achieved. As distinct from previous parameter

and bound estimation laws, the parameters and uncertainty bounds are updated as a function of a combination

of trigonometric function depending on robot parameters and tracking error. Based on the same Lyapunov

function, a robust control law is also defined and the stability of the uncertain system is proved under the

same set of conditions. Simulation results are given to illustrate the tracking performance of the proposed

adaptive-robust controller.

Key Words: Robust control, adaptive control, robot manipulators, parameter uncertainty, adaptive-robust

control, stability analysis

1. Introduction

Robust control laws are used for parametric uncertainty, unmodeled dynamics, and other sources of uncertain-
ties. The Corless-Leitmann [1] approach is a popular approach used for designing robust controllers for robot

manipulators. In an early application of the Corless-Leitmann approach to robot manipulators [2,3], uncertainty
bounds are required to derive the controller, and the uncertainty bound depends not only on the inertia param-
eters but also on the reference trajectory and manipulator state vector. Consequently, it is difficult to compute
the uncertainty bound precisely. Spong [4] proposed a new robust controller for robot manipulators using the

Lyapunov theory that guarantees the stability of uncertain systems. In this approach, the Leitmann [5] or

Corless-Leitmann [1] approach is used for designing the robust controller. One of the advantages of Spong’s

approach [4] is that uncertainty in the parameter is needed to derive the robust controller and the uncertainty
bound parameters depend only on the inertia parameters of the robots. However, disturbance and unmodeled
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dynamics are not considered in Spong’s algorithm. Danesh et al. [6] developed Spong’s approach [4] in such a
manner that the control scheme was made robust not only to uncertain inertia parameters but also to unmodeled
dynamics and disturbances. Koo and Kim [7] and Spong [8] introduced an adaptive scheme of the uncertainty

bound on parameters for robust control of robot manipulators. Yaz [9] proposed a robust control law based on

Spong’s study [4] and the global exponential stability of an uncertain system was guaranteed. Spong’s robust

controller [4] was extended by Liu and Goldenberg in [10], where parameterized and unparameterized model
uncertainties were treated and a compensator was designed for each of 2 uncertainty groups. Uncertainty bound
estimation laws were designed for robust controllers [11-15] in order to improve the tracking performance of

uncertain systems. Comparative studies of robust controllers were given by Jaritz and Spong [16] and Liu and

Goldenberg [17]. Papers about robust control of robot manipulators were surveyed in [18,19].

In this paper, a parameter and bound estimation functions are developed for adaptive-robust control of
robot manipulators in order to improve the tracking performance of an uncertain system. For this purpose, the
previous robust controllers [4,12-15] were developed in such a manner that both the parameter and uncertainty
bound were made adaptive for robustness to uncertainty. Inertia parameters and the uncertainty bound on
parameters are adaptive in adaptive-robust control laws [20-22], but inertia parameters are assumed to be
known initially and inertia parameters exist in control laws. The disadvantages of the previous adaptive-robust
control laws [20-22] are eliminated here, such that robot inertia parameters do not exist in control laws and

robot inertia parameters are uncertain as they would be in robust control strategy [4]. The Lyapunov theory,

based on the Corless-Leitmann approach [1], was used to design the adaptive-robust control law, and uniform
boundedness error convergence was achieved. In addition, a parameter and uncertainty bound estimation laws
were designed for the adaptive-robust control of robot manipulators. Apart from previous studies, the parameter
and uncertainty bound were updated as a combination of trigonometric function depending on robot parameters
and tracking error. For comparison and explanation, a robust control law is also proposed here, based on the
adaptive-robust control law, and the stability of an uncertain system is proved under the same set of conditions.
Numerical results of the proposed adaptive-robust control law and the proposed robust control law are given.
After simulation results, it was seen that the tracking performance of the uncertain system was improved by
the proposed adaptive-robust controller, and proper estimation of parameters and uncertainty bounds were
achieved.

2. Stability analysis and definition of adaptive-robust control laws

In the absence of friction or other disturbances, the dynamic model of an n-link manipulator can be written as
follows [23].

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (1)

Here, q denotes generalized coordinates; τ is the n-dimensional vector of applied torques (or forces); M(q) is

the n × n symmetric, positive, definite inertia matrix; C(q, q̇)q̇ is the n-dimensional vector of centripetal and

Coriolis terms; and G(q) is the n-dimensional vector of gravitational terms. Eq. (1) can also be expressed in
the following form.

M(q)q̈ + C(q, q̇)q̇ + G(q) = Y (q,q̇, q̈)π (2)

Here, π is a p-dimensional vector of robot parameters and Y is an n × p matrix that is a function of joint
position, velocity, and acceleration. For any specific trajectory, the desired position, velocity, and acceleration
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vectors are qd , q̇d , and q̈d . The measured actual position and velocity errors are q̃ = q − qd and ˙̃q = q̇ − q̇d .
Using this information, q̇r and q̈r are defined as:

q̇r = q̇d − Λq̃ and q̈r = q̈d − Λ ˙̃q, (3)

where Λ is a positive definite matrix. The following nominal control law is then considered.

τ0 = M0(q)q̈r + C0(q, q̇)q̇r + G0(q) − Kσ

= Y (q, q̇, q̇r, q̈r)π0 − Kσ
(4)

Here, π0 ∈ Rp represents the fixed parameters in the dynamic model and Kσ is the vector of proportional-
derivative action. σ is given as [4]:

σ = q̇ − q̇r = ˙̃q + Λq̃. (5)

It is assumed that there exists an unknown bound on parametric uncertainty such that:

π̃ = (π0 − π) ≤ ρ, (6)

where ρ ∈ Rp is the upper uncertainty bound on the parametric uncertainty, assumed to be unknown. π̂ is
the estimation of the parameter, ρ̂(t)is the estimation of the uncertainty bound, and π̂ and ρ̂(t) should be

estimated with the estimation law to control the system properly. Considering π̂ and ρ̂(t), a new parameter

error vector, θ̃ , is defined as:

θ̃ = π̂ − ρ̂(t). (7)

Let us define control inputs u(t)1 and u(t)2 in terms of the nominal control vector τ0 as:

τ = τ0 + Y (q, q̇, q̇r, q̈r)(u(t)1 + u(t)2) = Y (q, q̇, q̇r , q̈r)(π0 + u(t)1 + u(t)2) − Kσ, (8)

where u(t)1 and u(t)2 are additional control inputs that will be designed to achieve robustness to parametric

uncertainty. Substituting Eq. (8) into Eq. (1), the following is yielded after some algebra.

M(q)σ̇ + C(q, q̇)σ + Kσ = Y (q, q̇, q̇r, q̈r)(π0 − π + u(t)1 + u(t)2)

= Y (q, q̇, q̇r, q̈r)(π̃ + u(t)1 + u(t)2)
(9)

In order to define the adaptive-robust controllers, the following 2 theorems are given.

Theorem 1 Let α1 , α2 , . . . αp ; β1 , β2 , . . . βp ; and λ1 , λ2 , . . . λp ∈ R. The estimate of parameter π̂

and the uncertainty bound on parameter ρ̂(t)are updated in time as follows.

⎡
⎢⎢⎢⎢⎣

π̂1

π̂2

....
π̂p

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β2
1α1

cos(
�

α1Y T σdt)1 arctan(sin(
�

α1Y T σdt)1)

sin2(
�

α1Y T σdt)1+1

β2
2α2

cos(
�

α2Y T σdt)2 arctan(sin(
�

α2Y T σdt)2)

sin2(
�

α2Y T σdt)2+1

....

β2
pαp

cos(
�

αpY T σdt)p arctan(sin(
�

αpY T σdt)p)

sin2(
�

αpY T σdt)p+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; ρ̂(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
(β1α1)cos(

�
α1Y T σdt)1

sin2(
�

α1Y T σdt)1+1

λ2
(β2α2)cos(

�
α2Y T σdt)2

sin2(
�

α2Y T σdt)2+1

....

λp
(βpαp)cos(

�
αpY T σdt)p

sin2(
�

αpY T σdt)p+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)
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The additional control input in the control law of Eq. (8) is defined as follows.

u(t)1 = −π̂; (u(t)2)i =

⎧⎪⎨
⎪⎩

− (Y T σ)i

|(Y T σ)i| (ρi − ρ̂(t)i) if
∣∣(Y T σ)i

∣∣ > εi

− (Y T σ)i

εi
(ρi − ρ̂(t)i) if

∣∣(Y T σ)i

∣∣ ≤ εi

(11)

If the control input of Eq. (11) is substituted into the control law of Eq. (8) for the control of the model

manipulator, then the control law of Eq. (8) is continuous and the closed-loop system is uniformly ultimate
bounded.

Theorem 2
The additional control input in the control law of Eq. (8) is defined as follows.

u(t)1 = −π̂ + ρ̂(t); (u(t)2)i =

⎧⎪⎨
⎪⎩

− (Y T σ)i

|(Y T σ)i|ρi if
∣∣(Y T σ)i

∣∣ > εi

− (Y T σ)i

εi
ρi if

∣∣(Y T σ)i

∣∣ ≤ εi

(12)

If the control input of Eq. (12) is substituted into the control law of Eq. (8) for the control of the model

manipulator, then the control law of Eq. (8) is continuous and the closed-loop system is uniformly ultimate
bounded.

Proof of theorem 1
In order to prove the theorem, a Lyapunov function candidate is defined as follows.

V (σ, q̃,Φ1, Φ2, θ̃) =
1
2
σT M(q)σ +

1
2
q̃T Bq̃ +

1
2
θ̃T (Φ2

1 + I)2Φ2
2θ̃; V (σ, q̃,Φ1, Φ2, θ̃) ≥ 0 (13)

Here, B ∈ Rn×n is a positive diagonal matrix, and Φ1 and Φ2 are chosen as a p × p-dimensional diagonal
matrix changing in time. The time derivative of V along the system of Eq. (9) is:

V̇ = σT M(q)σ̇ + σT 1
2Ṁ(q)σ + q̃T B ˙̃q + θ̃T (2(Φ2

1 + I)Φ̇1Φ1Φ2
2

+ (Φ2
1 + I)2Φ2Φ̇2)θ̃ + θ̃T (Φ2

1 + I)2Φ2
2)

˙̃
θ

, (14)

and then:

V̇ = σT [ 12Ṁ(q) − C(q, q̇)]σ − σT Kσ + Y (q, q̇, q̇r, q̈r)(π̃ + u(t)1 + u(t)2) + q̃T B ˙̃q

+θ̃T (2(Φ2
1 + I)Φ̇1Φ1Φ2

2 + (Φ2
1 + I)2Φ2Φ̇2)θ̃ + θ̃T (Φ2

1 + I)2Φ2
2)

˙̃
θ

. (15)

Taking B = 2ΛK , and using the property σT [Ṁ(q) − 2C(q, q̇)]σ = 0∀σ ∈ Rn [24,25], Eq. (14) becomes:

V̇ = − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + σT Y (u(t)1 + u(t)2) + σT Y π̃

+θ̃T (2(Φ2
1 + I)Φ̇1Φ1Φ2

2 + (Φ2
1 + I)2Φ2Φ̇2)θ̃ + θ̃T (Φ2

1 + I)2Φ2
2)

˙̃
θ

. (16)

As seen from Eq. (16), there is a relationship between the control inputs u(t)1 and u(t)2 and functions Φ1 and

Φ2 . There may be some sort of functions Φ1 and Φ2 for control inputs u(t)1 and u(t)2 that satisfy V̇ ≤ 0 in

Eq. (16). However, Φ1 and Φ2 are unknown and there is no certain rule for the determination of Φ1 and Φ2
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for control inputs u(t)1 and u(t)2 that satisfies V̇ ≤ 0. We use the system state parameters and mathematical
insight to search for an appropriate function of Φ1 and Φ2 to prove the theorem. For this purpose, we define
Φ1 and Φ2 as a time-dependent p-dimensional diagonal matrix, such that:

φ1 = diag(sin(αi

∫
Y T σdt)i), φ2 = diag(

1
(βiαi)(cos(αi

∫
Y T σdt)i)

), (17)

where i = 1, 2. . ., p . The time derivatives of Φ1 and Φ2 are as follows.

φ̇1 = diag(cos(αi

∫
Y T σdt))i(αiY

T σ)i) φ̇2 = diag(
sin(αi

∫
Y T σdt)i

(βiαi)cos2(αi

∫
Y T σdt)i

(αiY
T σ)i) (18)

From Eq. (10), θ̃ = π̂ − ρ̂(t) is defined as follows.

θ̃ = π̂ − ρ̂(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(β2
1α1)

cos(
�

α1Y T σdt)1 arctan(sin(
�

α1Y T σdt)1)−λ1β1α1cos(
�

α1Y T σdt)1
sin2(

�
α1Y T σdt)1+1

(β2
2α2)

cos(
�

α2Y T σdt)2 arctan(sin(
�

α2Y T σdt)2)−λ2β2α2cos(
�

α2Y T σdt)2
sin2(

�
α2Y T σdt)2+1

....

(β2
pαp)

cos(
�

αpY T σdt)p arctan(sin(
�

αpY T σdt)p)−λpβpαpcos(
�

αpY T σdt)p

sin2(
�

αpY T σdt)p+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(β2
1α1)

cos(
�

α1Y T σdt)1[arctan(sin(
�

α1Y T σdt)1)−λ1/β1]

sin2(
�

α1Y T σdt)1+1

(β2
2α2)

cos(
�

α2Y T σdt)2[arctan(sin(
�

α2Y T σdt)2)−λ2/β1]

sin2(
�

α2Y T σdt)2+1

....

(β2
pαp)

cos(
�

αpY T σdt)p[arctan(sin(
�

αpY T σdt)p)−λp/βp]

sin2(
�

αpY T σdt)p+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

The time derivative of θ̃ is as follows.

˙̃θi = −(β2
i αi)

sin(
�

αiY
T σdt)i [arctan(sin(

�
αiY

T σdt)i)−λi/βi]

sin2(
�

αiY T σdt)i+1
(αiY

T σ)i + β2
i α2

i cos2(
�

αiY
T σdt)i

(sin2(
�

αiY T σdt)i+1)2
(Y T σ)i

−(β2
i αi)

cos(
�

αiY
T σdt)i[arctan(sin(

�
αiY

T σdt)i)−λi/βi]

(sin2(
�

αiY T σdt)i+1)2
2 sin(

∫
αiY

T σdt)i cos(
∫

αiY
T σdt)i(αiY

T σ)i

(20)

Multiplying the first term of Eq. (20) by cos(
�

αiY
T σdt)i

cos(
�

αiY T σdt)i
, the result is as follows.

˙̃
θi = −(β2

i αi)
sin(

�
αiY

T σdt)i [arctan(sin(
�

αiY
T σdt)i)−λi/βi]

sin2(
�

αiY T σdt)i+1
(αiY

T σ)i
cos(

�
αiY

T σdt)i

cos(
�

αiY T σdt)i

+ β2
i α2

i cos2(
�

αiY
T σdt)i

(sin2(
�

αiY T σdt)i+1)2
(Y T σ)i

−(β2
i αi)

cos(
�

αiY
T σdt)i[arctan(sin(

�
αiY

T σdt)i)−λi/βi]

(sin2(
�

αiY T σdt)i+1)2
2 sin(

∫
αiY

T σdt)i cos(
∫

αiY
T σdt)i(αiY

T σ)i

(21)
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Eq. (21) can be arranged depending on θ̃ , as follows.

˙̃
θi = − sin(

�
αiY

T σdt)i

cos(
�

αiY T σdt)i
(αiY

T σ)iθ̃i + β2
i α2

i cos2(
�

αiY
T σdt)i

(sin2(
�

αiY T σdt)i+1)2
(Y T σ)

−2 cos(
�

αiY
T σdt)1sin

�
αiY

T σdt)1
sin2(

�
αiY T σdt)i+1

(αiY
T σ)iθ̃i

(22)

If we substitute Φ1 , Φ2 , Φ̇1 , Φ̇2 , θ̃ , and ˙̃
θ into Eq. (16), the last terms will be as follows.

(θ̃T (2(Φ2
1 + I)Φ̇1Φ1Φ2

2 + (Φ2
1 + I)2Φ2Φ̇2)θ̃ + θ̃T (Φ2

1 + I)2Φ2
2)

˙̃
θ)i =

θ̃i2(sin2(αi

∫
Y T σdt)i + 1)cos(αi

∫
Y T σdt)i(sin(αi

∫
Y T σdt)i)( 1

βiαicos(α
�

Y T σdt)i
)2(αiY

T σ)iθ̃i

+ θ̃i(sin2(αi

∫
Y T σdt)i + 1)2 sin(αi

�
Y T σdt)i

(β2
i α2

i )cos3(αi

�
Y T σdt)i

(αiY
T σ)i θ̃i

− θ̃i(
sin2(αi

�
Y T σdt)i+1

(βiαi)cos(αi

�
Y T σdt)i

)2 sin(
�

αiY
T σdt)i

cos(
�

αiY T σdt)i
(αiY

T σ)iθ̃i

+θ̃i(
sin2(αi

�
Y T σdt)i+1

(βiαi)cos(αi

�
Y T σdt)i

)2 β2
i α2

icos2(
�

αiY
T σdt)i

(sin2(
�

αiY T σdt)i+1)2
(Y T σ)i

−θ̃i(
sin2(αi

�
Y T σdt)i+1

(βiαi)cos(αi

�
Y T σdt)i

)2 2 cos(
�

αiY
T σdt)isin(

�
αiY

T σdt)i

sin2(
�

αiY T σdt)i+1
(αiY

T σ)θ̃i

(23)

As seen from Eq. (23), the first and last terms and the second and third terms are canceled out by each other,

and the fourth term is equal to YT σ . As a result, Eq. (23) is equal to θ̃T Y T σ ; that is,

θ̃T (2(Φ2
1 + I)Φ̇1Φ1Φ2

2 + (Φ2
1 + I)2Φ2Φ̇2)θ̃ + θ̃T (Φ2

1 + I)2Φ2
2)

˙̃
θ = θ̃T Y T σ. (24)

As a result, the time derivative of the Lyapunov function is written as follows.

V̇ = − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + σT Y (u(t)1 + u(t)2) + σT Y π̃ + σT Y θ̃

= − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + σT Y (u(t)1 + u(t)2) + σT Y π̃ + σT Y (π̂ − ρ̂(t))

(25)

If we substitute u(t)1 and u(t)2 from Eq. (11) into Eq. (25), the result will be as follows.

V̇ = − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ − σT Y π̂ + σT Y u(t)2 + σT Y (π̃ − ρ̂(t)) + σT Y π̂

= − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + σT Y (π̃ − ρ̂(t)) − (Y T σ)T

⎡
⎢⎢⎢⎢⎢⎣

(Y T σ)1

|(Y T σ)1|(ρ1 − ρ̂(t)1)

. . .

(Y T σ)p

|(Y T σ)p|(ρp − ρ̂(t)p)

⎤
⎥⎥⎥⎥⎥⎦

(26)

Eq. (26) can then be written as:

V̇ = −xT Qx + σT Y

⎛
⎜⎜⎝

⎡
⎣ π̃1 − ρ̂(t)1

· · ·
π̃p − ρ̂(t)p

⎤
⎦−

⎡
⎢⎢⎣

(Y T σ)1

|(Y T σ)1| (ρ1 − ρ̂(t)1)

· · ·
(Y T σ)p

|(Y T σ)p| (ρp − ρ̂(t)p)

⎤
⎥⎥⎦

⎞
⎟⎟⎠ (27)
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where xT = [q̃T , ˙̃qT ] and Q = diag[ΛT KΛ, K]. Based on the Leitmann approach [1], it can be shown that

V̇ ≤ 0 for ||x || > w where

w2 = ερ(t)/2λmin(Q), (28)

and where λmin (Q) denotes the minimum eigenvalue of Q. For the second term in Eq. (27), if ||YT σ|| > ε ,
then:

σT Y

⎡
⎣ π̃1

· · ·
π̃p

⎤
⎦−(Y T σ)T

⎡
⎢⎢⎣

(Y T σ)1

|(Y T σ)1|ρ1

· · ·
(Y T σ)p

|(Y T σ)p|ρp

⎤
⎥⎥⎦ ≤ ||σTY ||(||π̃|| − ||ρ||) ≤ 0. (29)

From the Cauchy-Schwarz inequality and the assumption of ||YTσ|| < ε , it will be:

σT Y u(t)2 + σT Y (π̃ − ρ̂(t)) ≤ (Y T σ)T
(
‖π̃ − ρ̂(t)‖ Y T σ

‖Y T σ‖ − u(t)2
)

≤ (Y T σ)T
(
‖ρ − ρ̂(t)‖ Y T σ

‖Y T σ‖−
Y T σ

ε
‖ρ− ρ̂(t)‖

)
.

(30)

This last term achieves a maximum value of ερ(t)/4 when ||YTσ|| = ε/2. We thus have:

V̇ ≤ −xT Qx + ερ(t)/4. (31)

Note that ρ(t) is bounded and given as ρ(t) = ‖ρ − ρ̂(t)‖ . The rest of the proof can be seen in [4,7]. The
resulting block diagram of the control law is given in Figure 1.
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Figure 1. Block diagram of the adaptive-robust control law of Eq. (8) with Eqs. (10) and (11).
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Proof of theorem 2
In order to prove the second theorem, Eq. (25) is used. If we substitute u(t)1 from Eq. (12) into Eq.

(25), the result will be as follows.

V̇ = − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + σT Y (u(t)1 + u(t)2) + σT Y π̃ + σT Y θ̃

= − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + σT Y (−π̂ + ρ̂(t)) + σT Y π̃ + σT Y (π̂ − ρ̂(t))

= − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + σT Y u(t)2 + σT Y π̃

≤ −xT Qx + σT Y
(
π̃− Y T σ

‖Y T σ‖δ
)

(32)

Here, δ = ‖ρ‖ . The result obtained in Eq. (32) is the same as would be in [4], and the proof is given in [4].
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Figure 2. Block diagram of the adaptive-robust control law of Eq. (9) with Eqs. (10) and (12).

Since control input u(t)2 has 2 different inputs, A1 and A2 , we select a different control input depending

on ε . A1 and A2 have 2 numbers, such as a 1 and a 0. When ||YT σ|| − ε > 0, a 1 is present in A1 and a 0

is present in A2 , and the first control input is in effect. When ||YTσ|| − ε ≤ 0, a 0 is present in A1 and a 1
is present in A2 , and the second control input is in effect. Hence, A1 and A2 are simple switches that set the
mode of the additional control input to be used.

3. Stability analysis and definition of a robust control law

For comparison and explanation, the derivation of a robust control law is considered. For this purpose, the
following robust control law is defined in terms of the nominal control vector τ0 , defined in Eq. (4) as in [4].

τ = τ0 + Y (q, q̇, q̇r, q̈r)u(t) = Y (q, q̇, q̇r, q̈r)(π0 + u(t)) − Kσ (33)

In order to define a robust control law, the following theorem is given.
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Theorem 3
Let α1 , α2 , . . . αp and β1 , β2 , . . . βp ∈ R. The estimation of the uncertainty bound on the parametric

uncertainty ρ̂(t) is updated in time as follows.

⎡
⎢⎢⎢⎢⎣

ρ̂(t)1

ρ̂(t)2

....
ρ̂(t)p

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β2
1α1

cos(
�

α1Y T σdt)1 arctan(sin(
�

α1Y T σdt)1)

sin2(
�

α1Y T σdt)1+1
+ ρ1

β2
2α2

cos(
�

α2Y T σdt)2 arctan(sin(
�

α2Y T σdt)2)

sin2(
�

α2Y T σdt)2+1
+ ρ2

...

β2
pαp

cos(
�

αpY T σdt)p arctan(sin(
�

αpY T σdt)p)

sin2(
�

αpY T σdt)p+1
+ ρn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

The additional control input in the control law of Eq. (33) is as follows.

(u(t))i =

⎧⎪⎨
⎪⎩

− (Y T σ)i

|(Y T σ)i| ρ̂(t)i if
∣∣(Y T σ)i

∣∣ > εi

− (Y T σ)i

εi
ρ̂(t)i if

∣∣(Y T σ)i

∣∣ ≤ εi

(35)

If the control input of Eq. (35) is substituted into the control law of Eq. (33) for the control of the model

manipulator, then the control law of Eq. (33) is continuous and the closed-loop system is uniformly ultimate
bounded.

Proof
It is assumed that there exists an unknown bound on parametric uncertainty such that

π0 − π ≤ ρ and ‖π0 − π‖ ≤ δ. (36)

Since ρ ∈ Rp is assumed to be unknown, ρ should be estimated with an estimation law to control the system
properly. ρ̂(t) shows that the estimate of ρ and ρ̃ is the estimation error.

ρ̃ = ρ − ρ̂(t) (37)

Substituting Eq. (33) into Eq. (1), the following is yielded after some algebra:

M(q)σ̇ + C(q, q̇)σ + Kσ = Y (q, q̇, q̇r, q̈r)(π̃ + u(t)). (38)

In order to prove the theorem, the following Lyapunov function is considered.

V (σ, q̃,Φ1, Φ2, ρ̃ =
1
2
σT M(q)σ +

1
2
q̃T Bq̃ +

1
2
ρ̃T (Φ2

1 + I)2Φ2
2ρ̃; V (σ, q̃,Φ1, Φ2, ρ̃) ≥ 0 (39)

Here, B ∈ Rn×n is a positive diagonal matrix, and Φ1 and Φ1 are chosen as a p × p-dimensional diagonal
matrix changing in time. The time derivative of V along the system of Eq. (38) is as follows:

V̇ = σT M(q)σ̇ + σT 1
2
Ṁ(q)σ + q̃T B ˙̃q + ρ̃T (2(Φ2

1 + I)Φ̇1Φ1Φ2
2

+(Φ2
1 + I)2Φ2Φ̇2)ρ̃ + ρ̃T (Φ2

1 + I)2Φ2
2) ˙̃ρ

, (40)
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and then:

V̇ = σT [ 12Ṁ(q) − C(q, q̇)]σ − σT Kσ + Y (q, q̇, q̇r , q̈r)(π̃ + u(t)) + q̃B ˙̃q

+ρ̃T (2(Φ2
1 + I)Φ̇1Φ1Φ2

2 + (Φ2
1 + I)2Φ2Φ̇2)ρ̃ + ρ̃T (Φ2

1 + I)2Φ2
2) ˙̃ρ

. (41)

Taking B = 2ΛK and using the property σT [Ṁ(q) − 2C(q, q̇)]σ = 0∀σ ∈ Rn [24,25], Eq. (41) becomes:

V̇ = − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + σT Y (u(t) + σT Y π̃)

+ρ̃T (2(Φ2
1 + I)Φ̇1Φ1Φ2

2 + (Φ2
1 + I)2Φ2Φ̇2)ρ̃ + ρ̃T (Φ2

1 + I)2Φ2
2) ˙̃ρ

. (42)

From Eq. (34), ρ̃ = ρ− ρ̂(t) is defined as follows.

ρ̃ = ρ − ρ̂(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(β2
1α1)

cos(
�

α1Y T σdt)1 arctan(sin(
�

α1Y T σdt)1)

sin2(
�

α1Y T σdt)1+1

−(β2
2α2)

cos(
�

α2Y T σdt)2 arctan(sin(
�

α2Y T σdt)2)

sin2(
�

α2Y T σdt)2+1

....

−(β2
pαp)

cos(
�

αpY T σdt)p arctan(sin(
�

αpY T σdt)p)

sin2(
�

αpY T σdt)p+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(43)

The time derivative of ρ̃ is as follows.

˙̃ρi = (β2
i αi)

sin(
�

αiY
T σdt)i arctan(sin(

�
αiY

T σdt)i)

sin2(
�

αiY T σdt)i+1
(αiY

T σ)i − β2
i α2

i cos2(
�

αiY
T σdt)i

(sin2(
�

αiY T σdt)i+1)2
(Y T σ)i

+(β2
i αi)

cos(
�

αiY
T σdt)i arctan(sin(

�
αiY

T σdt)i)

(sin2(
�

αiY T σdt)i+1)2
2 sin(

∫
αiY

T σdt)i cos(
∫

αiY
T σdt)i(αiY

T σ)i

(44)

Multiplying the first term of Eq. (44) by cos(
�

αiY
T σdt)i

cos(
�

αiY T σdt)i
, the result is as follows.

˙̃ρi = (β2
i αi)

sin(
�

αiY
T σdt)i arctan(sin(

�
αiY

T σdt)i)

sin2(
�

αiY T σdt)i+1
(αiY

T σ)i
cos(

�
αiY

T σdt)i

cos(
�

αiY T σdt)i

− β2
i α2

i cos2(
�

αiY
T σdt)i

(sin2(
�

αiY T σdt)i+1)2
(Y T σ)i

+(β2
i αi)

cos(
�

αiY
T σdt)i arctan(sin(

�
αiY

T σdt)i)

(sin2(
�

αiY T σdt)i+1)2
2 sin(

∫
αiY

T σdt)i cos(
∫

αiY
T σdt)i(Y

T σ)i

(45)

Eq. (45) can be arranged depending on ρ̃ , as follows.

˙̃ρi = − sin(
�

αiY
T σdt)i

cos(
�

αiY T σdt)i
(αiY

T σ)iρ̃i − β2
i α2

i cos2(
�

αiY
T σdt)i

(sin2(
�

αiY T σdt)i+1)2
(Y T σ)i

−2 cos(
�

αiY
T σdt)1sin

�
αiY

T σdt)1
sin2(

�
αiY T σdt)i+1

ρ̃i(αiY
T σ)i

(46)
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If we substitute Φ1 , Φ2 , Φ̇1 , Φ̇2 , ρ̃ , and ˙̃ρ into Eq. (42), the last terms will be as follows.

(ρ̃T (2(Φ2
1 + I)Φ̇1Φ1Φ2

2 + (Φ2
1 + I)2Φ2Φ̇2)ρ̃ + ρ̃T (Φ2

1 + I)2Φ2
2) ˙̃ρ)i =

ρ̃i2(sin2(αi

∫
Y T σdt)i + 1)cos(αi

∫
Y T σdt)i(sin(αi

∫
Y T σdt)i)( 1

βiαicos(α
�

Y T σdt)i
)2(αiY

T σ)iρ̃i

+ρ̃i(sin2(αi

∫
Y T σdt)i + 1)2 sin(αi

�
Y T σdt)i

(β2
i α2

i )cos3(αi

�
Y T σdt)i

(αiY
T σ)iρ̃i

−ρ̃i(
sin2(αi

�
Y T σdt)i+1

(βiαi)cos(αi

�
Y T σdt)i

)2 sin(
�

αiY
T σdt)i

cos(
�

αiY T σdt)i
(αiY

T σ)iρ̃i

−ρ̃i(
sin2(αi

�
Y T σdt)i+1

(βiαi)cos(αi

�
Y T σdt)i

)2 β2
i α2

icos2(
�

αiY
T σdt)i

(sin2(
�

αiY T σdt)i+1)2
(Y T σ)i

−ρ̃i(
sin2(αi

�
Y T σdt)i+1

(βiαi)cos(αi

�
Y T σdt)i

)2 2 cos(
�

αiY
T σdt)isin(

�
αiY

T σdt)i

sin2(
�

αiY T σdt)i+1
(αiY

T σ)ρ̃i

(47)

As seen from Eq. (47), the first and last terms and the second and third terms cancel each other out, and the

fourth term is equal to −ρ̃T Y T σ . As a result, Eq. (47) is equal to −ρ̃T Y T σ ; that is,

ρ̃T (2(Φ2
1 + I)Φ̇1Φ1Φ2

2 + (Φ2
1 + I)2Φ2Φ̇2)ρ̃ + ρ̃T (Φ2

1 + I)2Φ2
2) ˙̃ρ = −ρ̃T Y T σ. (48)

As a result, the time derivative of the Lyapunov function is written as follows.

V̇ = − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + σT Y u(t) + σT Y π̃ + σT Y ρ̃

= − ˙̃q
T
K ˙̃q − q̃

T
ΛKΛq̃ + σT Y u(t) + σT Y π̃ − σT Y (ρ − ρ̂(t))

= ≤ −xT Qx + σT Y u(t) + σT Y ρ̂(t)

(49)

Here, xT = [q̃T , ˙̃qT ] and Q = diag[ΛT KΛ, K]. Based on the Leitmann approach [1], we can show that V̇ ≤ 0

for ||x || > w where

w2=||ρ̂(t)||/2λmin(Q), (50)

and where λmin (Q) denotes the minimum eigenvalue of Q. For the second term in Eq. (49), if ||YT σ|| > ε ,
then:

≤ −xT Qx + σT Y ρ̂(t) − σ
T
Y

⎡
⎢⎢⎢⎣

(Y T σ)1

|(Y T σ)1| ρ̂(t)1

· · ·
(Y T σ)p

|(Y T σ)p| + ρ̂(t)p

⎤
⎥⎥⎥⎦ ≤ 0. (51)

From the Cauchy-Schwarz inequality and the assumption of ||YTσ|| < ε , we have:

σT Y u(t) + σT Y (ρ̂(t)) ≤ (Y T σ)T
(
‖ρ̂(t)‖ Y T σ

‖Y T σ‖ + u(t)
)

≤ (Y T σ)T
(
‖ρ̂(t)‖ Y T σ

‖Y T σ‖−
Y T σ

ε ‖ρ̂(t)‖
)

.
(52)

This last term achieves a maximum value of ε||ρ̂(t)||/4 when ||YTσ|| = ε/2. We have:

V̇ ≤ −xT Qx + ε||ρ̂(t)||/4. (53)
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Note that ρ̂(t) is bounded and given as ρ̂(t). The rest of the proof can be seen in [4,7]. The resulting block
diagram of the control law is given in Figure 3.

For explanation and comparison, the robust control law proposed by Spong [4] is given as follows.

u(t) =

⎧⎪⎨
⎪⎩

−δ Y T σ
‖Y T σ‖ if

∥∥Y T σ
∥∥ > ε

−δ Y T σ
ε if

∥∥Y T σ
∥∥ ≤ ε

(54)

Here, δ is an uncertainty bound. Having a single number δ to measure the parametric uncertainty may lead to
an overly conservative design or higher than necessary gains. For this reason, different “weights” or gains to the
components of u(t) i are assigned. It can be done as follows. Suppose that π̃i is measured for the uncertainty

for each parameter separately, as in [4].

u(t)i =
{

−ρiυi/ |υi| if |υi| > εi

−(ρi/εi)υi if |υi| ≤ εi
(55)
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Figure 3. Block diagram of the robust control law of Eq. (33) with Eqs. (34) and (35).

4. Simulation results

For illustration, a 2-link robot manipulator is given in Figure 4 [4]. Parameterization of this robot is given by

π1 = m112
c1 + m2l

2
1 + I1, π2 = m2l

2
c2 + I2, π3 = m2l1lc2, π4 = m1lc1, π5 = m2l1, π6 = m2lc2. (56)

Using the above parameters, the matrix M(q), C(q, q̇), and the vector G(q) in Eq. (1) are given as
follows.

M(q) =

[
π1 + π2 + 2π3 cos(q2) π2 + π3 cos(q2)

π2 + π3 cos(q2) π2

]
C(q, q̇) =

[
−π3 sin(q2)q̇2 −π3 sin(q2)(q̇1 + q̇2)

π3 sin(q2)q̇1 0

]
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G =

[
g(π4 + π5) cos(q1) + gπ6 cos(q1 + q2)

gπ6 cos(q1 + q2)

]
(57)

x

y 

l 2

l 1 

l c2 

l c1

m 2, I2 

m1, I1 

q
1 

q
2

Figure 4. Two-link planar robot [4].

With this parameterization, the dynamic model in Eq. (1) can be written as:

Y (q,q̇, q̈)π = τ. (58)

The component y ij of Y (q,q̇, q̈) is given as follows.

y11 = q̈1; y12 = q̈1 + q̈2; y13 = cos(q2)(2q̈1 + q̈2) − sin(q2)(q̇
2
2 + 2q̇1q̇2);

y14 = gc cos(q1); y15 = gc cos(q1); y16 = gc cos(q1 + q2); quady21 = 0;

y22 = q̈1 + q̈2; y23 = cos(q2)q̈1 + sin(q2)(q̇
2
1); y24 = 0; y25 = 0; y26 = gc cos(q1 + q2). (59)

Y (q, q̇, q̇r, q̈r) in Eq. (4) have the following components.

y11 = q̈r1; y12 = q̈r1 + q̈r2; y13 = cos(q2)(2q̈r1 + q̈r2) − sin(q2)(q̇1q̇r2 + q̇1q̇r2 + q̇2q̇r2); y14 = gc cos(q1);

y15 = gc cos(q1); y16 = gc cos(q1 + q2); y21 = 0; y22 = q̈r1 + q̈r2; y23 = cos(q2)q̈r1 + sin(q2)(q̇1q̇r1);

y24 = 0; y25 = 0; y26 = gc cos(q1 + q2). (60)

For illustrative purposes, let us assume that the parameters of the unloaded manipulator are known; they
are given in Table 1. Using the values from Table 1, the ith component of π obtained by means of Eq. (56) is
given in Table 2. It is assumed that the parameters m2 , lc2 , and I2 are changed in the intervals of

0 ≤ Δm2 ≤ 10; 0 ≤ Δlc2 ≤ 0.5; 0 ≤ I2 ≤ 15
12

. (61)

Choosing the mean value for the range of possible πi values in Eq. (61) yields the nominal parameter vector,

and the computed values for the ith component of π0 are shown in Table 3 [4].

Table 1. Parameters of the unloaded arm [4].

m1 m2 l1 l2 lc1 lc2 I1 I2
10 5 1 1 0.5 0.5 10/12 5/12

181



Turk J Elec Eng & Comp Sci, Vol.20, No.1, 2012

Table 2. πi for the unloaded arm [4].

π1 π2 π3 π4 π5 π6

8.33 1.67 2.5 5 5 2.5

Table 3. Nominal parameter vector π0 [4].

π01 π02 π03 π04 π05 π06

13.33 8.96 8.75 5 10 8.75

With this choice of nominal parameter vector π0 and the uncertainty range given by Eq. (61), it is an
easy matter to calculate the uncertainty bound δ as follows:

‖π̃‖ 2 =
6∑

i=1

(πi0 − πi)2 ≤ 181.26. (62)

Thus, δ =
√

181.26 = 13.46. The uncertainty bounds for each parameter are shown separately in Table 4. The
uncertainty bounds ρi in Table 4 are simply the difference between the values given in Table 3 and in Table 2,
and the value of δ is the Euclidean norm of the vector with components ρi [4].

Table 4. Uncertainty bound [4].

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

5 7.29 6. 25 0 5 6.25
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Figure 5. Response using the adaptive-robust control

law of Eq. (11) when Λ = diag(15 15), K = diag(50 50),

α = β = λ = 1, and ε = 0.01.

Figure 6. Response using the adaptive-robust control law

of Eq. (11) when Λ = diag(15 15), K = diag(50 50), α =

0.1, β = 8, λ = –10, and ε = 0.01.

For computer simulations, the desired trajectory for both joints are defined as q1 = q2 = 0.5cos(0.5π t)

– 0.50. Simulations were done under maximum uncertainty (worst case) using the control laws of Eqs. (11),
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(12), (35), and (55). In order to investigate the performance of the new controllers, each control law with the

same control parameters, such as K = diag(15 15) and Λ = diag(50 50), was applied to the same model system
using the same trajectory. The control parameters Λ and K were chosen to be identical, while α , β , and λ

were changed. The obtained results for various α , β , and λ values are plotted in Figures 5-10.

As seen from Figures 5-10, the tracking performance of the proposed controller from Eq. (11) is a little

better than the known control law of Eq. (55) [4], but worse than the robust control law of Eq. (35) for the
parameters α = 1, β = 1, and λ = 1. The tracking performance of the proposed robust control law of Eq.
(35) is better than the robust controller of Eq. (55) [4]; however, pure transient behavior and chattering are
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Figure 7. Response using the adaptive-robust control law

of Eq. (11) when Λ = diag(15 15), K = diag(50 50), α =

0.1, β = 8, λ = 10, and ε = 0.01.

Figure 8. Response using the adaptive-robust control law

of Eq. (12) when Λ = diag(15 15), K = diag(50 50), α =

0.1, β = 8, λ = 10, and ε = 0.01.
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Figure 9. Response using the proposed robust control

law of Eq. (35) when Λ = diag(15 15), K = diag(50 50),

α = 1, β = 6, and ε = 0.01.

Figure 10. Response using the robust control law of Eq.

(55) when Λ = diag(15 15), K = diag(50 50), and ε =

0.01 [4].
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observed in the tracking responses. The tracking performance of the proposed adaptive-robust control law is
increased if parameters are chosen such that α = 0.1, β = 8, λ = 10 and α = 0.1, β = 8, λ = –10. As seen in
Figure 8, the tracking error is reduced after 0.5 s to less than 0.0007 rad for the first joint and less than 0.001
rad for the second joint for the proposed adaptive-robust control law with the control parameters of α = 0.1,
β = 8, λ = 10, Λ = diag(15 15), and K = diag(50 50).

5. Conclusion

In this paper, a parameter and bound estimation functions for the adaptive-robust control of robot manipulators
were developed in order to improve the tracking performance of an uncertain system. For comparison and
explanation, a new robust control law was also developed based on the proposed adaptive-robust control law.
The parameters of the adaptive-robust controller and robust controllers were the same and the stability of the
uncertain system was proved under the same set of conditions. The proposed robust control law and previous
robust control laws [12-15] were the same, except that the uncertainty bound estimation laws were different.
Computer simulations were carried out under the same conditions and with the same control parameters of Λ
= diag(15 15) and K = diag(50 50), and the results were given in Figures 5-10. As seen from Figures 5-10, the
tracking performance of the proposed adaptive-robust control law is better than the proposed robust controller
of Eq. (35), and the pure transient behavior and chattering in the robust controller of Eq. (35) were removed.
These results also show that the tracking performance of the adaptive-robust controller was better than that of
previous robust controllers [12-15], and the tracking performance of previous robust controllers [12,15] was also
improved.

6. Discussion

Spong [4] proposed a new robust controller for robot manipulators using the Lyapunov theory that guarantees

stability of uncertain systems. In [4], the nominal control parameter π0 and uncertainty bound parameters
ρ are constant, and the constant π0 and ρ cause pure tracking performance. In order to improve tracking
performance, adaptive uncertainty bound parameter control laws were designed and ρ was made adaptive in
[11-15]. However, pure transient behavior and chattering were observed in [11-15]. The parameter π0 and

uncertainty bound parameters ρ were made adaptive in [20-23]; however, the robot parameter π exists in the

control law. The robot parameter π is assumed to be known and the Corless-Leitmann approach [1] is not used

to design the adaptive-robust control laws [20-23].

In order to improve the tracking performance of an uncertain system, an adaptive-robust control law was
considered. For this purpose, the previous robust controllers [4,12-15] were developed in such a manner that both
the parameters and uncertainty bounds were made adaptive for robustness to uncertainty. The disadvantage
of the previous adaptive-robust control laws [20-22] was eliminated, such that the robot parameter π does not

exist in the control law and the robot parameter π is uncertain, as it would be in a robust control strategy [4].

As shown in Figures 6-8, the tracking error is very small for the proposed adaptive-robust controllers,
and the tracking performance of the uncertain system can be improved for the appropriate values of control
parameters α , β , and λ . The designed parameter and bound estimation functions are very effective for
improving the tracking performance, and tracking performance is improved by adjusting control parameters
α , β , and λ to appropriate values. The functions π̂ and ρ̂(t) act as compensators; that is, they estimate
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the most appropriate values of π̂ and ρ̂(t) in order to reduce the tracking error. Computer simulation results

illustrated that proper estimation of π̂ and ρ̂(t) were achieved, tracking performance was improved, and, as a

result, proper estimation of π̂ and ρ̂(t) improved the tracking performance.

In order to guarantee stability of an uncertain system, a Lyapunov function was defined, including 2 novel
functions such as Φ1 and Φ2 . There may be some sort of functions Φ1 and Φ2 for control inputs u(t)1 and

u(t)2 that satisfy the stability of the uncertain system. However, there is no certain rule for the determination

of Φ1 and Φ2 for control inputs u(t)1 and u(t)2 that satisfies V̇ ≤ 0 in Eq. (15). We used system state
parameters and mathematical insight and found the appropriate novel functions Φ1 and Φ2 for control inputs

u(t)1 and u(t)2 that make V̇ ≤ 0. As a result, the stability of the uncertain system is guaranteed and the
uniform boundedness error convergence is shown based on the Lyapunov theory and the Corless-Leitmann
approach [1]. Based on the adaptive-robust control law, a robust control law was also defined and the stability
of the uncertain system was proved under the same set of conditions. The proposed adaptive-robust control law
and previous studies [4,12-15] were developed for uncertain parameters, and the friction model does not exist in

dynamic models. Danesh et al. [6] developed Spong’s approach [4] in such a manner that the control law was
made robust not only to uncertain inertia parameters but also to robust unmodeled dynamics and disturbances.
Similarly, it is possible to develop the proposed adaptive-robust control law to be robust not only to uncertain
inertia parameters but also to unmodeled dynamics and disturbances. This possibility can be considered for
further studies.
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