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Abstract

FastSLAM is a framework for simultaneous localization and mapping (SLAM) using a Rao-Blackwellized

particle filter. However, FastSLAM degenerates over time. This degeneracy is due to the fact that a particle

set estimating the pose of the robot loses its diversity. One of the main reasons for losing particle diversity

in FastSLAM is sample impoverishment. In this case, most of the particle weights are insignificant. Another

problem of FastSLAM relates to the design of an extended Kalman filter (EKF) for the landmark position’s

estimation. The performance of the EKF and the quality of the estimation depend heavily on correct a priori

knowledge of the process and measurement noise covariance matrices (Qt and Rt) , which are, in most

applications, unknown. Incorrect a priori knowledge of Qt and Rt may seriously degrade the performance

of the Kalman filter. This paper presents a modified FastSLAM framework by soft computing. In our

proposed method, an adaptive neuro-fuzzy extended Kalman filter is used for landmark feature estimation.

The free parameters of the adaptive neuro-fuzzy inference system (ANFIS) are trained using the steepest

gradient descent (SD) to minimize the differences of the actual value of the covariance of the residual from

its theoretical value as much possible. A novel multiswarm particle filter is then presented to overcome the

impoverishment of FastSLAM. The multiswarm particle filter moves samples toward the region of the state

space in which the likelihood is significant, without allowing them to go far from the region of significant

proposal distribution. The simulation results show the effectiveness of the proposed algorithm.

Key Words: SLAM, mobile robot, particle filter, particle swarm optimization, neuro-fuzzy, extended

Kalman filter, gradient descent

1. Introduction

Simultaneous localization and mapping (SLAM) is a fundamental problem of robots in performing autonomous
tasks such as exploration in an unknown environment. It represents an important role in the autonomy of
a mobile robot. The 2 key computational solutions to SLAM are the extended Kalman filter (EKF-SLAM)

and the Rao-Blackwellized particle filter (FastSLAM). The EKF-SLAM approach is the oldest and the most
popular approach to solving SLAM. To date, extensive research works have been reported applying EKF to
the SLAM problem [1-3]. Several applications of EKF-SLAM have been developed for indoor applications [2,4],
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outdoor applications [5], underwater applications [6], and underground applications [7]. However, EKF-SLAM

suffers from 2 major problems: computational complexity and data association [8]. Recently, the FastSLAM
algorithm approach has been proposed as an alternative approach to solve the SLAM problem. FastSLAM is
an instance of the Rao-Blackwellized particle filter, which partitions the SLAM posterior into a localization
problem and an independent landmark position estimation problem. In FastSLAM, a particle filter is used
for the mobile robot position estimation and an EKF is used for the feature location’s estimation. The key
feature of FastSLAM, unlike EKF-SLAM, is the fact that data association decisions can be determined on a
per particle basis, and hence different particles can be associated with different landmarks. Each particle in
FastSLAM may even have a different number of landmarks in its respective map. This characteristic gives
FastSLAM the possibility of dealing with multihypothesis association problems. The ability to simultaneously
pursue multiple data associations makes FastSLAM significantly more robust for data association problems
than algorithms based on incremental maximum likelihood data association such as EKF-SLAM. The other
advantage of FastSLAM over EKF-SLAM arises from the fact that particle filters can cope with nonlinear and
non-Gaussian robot motion models, whereas EKF approaches approximate such models via linear functions.
However, FastSLAM also has some drawbacks. In [9-13], it was noted that FastSLAM degenerates over time.
This degeneracy is due to the fact that a particle set estimating the pose of the robot loses its diversity. One
of the main reasons for losing particle diversity in FastSLAM is sample impoverishment. This occurs when
likelihood lies in the tail of the proposal distribution [14]. On the other hand, FastSLAM highly relies on the

number of particles to approximate the distribution density. Researchers tried to solve those problems in [14-22].
In all of these studies, the reliability of measurement plays a crucial role in the performance of the algorithm,
where only additive noise is considered. In [23], to solve the sample impoverishment of the particle filter in mobile
robot localization, a novel multiswarm particle filter was presented to estimate the posterior probability density
of a robot’s pose. In the current paper, we consider the impoverishment of a Rao-Blackwellized particle filter
and propose a novel multiswarm Rao-Blackwellized particle filter to solve this problem. The novel multiswarm
particle filter is proposed for estimating the posterior path of the robot. The multiswarm particle filter moves
samples toward the region of the state space in which the likelihood is significant, without allowing them to go
far from the region of significant proposal distribution. For this purpose, the multiswarm particle filter employs
a conventional multiobjective optimization approach to weigh the likelihood and prior of the filter in order to
alleviate the particle impoverishment problem. The minimization of the corresponding objective function is
performed using the Gaussian particle swarm optimization (PSO) algorithm. Another problem of FastSLAM
relates to the design of EKFs for landmark position estimation. A significant difficulty in designing an EKF
can often be traced to incomplete a priori knowledge of the process covariance matrix Qt and measurement
noise covariance matrix Rt . In most applications, these matrices are unknown. Incorrect a priori knowledge
of Qt and Rt may seriously degrade the Kalman filter’s performance [24,25]. Several research studies have

been reported in the literature on adaptive Kalman filter algorithms [26-29]. In these works, the system under

consideration is a simple one in which the size of the state vector is fixed. In addition, in [26], an adaptive
neuro-fuzzy EKF for robot pose estimation was proposed. Here, only the parameters of the final stage of the
adaptive neuro-fuzzy inference system (ANFIS) are trained using the steepest gradient descent (SD). Because

the total number of states is fixed (tree state), the inputs to the ANFIS are also fixed. In this paper, as the
Rao-Blackwellized particle filter is used for SLAM, N conditional landmark posteriors are estimated using an
adaptive neuro-fuzzy EKF (N is the number of features that are time-varying). In the proposed method, the
parameters of the antecedent part and the conclusion part of the ANFIS are trained using the SD.
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2. The SLAM problem

The goal of SLAM is to simultaneously localize a robot and determine an accurate map of the environment. To
describe SLAM, let us denote the map byΘ and the pose of the robot at time t by st . The map consists of a
collection of features, each of which will be denoted by θn , and the total number of stationary features will be
denoted by N . In this situation, the SLAM problem can be formulized in a Bayesian probabilistic framework
by representing each of the robot’s positions and map locations as a probabilistic density function:

p(st, Θ|zt, ut, nt). (1)

In essence, it is necessary to estimate the posterior density of maps Θ and poses st , given that we know the

observation zt = {z1, ..., zt} , the control input ut = {u1, ..., ut} , and the data association nt . Here, data

association represents the mapping between the map points in Θ and observations in zt . The SLAM problem
is then achieved by applying Bayesian filtering, as follows.

p(st, Θ|zt, ut, nt) ∝ p(zt|st, Θ, nt)p(st, Θ|zt−1, ut, nt), (2)

with:

p(st, Θ|zt−1, ut, nt) =
∫

p(st|st−1, ut)p(st−1, Θ|zt−1, ut, nt)dst−1, (3)

where p(st|st−1, ut) is the dynamics motion model and p(zt|st, Θ, nt) is the measurement model. The standard

Bayesian solution for Eqs. (2) and (3) can be extremely expensive for high-dimensional maps Θ. However,

Eq. (3) cannot be computed in closed form. FastSLAM is an efficient algorithm for the SLAM problem that is

based on a straightforward factorization, as follows [12,13,30]:

p(st, Θ|zt, ut, nt) = p(st|zt, ut, nt)
N∏

n=1

p(θn|st, zt, ut, nt), (4)

where st = {s1, ..., st} is a robot path or trajectory. This factorization states that the SLAM problem can be
decomposed into estimation of the product of a posterior over the robot path and N landmark posteriors given

the knowledge of the robot’s path. The FastSLAM algorithm implements the path estimator p(st|zt, ut, nt)

using a particle filter. The landmarks’ poses p(θn|st, zt, ut, nt)are realized by the EKF, using separate filters

for different landmarks. Each particle forms the following [12,31]:

s
[m]
t =< st,[m] , μ

[m]
1,t , Σ[m]

1,t , ..., μ
[m]
N,t, Σ

[m]
N,t >, (5)

where [m] indicates the index of the particle, st,[m] is the mth particle’s path estimate, and μ
[m]
N,t, Σ

[m]
N,t are the

mean and the covariance of the Gaussian distribution representing the nth feature location conditioned on the

pathst,[m] .The updated algorithm of posteriors in FastSLAM can be described as follows.

1. Sampling a new pose
2. Updating the observed landmark
3. Calculating importance weight
4. Initializing feature

5. Resampling
In following subsections, we give details of the main steps.
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2.1. Sampling a new pose

As mentioned in the previous section, FastSLAM employs a particle filter for estimating the path posterior

p(st|zt, ut, nt) by a particle filter. The particle set St is calculated from the set St−1at time t − 1, the control
ut , and the observation zt . In general, it is not possible to draw samples directly from the SLAM posterior.

Instead, the samples are drawn from a simpler distribution called the proposal distribution, q(st,[m]|zt, ut, nt).
The mismatch between the SLAM posteriors and the actual proposal distribution values can be corrected using
a technique called importance sampling. Therefore, in regions in which the target distribution is larger than the
proposal distribution, the samples are assigned a larger weight, and in regions in which the target distribution is
smaller than the proposal distribution, the samples will be given lower weights. For FastSLAM, the importance
weights of each particle can be calculated as:

w
[m]
t =

target distribution
proposal distribution

=
p(st,[m] |zt, ut, nt)
q(st,[m] |zt, ut, nt)

. (6)

As a result, the importance weight of each particle is equal to the ratio of the slam posterior and the proposal

distribution. The proposal q(st,[m]|zt, ut, nt) can be represented by a recursive form, as:

q(st,[m]|zt, ut, nt) = q(s[m]
t |st−1,[m], zt, ut, nt)q(st−1,[m]|zt, ut, nt)Markov

= q(s[m]
t |st−1,[m], zt, ut, nt)q(st−1,[m]|zt−1, ut−1, nt−1).

(7)

Similarly, the posterior can also be given by a recursive formula, using Bayes’ theorem as follows:

p(st,[m] |zt, ut, nt) = ηp(zt|st,[m], zt−1, ut, nt)p(s[m]
t |zt−1, ut, nt)p(st−1,[m]|zt−1, ut−1, nt−1), (8)

where η is a normalizing constant. With Eqs. (7) and (8), a sequential importance weight of the mth particle
can be obtained as follows:

w
[m]
t = ηw

[m]
t−1

p(zt|st,[m], zt−1, ut, nt)p(s[m]
t |zt−1, ut, nt)

q(s[m]
t |st−1,[m], zt, ut, nt)

. (9)

The choice of the proposal distribution q(s[m]
t |st−1,[m], zt, ut, nt) is one of the most critical issues in the design of

a FastSLAM. Two of those critical issues are as follows: samples are drawn from the proposal distribution, and
the proposal distribution is used to evaluate the importance weights. The optimal importance density function
that minimizes the variance of the importance weights is the following equation (FastSLAM 2.0 [13]):

q(st,[m]|zt−1, ut, nt−1) = p(st,[m]|zt−1, ut, nt−1). (10)

However, there are some special cases in which the use of the optimal importance density is possible. The main
disadvantage of these approaches is that they are more difficult to implement. The most popular suboptimal
choice is the transitional prior (FastSLAM 1.0 [32]):

q(st,[m]|zt−1, ut, nt−1) = p(st|ut, s
[m]
t−1). (11)

In this paper, FastSLAM 1.0 was used due to its easy calculation. Hence, by substitution of Eq. (11) into Eq.

(9), the weight’s updated equation is:

w
[m]
t = ηw

[m]
t−1p(zt|st,[m], zt−1, ut, nt). (12)

Note that the w
[m]
k values are updated incrementally while considering a full trajectory of the robot statest,[m] .
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2.2. Updating the observed landmark

FastSLAM represents the posterior landmark estimatesp(θn |st, zt, ut, nt) using low-dimensional EKFs. In fact,

FastSLAM updates the posterior over the landmark estimates, respected by the mean μ
[m]
n,t−1 and the covariance

Σ[m]
n,t−1 . The updated values μ

[m]
n,t and Σ[m]

n,t are then added to the temporary particle set St , along with the

new pose. The update depends on whether or not a landmark n was observed at time t . For n �= nt , the
posterior over the landmark remains unchanged, as follows [31].

μ
[m]
n,t = μ

[m]
n,t−1 (13)

Σ[m]
n,t = Σ[m]

n,t−1 (14)

For the observed feature n = nt , the update is specified through the following equation [31].

p(θnt |st,[m], nt, zt) = p(zt|θnt ,st,[m],nt,zt−1)p(θnt |s
t,[m],nt,zt−1)

p(zt|st,[m],nt,zt−1)

= η p(zt|θnt, s
t,[m], nt, zt−1)︸ ︷︷ ︸

∼N(zt,g(θnt ,s
[m]
t ,Rt)

p(θnt|st,[m], nt, zt−1)︸ ︷︷ ︸
∼N(θnt ,μ

[m]
n,t−1,Σ

[m]
n,t−1)

(15)

The probability p(θnt|st,[m], nt, zt−1) at time t− 1 is represented by a Gaussian distribution with mean μ
[m]
n,t−1

and covariance Σ[m]
n,t−1 . For the new estimate at time t to also be Gaussian, FastSLAM linearizes the perceptual

model p(zt|θnt, s
t,[m], nt, zt−1) by an EKF. In particular, FastSLAM approximates the measurement function

g by the following first-degree Taylor expansion [31]:

g(θnt , s
[m]
t ) = g(μ[m]

n,t−1, s
[m]
t )︸ ︷︷ ︸

ẑ
[m]
t

+ g′(s[m]
t , μ

[m]
n,t−1)︸ ︷︷ ︸

G
[m]
t

(θnt − μ
[m]
n,t−1)=ẑ

[m]
t + G

[m]
t (θnt − μ

[m]
n,t−1). (16)

Under this approximation, the posterior of landmark nt is indeed Gaussian. The mean and covariance are
obtained using the following measurement updates.

ẑt = g(s[m]
t , μnt,t−1) (17)

Gθnt
= ∇θnt

g(st, θnt)|st=s
[m]
t ;θnt =μ

[m]
nt,t−1

(18)

Zn,t = Gθnt
Σ[m]

nt,t−1G
T
θnt

+ Rt (19)

Kt = Σ[m]
nt,t−1G

T
θnt

Z−1
n,t (20)

μ[m]
nt,t

= μ[m]
nt,t−1

+ Kt(zt − ẑt) (21)

Σ[m]
nt,t = (I − KtGθnt

)Σ[m]
nt,t−1 (22)
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2.3. Calculating importance weight

In FastSLAM 1.0, the importance weight should be computed by considering the most recent observation, and
it is given by Eq. (9) as the following:

w
[m]
t = w

[m]
t−1

p(zt|st,[m], zt−1, ut, nt)p(s[m]
t |ut, nt)

p(s[m]
t |ut, nt)

= w
[m]
t−1p(zt|st,[m], zt−1, ut, nt). (23)

2.4. Initializing feature

A new feature is initialized as a function of the robot pose s
[m]
t and measurement zt . The feature mean μ

[m]
n.t

and the feature covariance Σ[m]
n,t in the feature initialization are calculated as follows [12,13].

μ
[m]
n.t = g−1(zt, s

[m]
t ) (24)

Σ[m]
n,t = (G[m]

�
n

R−1
t G

[m]T
�
n

)−1 (25)

2.5. Resampling

Since the variation of the importance weights increases over time, resampling plays a vital role in FastSLAM
[33,34]. In the resampling process, particles with low importance weight are eliminated and particles with high
weights are multiplied. After the resampling, all particle weights are then reset to:

w
[m]
t =

1
N

. (26)

This enables FastSLAM to estimate increasing environmental states defiantly without growing a number of
particles. However, resampling can delete good samples from the sample set, and, in the worst case, the filter
diverges. The decision on how to determine when to resample is a fundamental issue. Liu introduced the
so-called effective number of particles, Neff , to estimate how well the current particle set represents the true

posterior [18]. This quality is computed as:

Neff =
1∑N

i=1 w
[i]
t

, (27)

where wi
t refers to the normalized weight of particle i . The resampling process is operated whenever Neff is

below a predefined threshold, Ntf . Here, Ntf is usually a constant value, such as:

Ntf =
3
4
M, (28)

where M is the number of particles.

3. A modified FastSLAM framework using soft computing

In this section, a modified FastSLAM framework using soft computing is presented in detail. In modified
FastSLAM, a multiswarm particle filter is used to overcome the impoverishment of the particle filter and an
adaptive neuro-fuzzy EKF is proposed for features estimation.
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3.1. A modified sampling of FastSLAM

FastSLAM relies on importance sampling; in other words, it uses proposal distributions to approximate the
posterior distribution. The most common choice of proposal distribution, also used in this paper, is the proba-

bilistic model of the states’ evolution, or the transition prior p(st|ut, s
[m]
t−1). Because the proposal distribution

is suboptimal, there are 2 serious problems in the particle filter. One problem is sample impoverishment, which

occurs when the likelihood p(zt|st,[m], zt−1, ut, nt) is very narrow or the likelihood lies in the tail of the proposal
distribution. The prior distribution is effective when the observation accuracy is low. It is not effective, however,
when the prior distribution is a much broader distribution than the likelihood. Hence, in the updating step, only
a few particles will have significant importance weights. This problem implies that a large computational effort
is devoted to updating the particles with negligible weight. Thus, the sample set only contains a few dissimilar
particles, and sometimes they will drop to a single sample after several iterations. As a result, important sam-
ples may be lost. The second problem of the particle filter is the number of particles’ dependency that estimates
the pose of the robot. If the number of particles is small, then there might not have been particles distributed
around the true pose of the robot. After several iterations, it is then very difficult for particles to converge
to the true pose of the robot. For standard FastSLAM, there is one method to solve the problem. This is to
augment the number of the particles. However, this would make the computational complexity unacceptable.
To solve these problems in FastSLAM, PSO is considered to optimize the sampling process of FastSLAM.

3.1.1. Particle swarm optimization

PSO is a population-based search algorithm based on the simulation of the social behavior of birds in a flock.
PSO is initialized with a group of random particles and then computes the fitness of each one. Finally, it
can find the best solution in the problem space via many repeating iterations. In each iteration, each particle
keeps track of its coordinates that are associated with the best solution it has achieved so far (pbest) and the

coordinates that are associated with the best solution achieved by any particle in its neighborhood (gbest).
Supposing that the search space dimension is D , and the number of particles is N , the position and velocity of
the ith particle are represented by xi = (xi1, ..., xiD) and vi = (vi1, ..., viD), respectively. Let Pbi = [pi1, ...piD]
denote the best position that particle i has achieved so far, and Pg the best of Pbi for any i = 1, ..., N . The

PSO algorithm could be performed by the following equations.

�xi(t) = �xi(t − 1) + �vi(t) (29)

�vi(t) = w�vi(t − 1) + c1r1(�Pbi − �xi(t − 1)) + c2r2(�Pg − �xi(t − 1)) (30)

Here, trepresents the iteration number and c1 , c2 are the learning factors. Usually, c1 = c2 = 2, and r1 , r2

are random numbers in the interval (0, 1), while w is the inertial factor. Note that the larger the value of w ,
the wider the search range.

3.1.2. A multiswarm particle filter

As discussed in the previous section, impoverishment occurs when the number of particles in the high-likelihood
area is low. We addressed this problem by intervening in localization based on a particle filter after the generation
of the samples in the prediction phase and before resampling. The aim is to move these samples toward a region

31



Turk J Elec Eng & Comp Sci, Vol.20, No.1, 2012

of the state space in which the likelihood is significant, without allowing them to go far from the region of the
significant prior. For this purpose, we consider a multiobjective function, as follows [23]:

F = F1 + F2. (31)

The first objective, F1 , consists of a function that is maximized at regions of high likelihood, as follows.

F1 = e
− 1

2 (zt−ẑnt ,t)
T [Znt,t]−1

(zt−ẑnt,t)

(32)

Here,Znt ,t is the residual covariance matrix defined in Eq. (19), ẑnt,t is the predicted measurement, and zt is
the actual measurement. The second objective, F2 , is maximized at regions of high prior.

F2 = e−
1
2 (xt−x̂t)

T [Qt]
−1(xt−x̂t), (33)

where Qt is the measurement noise covariance matrix. We use a simple idea to solve this problem. The
basic idea is that particles are encouraged to be in the region of high likelihood by incorporating the current
observation without allowing them to go far from the region of significant prior before the sampling process.
This implies that a simple and effective method for this purpose is the use of PSO. In fact, by using PSO, we
can move all of the particles toward the region that maximizes the objective function F before the sampling
process. For this purpose, we consider a fitness function, as follows:

Fitness(t) =
1
2
(zt − ẑnt,t)T [Znt,t]

−1 (zt − ẑnt,t) +
1
2
(xt − x̂−

t )Q−1
t (xt − x̂−

t )T . (34)

Generate  

Initial Population 

Start 

Move particles using PSO towards the region 

what minimize the fitness function 

Sampling 

Resampling 

w
t 
   = w

t-1
 p (z

t
 | st,[m], zt-1, ut, nt)[m] [m]

Figure 1. Multiswarm particle filter.

The particles should be moved such that the fitness function is optimal. This is done by tuning the
position and velocity of the PSO algorithm. The standard PSO algorithm has some parameters that need to be
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specified before using it. Most approaches use uniform probability distribution to generate random numbers.
However, it is difficult to obtain fine tuning of the solution and escape from local minima using a uniform
distribution. Hence, we use velocity updates based on the Gaussian distribution. In this situation, there is no
more need to specify the parameter learning factors c1 and c2 . Furthermore, using the Gaussian PSO, the
inertial factorω is set to zero and an upper bound for the maximum velocity vmax is not necessary anymore [35].
Thus, the only parameter to be specified by the user is the number of particles. Initial values of the particle
filter are selected as the initial population of the PSO. Initial velocities of the PSO are set equal to zero. The
PSO algorithm updates the velocity and position of each particle by the following equations [35].

�xi(t) = �xi(t − 1) + �vi(t) (35)

�vi(t) = |randn| (Ppbest − �xi(t − 1)) + |randn| (Pgbest − �xi(t − 1)) (36)

The PSO moves all particles toward the particle with best fitness. When the best fitness value reaches a certain
threshold, the optimized sampling process is stopped. With this set of particles, the sampling process will be
done on the basis of proposal distribution. The corresponding weights will be as follows:

w
[m]
k = w

[m]
k−1p(zt|st,[m], zt−1, ut, nt), (37)

where:

p(zt|st,[m], zt−1, ut, nt) =
1√

(2π)|Znt,t|
exp{−1

2
(zt − ẑnt,t)T [Znt,t]

−1 (zt − ẑnt,t)}. (38)

The flowchart for the proposed algorithm is shown in Figure 1. As observed, this algorithm can be described
with the following steps.

Step 1. General initial population initialization

1. Initialize particle velocity

2. Initialize particle position

3. Initialize particle fitness value

4. Initialize pbest and gbest

Step 2. Move particles using PSO toward the region that minimizes the fitness function

Adjust the speed and location of particles.

Step 3. Important sampling

1. Update the particle state

a) Time update

b) Measurement update

2. Calculate the mean value s
[m]
t and covarianceP

[m]
t of particle set {x̂i

k}N
i=1

3. Draw sample from proposal distribution
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Step 4. Weight updates

1. Calculate the weight

2. Weight will be normalized

w̄
[i]
t =

w
[i]
t

N∑
i=1

w
[i]
t

(39)

Step 5. Resampling

The resampling is operated whenever Neff is below a predefined threshold.

Step 6. Prediction

Compute the posterior probability estimates.

x̂t =
N∑

i=1

s
[i]
t w̄

[i]
t (40)

Step 7. Compute the global optimum pg at current time

Set the particle that has the highest weight value of current particles as pg
k .

Step 8. Increase time k , return to step 2 to recursively estimate the posterior probability

3.2. Feature update by adaptive neuro-fuzzy EKF

As stated earlier, FastSLAM represents the conditional landmark estimates p(θn|st, zt, ut, nt) by EKF. The
traditional EKF assumes complete a priori knowledge of the process and measurement noise statistics, matrices
Qt and Rt . However, in most applications, these matrices are unknown. An incorrect a priori knowledge of
Qt and Rt m ay lead to performance degradation [25] and can even lead to practical divergence [24,25]. One
of the efficient ways to overcome the above weakness is to use an adaptive algorithm. Two major approaches
that have been proposed for adaptive EKFs are multiple-model adaptive estimation (MMAE) and innovation-

based adaptive estimation (IAE) [24,25]. Although the implementation of these approaches is different, they

both share the same concept of utilizing new statistical information obtained from the residual (innovation)
sequence. As landmarks are static, we assume that the noise covariance Qt is completely known. Hence, the
algorithm to estimate the measurement noise covariance Rt can be derived. The adaptation is adaptively
adjusting the measurement noise covariance matrix Rt by using a neuro-fuzzy system. In this case, an IAE
algorithm to adapt the measurement noise covariance matrix Rt is derived. The technique known as covariance
matching is used. The basic idea behind this technique is to make the actual value of the covariance of the
residual be consistent with its theoretical value. The innovation sequence rt = (zt − ẑnt,t) has a theoretical
covariance that is obtained from the EKF algorithm.

St = Gθnt
Σ[m]

nt,t−1G
T
θnt

+ Rt (41)
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The actual residual covariance Ĉk can be approximated by its sample covariance, through averaging inside a
moving window of size N as follows:

Ĉt =
1
N

t∑
i=k−N+1

(rT
i ri). (42)

If the actual value of covariance Ĉt has discrepancies with its theoretical value, then the diagonal elements of
Rt based on the size of this discrepancy can be adjusted. The objective of these adjustments is to correct this
mismatch as far as possible. The size of the mentioned discrepancy is given by a variable called the degree of
mismatch (DOMt), defined as:

DOMt = St − Ĉt. (43)

The basic idea used to adapt matrix Rt is as follows: from Eq. (41), an increment in Rt will increase St and
vice versa. Thus, Rt can be used to vary St in accordance with the value of DOMt in order to reduce the

discrepancies between St and Ĉt . The adaptation of the (i, i)th element of Rt is made in accordance with the

(i, i)th element of DOMt . The general rules of adaptation are as follows.

If DOMt(i, i) ∼= 0, then maintain Rtunchanged.

If DOMt(i, i) > 0, then decrease Rt .

If DOMt(i, i) < 0, then increase Rt .

In this paper, the IAE adaptive scheme of the EKF coupled with an ANFIS is presented to adjust Rt .
As the size of DOMt and Rt is 2, a 2-system ANFIS is used to adjust the EKF. The structure of one of these
systems is described in the next section.

3.2.1. The ANFIS architecture

The ANFIS model has been considered as a 2-input, single-output system. The inputs of the ANFIS are DOMt

and DeltaDOMt . Here, DeltaDOMt is defined as [26]:

DeltaDOMt = DOMt − DOMt−1. (44)
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Figure 2. Membership functions DOMt(i, i) and DeltaDOMt .
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Figure 2 presents membership functions for DOMt(i, i) and DeltaDOMt . Finally, adjustment of Rt is
performed using the following relation:

Rt = Rt + ΔRt, (45)

where ΔRt is the ANFIS output and the membership function of ΔRt is shown in Figure 3. This ANFIS is a
5-layer network, as shown in Figure 4.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S1 S2 S4 S4 S5 S6 S7 

Figure 3. Membership function Rt .
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Figure 4. The neuro-fuzzy system for feature update.
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Table. Rule table.

DeltaDoMk

L LM Z HM H

DoMk

L S7 S7 S6 S5 S4
LM S7 S6 S5 S4 S3
Z S6 S5 S4 S3 S2

HM S5 S4 S3 S2 S1
H S4 S3 S2 S1 S1

Let ul
i and ol

i denote the input to output from the ith node of the lth layer, respectively. To provide a
clear understanding of an ANFIS, the functioning of layers 1 through 5 are elaborated below.

Layer 1: The node in this layer only transmits input values to the next layer directly, or:

o1
i = u1

i . (46)

Layer 2: In this layer, each node only performs a membership function. Here, the input variable is fuzzified,
employing 5 membership functions (MFs). The output of the ith MF is given as:

o2
ij = μij(u2) = exp

{
−

(u2
ij − mij)2

(δij)2

}
, (47)

where mij and δij are the mean and width of the Gaussian membership function, respectively. The subscript
ij indicates the j th term of the ith input. Each node in this layer has 2 adjustable parameters: mij and δij .

Layer 3: The nodes in this layer are rule nodes. A rule node performs a fuzzy AND operation (or product

inference) for calculating the firing strength.

o3
l =

∏
i

u3
i (48)

Layer 4: The node in this layer performs the normalization of firing strengths from layer 3:

o4
l =

u4
l∑9

l=1 u4
l

. (49)

Layer 5: This layer is the output layer. The link weights in this layer represent the singleton constituents (Wl)
of the output variable. The output node integrates all of the normalization firing strengths from layer 4 with
the corresponding singleton constituents and acts as a defuzzfier:

ΔRi =
25∑

l=1

u5
l wl. (50)

The fuzzy rules that complete the ANFIS rule base are shown in the Table.
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3.2.2. Learning algorithm

The aim of the training algorithm is to adjust the network weights through the minimization of the following
cast function:

E =
1
2
e2
t , (51)

where:

et = St − Ĉt. (52)

By using the backpropagation (BP) learning algorithm, the weighting vector of the ANFIS is adjusted such that

the error defined in Eq. (41) is less than a desired threshold value after a given number of training cycles. The
well-known BP algorithm may be written as:

W (t + 1) = W (t) − η
∂E(t)
∂W (t)

. (53)

Here, η and W represent the learning rate and tuning parameter of the ANFIS, respectively. Let W = [m, σ, δ]T

be the weighting vector of the ANFIS. The gradient of E with respect to an arbitrary weighting vector W is
as follows:

∂E(t)
∂W (t)

= −et

(
∂ΔR(t)
∂W (t)

)
. (54)

By the recursive application of the chain rule, the error term for each layer is first calculated, and then the
parameters in the corresponding layers are adjusted as follows.

m(t + 1) = m(t) − η
∂E(t)
∂m(t)

(55)

σ(t + 1) = σ(t) − η
∂E(t)
∂σ(t)

(56)

δ(t + 1) = δ(t) − η
∂E(t)
∂δ(t)

(57)

4. Implementation and results

Simulation experiments were carried out to evaluate the performance of the proposed approach in comparison
with the classical method. The proposed solution for the SLAM problem was tested for the benchmark
environment, with varied numbers and positions of landmarks, in [36].

38



HAVANGI, NEKOUI, TESHNEHLAB: An improved FastSLAM framework using soft computing,

-150 -100 -50 0 50 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

X(m)

Y
(m

)

Figure 5. The experiment environment: the asterisks denote the landmark positions and the blue line is the path of

the robot.

Figure 5 shows the robot’s trajectory and landmark locations. The asterisks depict the locations of
the landmarks that are known and stationary in the environment. The state of the robot can be modeled as
(x, y, φ), such that (x, y) are the Cartesian coordinates and φ is the orientation, respectively, to the global
environment. The kinematics equations for the mobile robot are in the following form:

⎡
⎣ ẋ

ẏ

φ̇

⎤
⎦ =

⎡
⎣ (V + vv) cos(φ + [γ + vγ ])

(V + vv) sin(φ + [γ + vγ ])
(V +vv)

B
sin(γ + vγ)

⎤
⎦ , (58)

where B is the base line of the vehicle and u =
[

V γ
]T is the control input at time t consisting of a velocity

input V and a steer input γ . The process noise, v =
[

vv vγ

]T , is assumed to be Gaussian. The vehicle is

assumed to be equipped with a range-bearing sensor that provides a measurement of range ri and bearing θi

to an observed feature ρi relative to the vehicle. The observation z of feature ρi on the map can be expressed
as: [

ri

θi

]
=

[ √
(x − xi)2 + (y − yi)2 + ωr

tan−1 y−yi

x−xi
− φ + ωθ

]
, (59)

where (xi, yi) is the landmark position on the map, and W =
[

ωr ωθ

]T relates to observation noise. The

initial position of the robot is assumed to be x0 = 0. The robot moves at a speed of 3 m/s with a maximum
steering angle of 30◦ . The robot also has a 4-m wheel base and is equipped with a range-bearing sensor with
a maximum range of 20 m and a frontal field of view of 180◦ . The control noise is σv = 0.3m/s and σγ = 3◦ .
The control frequency is 40HZ and observation scans are obtained at5HZ . The measurement noise is 0.2m in
range and 1◦ in bearing. Data association is assumed to be known. At first, the performance of the 2 algorithms
can be compared by keeping the noise levels constant (process noise and measurement noise) and varying the
number of particles. Figures 6-9 show the performance of the 2 algorithms for numbers of particles equivalent
to 10 and 5. As observed, the modified FastSLAM is more accurate than the FastSLAM. Furthermore, the
performance of the modified FastSLAM does not depend on the number of particles, while the performance of
FastSLAM highly depends on the number of particles. For very low numbers of particles, FastSLAM diverges
while the modified FastSLAM is completely robust. This is because the PSO in the modified FastSLAM places
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the particles in the high likelihood region. In addition, we observed that the modified FastSLAM requires fewer
particles than FastSLAM in order to achieve a given level of accuracy for state estimates.
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Figure 6. Modified FastSLAM: In this experiment, the control noise was σv = 0.3m/s ,σγ = 3◦ ; the measurement noise

was σr = 0.2m , σθ = 1◦ ; and the number of particles was 10 (n = 10). Results were obtained over 50 Monte Carlo

runs. a) Estimated robot path and estimated landmark with true robot path and true landmark. The dotted line is the

estimated path and circles are estimated landmark positions. b) Estimated pose error with 2 − σ bound.
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Figure 7. FastSLAM: In this experiment, the control noise was σv = 0.3m/s ,σγ = 3◦ ; the measurement noise was

σr = 0.2m , σθ = 1◦ ; and the number of particles was 10 (n = 10). Results were obtained over 50 Monte Carlo runs. a)

Estimated robot path and estimated landmark with true robot path and true landmark. The dotted line is the estimated

path and circles are the estimated landmark positions. b) Estimated pose error with 2 − σ bound.

Next, we compared the performance of the 2 algorithms while varying the level of measurement noise
as σr = 0.01 m, σθ = 0.1 and fixing the control noise at σv = 0.3m/s , σγ = 3◦ . All experiments were run

with 5 particles in this case. From Figures 10 and 11, we can observe that the performance of our proposed
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method will outperform the classical FastSLAM. This is because sample impoverishment occurs in FastSLAM.
In fact, because the proposal distribution is broader than the likelihood in FastSLAM, the weight of most of
the participles are insignificant when their likelihoods are evaluated. As a result, the estimation accuracy of
FastSLAM will decrease whenever the robot’s motion is noisier and the range-bearing sensor is more accurate.
In this situation, the performance of FastSLAM is mostly reduced while the performance of the modified
FastSLAM is almost fixed. For very low values of measurement errors, FastSLAM clearly begins to diverge
while the proposed algorithm is robust.
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Figure 8. Modified FastSLAM: In this experiment, the control noise was σv = 0.3m/s ,σγ = 3◦ ; the measurement

noise was σr = 0.2m , σθ = 1◦ ; and the number of particles was 5 (n = 5). Results were obtained over 50 Monte Carlo

runs. a) Estimated robot path and estimated landmark with true robot path and true landmark. The dotted line is the

estimated path and circles are the estimated landmark positions. b) Estimated pose error with 2 − σ bound.
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Figure 9. FastSLAM: In this experiment, the control noise was σv = 0.3m/s ,σγ = 3◦ ; the measurement noise was

σr = 0.2m , σθ = 1◦ ; and the number of particles was 5 (n = 5). Results were obtained over 50 Monte Carlo runs. a)

Estimated robot path and estimated landmark with true robot path and true landmark. The dotted line is the estimated

path and circles are the estimated landmark positions. b) Estimated pose error with 2 − σ bound.
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Figure 10. Modified FastSLAM: In this experiment, the control noise was σv = 0.3m/s ,σγ = 3◦ ; the measurement

noise was σr = 0.01m , σθ = 0.1◦ ; and the number of particles was 5 (n = 5). Results were obtained over 50 Monte

Carlo runs. a) Estimated robot path and estimated landmark with true robot path and true landmark. The dotted line

is the estimated path and circles are the estimated landmark positions. b) Estimated pose error with 2 − σ bound.
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Figure 11. FastSLAM: In this experiment, the control noise was σv = 0.3m/s ,σγ = 3◦ ; the measurement noise was

σr = 0.01m , σθ = 0.1◦ ; and the number of particles was 5 (n = 5). Results were obtained over 50 Monte Carlo runs. a)

Estimated robot path and estimated landmark with true robot path and true landmark. The dotted line is the estimated

path and circles are the estimated landmark positions. b) Estimated pose error with 2 − σ bound.

Finally, we studied the effect of the designed ANFIS on the performance of FastSLAM. For this purpose,
we considered a situation in which the measurement noise was wrongly considered as σr = 0.5 , σθ = 3.0 and the
control noise was rightly considered as σv = 0.3m/s , σγ = 3◦ . The performance of the modified FastSLAM was
compared with classical FastSLAM where its measurement covariance matrix Rt was kept static throughout the
experiment. The proposed algorithm starts with wrongly known statistics, then adapts the Rt matrix through
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the ANFIS and attempts to minimize the mismatch between the theoretical and actual values of the innovation
sequence. The free parameters of ANFIS are automatically learned by the SD during training. Figures 12 and
13 show the comparison between the proposed algorithm and FastSLAM when the particle number is 20. It can

-150 -100 -50 0 50 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

X (m)

Y
(m

)

True
Modified FastSLAM estimation

0 100 200 300
-2

-1

0

1

2

X

time (s)
0 100 200 300

-4

-2

0

2

4

Y

time (s)

50 100 150 200

-0.5

0

0.5

P
h

i

time (s)

Modified FastSLAM error
Variance (2 Sigma)

(a)                                                                    (b) 

Figure 12. Modified FastSLAM: In this experiment, measurement noise was wrongly considered as σr = 0.5 , σθ = 3.0

and control noise was rightly considered as σv = 0.3m/s , σγ = 3◦ . The number of particles was 5 (n = 5). Results were

obtained over 50 Monte Carlo runs. a) Estimated robot path and estimated landmark with true robot path and true

landmark. The dotted line is the estimated path and circles are the estimated landmark positions. b) Estimated pose

error with 2 − σ bound.
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Figure 13. FastSLAM: In this experiment, measurement noise was wrongly considered as σr = 0.5 , σθ = 3.0 and

control noise was rightly considered as σv = 0.3m/s , σγ = 3◦ . The number of particles was 5 (n = 5). Results were

obtained over 50 Monte Carlo runs. a) Estimated robot path and estimated landmark with true robot path and true

landmark. The dotted line is the estimated path and circles are the estimated landmark positions. b) Estimated pose

error with 2 − σ bound.
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be clearly seen that the results of the proposed algorithm are better than those of classical FastSLAM. This is
because the modified FastSLAM adaptively tuned the measurement covariance matrix Rt , while the covariance
matrix measurement Rt in standard FastSLAM is kept fixed over time, as shown in Figure 14. Figure 14 also
shows that the measurement covariance matrix measurement Rt converges to the actual covariance matrix Rt

in our proposed method.
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Figure 14. a) Modified FastSLAM, b) FastSLAM.

5. Conclusion

This paper proposed a modified FastSLAM. In the proposed method, 2 problems of FastSLAM are addressed.
The first problem is that FastSLAM degenerates over time due to the loss of particle diversity. One of the
main reasons for losing particle diversity is sample impoverishment. It occurs when likelihood lies in the
tail of the proposal distribution. In this case, most of particle weights are insignificant. Another problem
of FastSLAM relates to the design of EKF for the landmark position’s estimation. A significant difficulty in
designing the EKF can often be traced to incomplete a priori knowledge of the process covariance matrix Qt and
the measurement noise covariance matrix Rt . Incorrect a priori knowledge of Qt and Rt may seriously degrade
the performance of the Kalman filter. This paper presented a modified FastSLAM framework by soft computing.
In the proposed method, a neuro-fuzzy EKF for landmark feature estimation and a particle filter based on PSO
were presented to overcome the impoverishment of FastSLAM. Experimental results confirmed the effectiveness
of the proposed algorithm. The main advantage of our proposed method is its greater consistency compared to
classical FastSLAM. This is because, in our proposed method, the theoretical value of the innovation sequence
matches its real value. When the motion model is noisier than measurement, the performance of the proposed
method also outperforms that of the standard method.
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