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Abstract

Hash functions are one of the ubiquitous cryptographic functions used widely for various applications such

as digital signatures, data integrity, authentication protocols, MAC algorithms, RNGs, etc. Hash functions

are supposed to be one-way, i.e., preimage resistant. One interesting property of hash functions is that

they process arbitrary-length messages into fixed-length outputs. In general, this can be achieved mostly

by applying compression functions onto the message blocks of fixed length, recursively. The length of the

message is incorporated as padding in the last block prior to the hash, a procedure called the Merkle-Damg̊ard

strengthening. In this paper, we introduce a new way to find preimages on a hash function by using a rainbow

table of its compression function even if the hash function utilizes the Merkle-Damg̊ard (MD) strengthening as

a padding procedure. To overcome the MD strengthening, we identify the column functions as representatives

of certain set of preimages, unlike conventional usage of rainbow tables or Hellman tables to invert one-way

functions. As a different approach, we use the position of the given value in the table to invert it. The

workload of finding a preimage of a given arbitrary digest value is 22n/3 steps by using 22n/3 memory, where

n is both the digest size and the length of the chaining value. We give some extensions of the preimage attack

on certain improved variants of MD constructions such as using output functions, incorporating the length

of message blocks or using random salt values. Moreover, we introduce the notion of “near-preimage” and

mount an attack to find near-preimages. We generalize the attack when the digest size is not equal to the

length of chaining value. We have verified the results experimentally, in which we could find a preimage in

one minute for the 40-bit hash function, whereas the exhaustive search took roughly one week on a standard

PC.
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1. Introduction

A cryptographic hash function H is a function mapping an infinite set of inputs to a finite set of n-bit hash
values. Hash functions are one of the ubiquitous cryptographic functions used widely for various applications
such as digital signatures, data integrity, authentication protocols, MAC algorithms, RNGs, stream cipher
encryption, etc. One can detect any modification of a file or message transmitted by comparing hash values
calculated before and after the transmission. Hash functions can also be used to uniquely identify a file content,
directory trees, ancestry information, etc. Another related application is password verification. For obvious
reasons, passwords are stored in digest form instead of cleartext form. The password sent by user is hashed
and compared with the stored hash while authenticating a user. For both security and performance reasons,
most digital signature algorithms require that only the hash of the message be “signed,” not the entire message.
Hash functions can also be used for the generation of pseudorandom bits.

Almost all the current practical hash functions are iterated hash functions using a compression function
with a fixed-length input. H is supposed to provide the following three security criteria so as to be considered
as a secure hash function:

• Collision resistance with a security level of 2n/2 ,

• Preimage resistance with a security level of 2n and

• Second-preimage resistance with a security level of 2n .

In particular, hash functions are supposed to be one-way functions, i.e., preimage resistant in almost all the
applications due to the security requirements. This is the main difference between hash functions and check-
sums. Preimage resistance means it must be computationally infeasible to find a preimage x for a given hash
value y such that H(x) = y . More precisely, the overhead of finding such an x must be at least 2n of H

executions where n is the size of y (the hash size), if H is considered as a secure hash function in terms of
preimage resistance. Evidently, check-sums are not preimage resistant. This security criterion is required in, for
instance, password storage. Since the hash values of the passwords are stored rather than passwords themselves,
it is (must be) infeasible to find valid passwords from a hash value. In another significant application, the digital
signature of a hash value is a valid signature for any preimage of the hash value. So, the hash function used in
digital signatures must be preimage resistant.

One of the most common methods of constructing hash functions is the Merkle-Damg̊ard (MD) construc-

tion [1, 2]. Processing an arbitrary-length message into a fixed-length output can be accomplished by splitting

the input message into fixed-length blocks and applying a compression function recursively (see Figure 1). The

outputs (or, equivalently, the inputs, except the message blocks) of the compression function are called chaining
values. A padding procedure is used to extend the message into a multiple of the block length. The padding
involves the length of the message as well. This is called the Merkle-Damg̊ard (MD) strengthening.

If the length of the chaining value of H is equal to the digest size, as in the case of most Merkle-Damg̊ard

constructions, then the security level of second-preimage resistance is diminished to 2n−k for a given message

of length 2k . Indeed, Kelsey and Schneider proposed a method of finding second-preimage to a message of

length 2k with workload k2n/2+1 + 2n−k+1 by making use of an “expandable message” [3]. Kelsey, this time

with Kohno [4], exploited the relatively small chaining value size to mount the CTFP-“Chosen Target Forced

Prefix” attack on MD constructions, exploiting the ease of finding multicollisions [5]. Both of the attacks use
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IV= h0
CF CF .............. CF CF hash = hn

m 0 m 1 mn − 1 pad

Figure 1. Merkle-Damg̊ard (MD) Construction. CF stands for the Compression Function . The parameters hi ’s are

the chaining values and mi ’s are the message blocks.

memory and have precomputation phase. On the other hand, there is no known structural attack yet better
than brute force to find a preimage for hash functions. Hence the security level for preimage resistance has
been indisputably settled for 2n up to now. For instance, NIST requires n-bit security for preimage resistance

whereas (n− k)-bit security is required for second-preimage resistance for a given message of length 2k at the

very recent SHA-3 competition [6].

Both the second preimage-image attack in [3] and the CTFP attack in [4] exploits the relatively small
size of the chaining value in the MD construction. In both attacks, the collisions in chaining values are extended
to the whole hash construction. Indeed, the workload of finding several collisions in chaining values is as much
as that of the entire hash function since the chaining value and the hash value have the same size. This enables
to find second preimages in less than 2n . However, it has been not known how to exploit the relatively small
size of the chaining value to find preimage for MD constructions. The main problem in finding preimages by
using chaining values is the Merkle-Damg̊ard strengthening. For example, Kelsey and Schneider introduce the
notion of “expandable message” to overcome the MD strengthening in finding second preimages [3].

In this paper, we introduce a new way of exploiting a relatively small size of the chaining value of an
MD construction to find a preimage to a given hash value. We make use of a rainbow table given in [7, 8]
for a compression function, containing valid hash values. The hash values in the table are combined to each
other through the compression function along any row of the table, even if the hash function utilizes the MD-
strengthening as a padding procedure. We identify the column functions as representatives of certain set of
preimages, unlike conventional usage of rainbow tables [7] or Hellman tables [8] to invert one-way functions.
We introduce a new method to find a preimage which we call the “position-based inversion technique.” We can
immediately provide a preimage by recovering the position of a given hash value in the table by utilizing the
new technique if the hash value is in the table. Indeed, we are not interested in the predecessor of the hash
value in the table. This is a new way of exploiting rainbow tables.

The workload of the precomputation to prepare a table is as much as the workload of the brute force as
in the case of other attacks using rainbow tables or Hellman tables. Once the table is ready, one can find a

preimage of any given digest value in 22n/3 steps by using 22n/3 memory where n is both the digest size and
the length of the chaining value.

The preimage attack through a rainbow table can particularly be a serious threat for hash functions of
small digest sizes. An example where the new attack has significant results is the recent hash function dm-

present-128, a construction by Bogdanov et al. [9], based on the block cipher present. dm-present-128

is a Davies-Meyer construction with 128-bit block length and 64-bit digest length, designed for the restricted
environments where the property of collision resistance is not a security condition, like some applications of
RFID-tags. As a practical example, a preimage to a given hash value through dm-present-128 can be found

in 243
present calls by using 247 bytes of memory. Preparing the table costs 264

present calls.
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We give some extensions of the preimage attack on certain improved variants of MD constructions such
as using output functions, incorporating the length of message blocks or using random salt values. Moreover, we
introduce a new notion which we call “near-preimage” and mount an attack to find near-preimages. We also give
some examples of applications where the near-preimage attack scenario is quite realistic. The security threshold
of near-preimage resistance is much less than that of preimage resistance. Hence, the near-preimage attack
through a rainbow table can be a practical attack for small-sized hash functions such as 64-bit hash functions.

A near-preimage can be found in 232.9 steps with 64.9 GB memory, assuming that a significant percentage of
people do not generally notice the difference at a glance between two 16-digit vectors in hexadecimal whose first

4 digits are equal and whose number of different digits is at most five. The precomputation is 234.8 , which is

much less than 264 .
We suggest a security criterion so as to foil the preimage attacks we have introduced; the internal state

size (the length of the chaining value) of a hash function should be at least twice as large as the digest size.
This result is interesting when considering its analogous criterion on stream ciphers: the internal state size of
a stream cipher must be at least twice as large as the key length.

We have verified the results experimentally by designing two hash functions having digest sizes 32-bit
and 40-bit from MD5. We have prepared two tables for these hash functions. Then, we have computed the
time complexities and the success rates from the experimental data collected by several tries. As a result, we
have seen that we could find a preimage in one minute for the 40-bit hash function on a standard PC by using
the rainbow table whereas the exhaustive search took roughly one week on the same PC.

The remainder of this paper is organized as follows. Section 2 is an overview to the Hellman tables and
rainbow tables. We introduce the basic attack in Section 3 and give some extensions of the basic attack in
the forthcoming section. We present the notion of “near-preimage” and describe how to find near-preimages
by using the basic attack in Section 5. We discuss the security implications of the basic preimage attack in
Section 6. Section 7 covers some results deduced experimentally and it turns out that the results are in parallel
to the corresponding theoretical results. Finally, we conclude the paper with a discussion on the potential
consequences of the attack.

2. Time-memory-tradeoff tables

There are essentially two extreme methods to invert a one-way function of n bit output. One of them is
searching a preimage exhaustively. This method costs 2n execution of the one-way function. The other method
is storing all the input-output pairs of the one-way function in a table. This costs 2n execution of the function
on offline phase and 2n units of memory. The on-line phase has a negligible time complexity.

The pioneering work by Hellman is the first example introducing a trade-off between time and memory
complexities [8]. Hellman introduced tables of chains where only the starting and the end points of each chain
is stored. A chain is a collection of the points obtained by applying the one-way function iteratively to a point.
Then any point in any chain can be recovered and even inverted (except the starting point) with a cost of

traveling on the chains. As a result, Hellman obtained the trade-off curve M2T = N2 for random functions
where M is the memory allocated, T is the time complexity and N is the cardinality of the space. Remark
that the curve is further improved to MT = N for random permutations. The details can be found in [8].

For a given random function f , each table contains m chains where each chain has length t . A chain
is constructed by applying several f functions. If s0 is the starting point of the chain s0 , s1, · · · , st , then
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si = f i(s0) for i = 1, . . . , t . Only the pair (s0, st) is stored.

Each table contains m chains and hence mt points (see Figure 2). Note that any collision in a table
merge. So, it is almost impossible to cover all the space in a table. Hellman proposes t tables, each containing

m× t points such that mt2 = N in order to optimize the complexity and the success rate [8]. Every single table
is constructed by a new function which is obtained by small manipulations of f . Hence merges by any collisions
between tables are precluded. Searching each table costs t executions of f . There are t tables. Therefore,

T = t2 and M = mt . So, we get the curve M2T = N2 .

fff ...................

f .................. ff

f .................. ff

Start Points End Points

....

....

....

t column

m
rows

Figure 2. A diagram showing an m × t Hellman table.

One main drawback of Hellman tables is that they can not be large enough to cover the whole space.
So, one needs several Hellman tables with different functions. This causes a dramatic increase on the time
complexity. A new method of constructing one table is introduced by Oechslin [7]. Oechslin proposes to use a
different function at each column of a table. These functions are produced by small manipulations of f . Hence,
the collisions on different columns in the table do not merge. Oechslin calls these tables as rainbow tables. A
rainbow table has m rows and t columns such that mt = N , i.e., covers all the space. However, to search one

table costs t(t+1)
2

executions of f . Thus, M = O(m) and T = O(t2) leading to the same curve M2T = N2 ,

where a constant factor is disregarded.

3. Basic attack

Let H be a hash function produced by the MD construction. Let CF be its compression function. A message

M is split into b -bit blocks as M = M1||M2|| · · · ||M � where M i is the i-th message block, M � is the padding

block and || is the concatenation. The padding is done as the MD strengthening: Add one “1” and enough
number of “0”s and then the length of the message in bits. Each block is fed into the compression function CF

with the current chaining value to produce the next chaining value. This is shown as

hi = CF (hi−1, M
i) for i = 1, . . . , �,

where h0 is the initial chaining value. The hash value h of the message M is the last chaining value which is
given as H(M) = h� = h .

We mount a trade-off attack on H by using a rainbow table whose column functions are of a special type:
We take the message block of the i-th column to be the i-th padding block and hence the column functions
are functions of chaining values.

Let S1, . . . , Sm be arbitrary fixed 1-block long messages. Assume that they are different from each other.

Let hj
0 = CF (h0, Sj) for 1 ≤ j ≤ m . Define Pi as the i-th padding which is the padding of a message having
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i blocks in length and b bits in each block. That is, Pi = 1||00 · · ·0||ib . Then, define the i-th chaining value of
the j -th row as

hj
i = CF (hj

i−1, Pi).

The rainbow table is formed by the chaining values hj
i ’s. The first column of the table is h1

1, . . . , h
m
1 and the

last column of the table is h1
t , . . . , h

m
t . Note that each hj

i is a valid hash value at the same time. The following

statement supplies a preimage for each hj
i .

Proposition 1 The chaining values hj
i ’s are all valid hash values and

H(Sj ||P1||P2|| · · · ||Pi−1) = hj
i for 2 ≤ i ≤ t and 1 ≤ j ≤ m

and H(Sj) = hj
1 which corresponds to the case i = 1 .

Proof We prove the statement by induction on i for i = 1, . . . , t . In fact, when i = 1 we have

H(Sj) = CF (CF (h0, Sj), P1) = CF (hj
0, P1) = hj

1.

So, hj
1 is a valid hash value and Sj is a preimage for hj

1 for any j = 1, . . . , m .

Assume that the statement is true for some k where 1 ≤ k < t . That is,

H(Sj ||P1||P2|| · · · ||Pk−1) = hj
k for all j = 1, . . . , m.

Hence, hj
k is the final chaining value of Sj ||P1||P2|| · · · ||Pk since Pk is the padding of the message Sj ||P1||P2|| · · ·

||Pk−1 . So we have,

H(Sj ||P1||P2|| · · · ||Pk) = CF (hj
k, Pk+1).

On the other hand, CF (hj
k, Pk+1) = hj

k+1 by definition. Hence, hj
k+1 is the hash value of the message

Sj ||P1||P2|| · · · ||Pk . That is, the statement is also true for k + 1. This completes the induction.

The (i, j)-th entry of the rainbow table is hj
i . The table is illustrated in Figure 3. The i-th column

function is given as
fi(h) = CF (h, Pi).

The main idea to utilize a rainbow table in the preimage calculation as a way of constructing the i-th
column function fi . Rainbow tables are used to invert one-way functions in general. However, we are not
interested in inverting fi ’s. The principal property of fi ’s is that both their input and outputs are valid hash
values. On the other hand, it is enough to know the position of a hash value in the table to find a preimage
according to Proposition 1. We call the new technique to find a preimage by Proposition 1 as the “position-based
inversion technique.”

The table has m rows and t columns with m · t = N = 2n . On the other hand, the total memory used

is M ≈ m and the time complexity is T ≈ t2 . So, we have the trade-off curve M2 · T = N2 . The best point in

terms of the minimum workload is M = T = 22n/3 .
We do not need to store the first column unlike common rainbow tables. Only Sj ’s and the last column

of the table, h1
t , . . . , h

m
t , are stored in the memory, sorted according to the last column. For a given hash value
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h , first check whether h is in the last column. If not, then check whether CF (h, Pt) is in the last column. If

not, then check whether CF (CF (h, Pt−1), Pt) is in the last column and continue in this manner. The precise
description of the procedure is given in Algorithm 1. If the hash value is in the table, then it is enough to
determine the position of the hash value to give a preimage.
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.

.

.

.

.

h11

h21

hm − 1
1

hm1

...............

...............

...............

...............

Pt − 1

Pt − 1

Pt − 1

Pt − 1

h1t − 1

h2t − 1

hm − 1
t − 1

hmt − 1

Pt

Pt

Pt

Pt

h1t

h2t

hm − 1
t

hmt

S m − 1

S 1

Sm

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

P2

P2

P2

P2

first
column

last
column

S 2

h0

Figure 3. The rainbow table. The arrows point at the next chaining values. The next chaining values are obtained

from the current chaining values shown at the back of the arrows and the message blocks shown on the arrows.

Algorithm 1: Finding a preimage of a given hash value from the rainbow table of size m× t .
Data: hash value h
Result: a preimage of given hash value
for j← t DownTo 0 do

k ← j ;
CV ← h ;
while t > k do

CV = CF (CV, Pk) (Pk is the padding of k blocks);
k + +;

if (CV = hi
t for some i) and (H(Si||P1||P2|| · · · ||Pj−1) = h) then

return Si||P1||P2|| · · · ||Pj−1

If h = hj
i for some i and j , then we can detect this equality by calling the compression function

(t − i)(t − i + 1)/2 times. In this case, a preimage of h is given as

H(Sj ||P1|| · · · ||Pi−1) = h

by Proposition 1. Therefore, in worst case, we have roughly t2/2 CF queries to check whether h is in the
table.
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The overall cost of finding a preimage is roughly 22n/3 steps by using roughly 22n/3 memory.

4. Extensions of basic attack and security implications

Some extensions of the basic attack given in Section 3 can be mounted on the certain improved variants of MD
constructions. We classify these variants into three groups:

• There is an additional output function applied to the final chaining value.

• Randomized hashing by using a salt value. The compression function takes a random salt value as an
input as well.

• The number of message blocks (or bits) is incorporated into the compression function as well.

We explain the extensions of the basic attack in the following three subsections.

4.1. MD construction with an output function

Let the hash function H be an MD construction with a compression function CF as defined in the beginning
of Section 3. Let H ′ be a new hash function defined as

H ′(M) = G(H(M)) where G : GF (2)n −→ GF (2)n′
.

So, H ′ is a hash function of digest size n′ and G is its output function.

Let h′ be given as a hash value computed by H ′ . We first find an element of G−1(h′) to find a preimage

for h′ through H ′ . Let G(h) = h′ . If h is in the rainbow table prepared for H , then we can find a preimage

for h through H which is also a preimage for h′ through H ′ . This is a simple attack to find a preimage for
H ′ .

We can improve the attack by searching an arbitrary element of a set in the rainbow table. Assume
that the workload of finding a preimage for h′ through G is C . Find a set Ph′ of preimages for h′ through

G of cardinality 2k . Then, the workload of forming Ph′ is 2kC . On the other hand, it is enough to find a
preimage for one of the elements of Ph′ through H to find a preimage for h′ through H ′ . So, use a rainbow

table containing 2n−k elements. That is, the number of rows times the number of columns is m × t = 2n−k .
Then, one of the elements of Ph′ is contained in the rainbow table with a significant probability (which is

approximately 1 − exp(−1) ≈ 0.63) by the birthday paradox.

The time complexity for tracing the table is roughly T ≈ t22k whereas the memory is M ≈ m .

Then, m × t = 2n−k gives the trade-off curve as M2T = 22n−k where the optimal point on the curve is

M = T = 2(2n−k)/3 . As a result, we find a preimage in 2(2n−k)/3 + 2kC time by using 2(2n−k)/3 memory.

Remark. Assume that C (the cost of finding a preimage through G) is negligible. For example, G may

be a truncation function or a linear function from n-bit to n′ -bit. Then, the time complexity is dominated by

2(2n−k)/3 . Assume that n > n′ and take k = n − n′ . That is, we take Ph′ as the set of all the preimages of h′

through G , Ph′ = G−1(h′). In this case, the total complexity is 2(n+n′)/3 and hence exceeds the complexity of

the brute force attack, namely 2n′
, if n ≥ 2n′ .
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4.2. Randomized hashing

Let H ′ be given as

H ′(M, r) = H(r||M1 ⊕ r|| · · · ||M � ⊕ r),

which is the RMX mode proposed by Halevi and Krawczyk [10]. Here, r is a random salt value. The randomized
hash can be constructed in other ways as well. For example, a randomized hash function can be generated
through the HAIFA construction, proposed by Biham and Dunkelman [11]. In this case, the problem of finding
a preimage for given hash value can be solved by fixing a value r0 and then applying the attack in Section 3
when r0 is used as a salt. On the other hand, if the problem of finding preimage is stated as finding M for
given h and r such that H ′(M, r) = h , then the basic attack in Section 3 will not work. We think that it is an
interesting and challenging open problem to prepare a table which can be utilized to find a preimage for any
given salt value.

4.3. When compression functions are fed by number of blocks

Assume that the number of message blocks (or bits) is incorporated into the compression function CF ′ of a

hash function H ′ . That is, CF ′ takes the number of message blocks (or bits) hashed up to that point as the
third parameter.

The attack in Section 3 can be applicable to H ′ if last call of CF ′ is not treated differently from the
previous calls. That is, if CF ′ is applied to the final block (the padding block) same as it is applied to the

previous blocks. Then, take S1, . . . , Sm as arbitrary 1-block length different messages. Let hj
0 = CF ′(h0, Sj , 1)

for 1 ≤ j ≤ m , where 1 indicates the length of message block hashed so far (take hj
0 = CF ′(h0, Sj , b) if the

length of message bits is incorporated). Define Pi as the i-th padding which is the padding of a message having

i blocks in length and b bits in each block. That is, Pi = 1||00 · · ·0||ib . Then, the i-th chaining value of j -th

row of the rainbow table is given as hj
i = CF ′(hj

i−1, Pi, i + 1) (take hj
i = CF ′(hj

i−1, Pi, b(i + 1)) if the length

of message bits is incorporated). The basic attack given in Section 3 is still applicable in this case.

5. Near-preimages

Finding a message whose hash value is very close to the given value must be a difficult problem. More precisely,

the workload of finding a message M for a given h such that d(H(M), h) ≤ ε must be at least 2n−e where

d() is the Hamming distance and 2e is the cardinality of the ε-neighborhood of h (the set of values whose

Hamming distances to h are at most ε). This security requirement is analogous to near-collision resistance and
hence we call it as “near-preimage resistance.”

The “near-preimage resistance” is a required security criterion in practice for some applications and
cryptographic protocols where hash values are checked by human eye. For example, the users compare the
hash values of the challenges of the other peer manually to authenticate each other during Diffie-Hellman key
exchange protocol in some applications. Also, the hash values on a PKI certificate are checked manually in
most cases. Moreover, the hash value is truncated in some protocols. near-preimages can result in preimages
after truncation for these protocols.

Finding a near-preimage by using a rainbow table is similar to finding a preimage. If the rainbow table
contains one of the elements h′ of the ε-neighborhood of h , then one can find a preimage for h′ immediately
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through the table. The table must contain m × t = 2n−e elements so as to supply a nonempty collision set

with the ε-neighborhood of h with a significant probability by the birthday paradox. We remark that 2n−e

is also the time complexity of the precomputation phase. So, we gain a factor of 2e during the preparation of
the tables in near-preimage attacks. The table is searched for each element in the neighborhood. Hence, the

time complexity is T ≈ t22e . The trade-off curve is given as M2T = 22n−e . Then, M = T = 2(2n−e)/3 is the
optimal point on the curve.

If the alphabet is the binary alphabet, then the number of elements of the ε-neighborhood of a value is
given in logarithm as

e = log2

(
ε∑

i=0

(
n

i

))
.

In general, the alphabet may contain z elements. Also it may be required that first f digits contain no error
since the first digits are checked more attentively in the manual comparison. In this case, the number of elements
of the ε-neighborhood of a value in logarithm, denoted by e = e(z, f, ε), is given as

e = e(z, f, ε) = log2

(
ε∑

i=0

(z − 1)i

(
n − f

i

))
.

Example. Consider a digest size of 64-bit. Let any digest value be checked by human eye over its 16-digit
hex value. Assume that a significant percentage of people do not generally notice the difference at a glance
between two 16-digit vectors in hexadecimal whose first 4 digits are equal and whose number of different digits
(Hamming distance) is at most five. Then, for a given hash value h , one can defeat the security of the system

by finding a message M such that d(H(M), h) ≤ 5 in hex and first four digits of H(M) and h are equal. Then

it can be perceived that H(M) and h are equal, which may falsely bring about a successful authentication.

The number of elements of the ε-neighborhood of h in logarithm, denoted as e = e(16, 4, 5), is given as

e = e(16, 4, 5) = log2

(
5∑

i=0

15i ·
(

12
i

))
≈ 29.2.

So, the on-line phase costs 232.9 steps with 64.9 GB memory to recover the message M , within quite practical
limits. This is an interesting example combining exploiting human behavior with cryptanalysis.

6. Security implications

We have examined the extensions of basic preimage attack on several improved variants of the MD construction
in the previous sections. It turns out that the basic attack is still better than the brute force attack in some
circumstances.

Recall that both the time complexity and the memory complexity of the preimage attack is 2(n+n′)/3

when the n-bit hash value is shortened to n′ -bit by a simple function. So, the preimage attack is better than
the brute force attack if n < 2n′ . Therefore, we have a new security criterion in order to foil our attack: The
length of the chaining value should be at least twice as large as the length of the digest value. This is indeed a
surprising result. The analogous result is given for stream ciphers so as to make them resistant against certain
trade-off attacks (e.g. [12, 13]) and adopted by a design criterion for security.
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7. Success rates and experimental results

We designed two toy MD constructions with digest sizes 32-bit and 40-bit in order to verify the basic attack
given in Section 3. The length of the message blocks was 128-bit for both of the hash functions. These hash
functions were deduced from MD5 and behaved as random functions in our statistical tests.

The success rate of a table (the probability that an arbitrary hash value is in the table) is given as

Ps(m, t) = 1−
t∏

i=1

(
1 − mi

2n

)

where mi is the number of different elements in the i-th column. This probability is bounded above by

1 − (1 − m/2n)t which is achieved when mi = m for all i = 1, . . . , t (such a table is called a “perfect table”).
On the other hand,

1 − (1 − m

2n
)t ≈ 1 − exp(−mt

2n
)

which is approximately 1 − exp(−1) ≈ 0.63 when mt ≈ 2n . This success rate diminishes to 0.55 for arbitrary

tables (see [8]). The success rates were 0.556 among 15698 tries and 0.565 among 1414 tries, as expected, for
the 32-bit hash and for the 40-bit hash respectively in the experiment.

The probability that a near-preimage of an arbitrary hash value is in the perfect table is given as

1 − (1 − 2em

2n
)t ≈ 1 − exp(−2emt

2n
)

since mt ≈ 2n−e this value is approximately equal to 1 − exp(−1) ≈ 0.63. In our experiments, we ran 10000
tries and we found 6411 near-preimages whose distances are less than or equal to 1. The experimental success
rate is 0.641 as expected since we use a much smaller table having almost no internal collisions.

A rough estimation for the time complexity is given as T ≈ t2 where the constants and the overhead
due to false alarms is disregarded. In a recent study, a rigorous formula for the average time complexity for one
rainbow table is given as [14]

Tav =
m

2n

t∑
k=1

(
1 − m

2n

)k−1

·
(

k(k − 1)
2

+
t∑

i=t−k+1

i

(
1 − m

2n
− i(i − 1)

t(t − 1)

))

+
(
1 − m

2n

)t

·
(

t(t − 1)
2

+
t∑

i=1

i

(
1 − m

2n
− i(i − 1)

t(t − 1)

))
. (1)

In our experiment, we had two cases: (n, m, t) = (32, 221, 211) and (n, m, t) = (40, 226, 214). The theoretical

average time complexities for these cases are 219.25 and 225.25 respectively according to Equation 1. The
experimental results verified these numbers. Table 1 summarizes the results. For example, the average time

complexity for the 40-bit hash is 225.5 in the table, which is very close to the theoretical result, 225.25 . On the
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Table 1. Experimental results. SA: Among Successful Attempts. UA: Among Unsuccessful Attempts. TA: Among

Total Attempts. ATC: Average Time Complexity. ANFA: Average Number of False Alarms.
N SA UA TA

232 218.6 219.9 219.3

ATC
240 224.8 226.1 225.5

232 28.3 210 29.3

ANFA
240 211.3 213 212.3

other hand Table 1 shows the average number of false alarms both for 32-bit and for 40-bit hash values. For

example, the average number of false alarms for the 32-bit hash is 29.3 .
A false alarm occurs whenever the first part of the if statement in Algorithm 1 holds and the second

part does not hold. This corresponds to the fact that chains starting at different chaining values collide and

merge. In general, the expected number of false alarms is bounded above by mt(t + 1)/2n+1 [8]. For our case,

mt = 2n . Hence, the average number of false alarms in the worst case (all the table is searched) is (t + 1)/2.
The average number of false alarms is given in Table 1.

8. Conclusion and discussion

We have developed a new way of constructing rainbow tables for compression functions, containing valid hash

values in order to find preimages. In this way, we can reduce the security level to 22n/3 for conventional MD
constructions where n is both the length of the chaining value and the digest size. On the other hand, one
significant drawback of the rainbow tables is that the precomputation step costs as much as the workload of
brute force. However, precomputation is performed offline and only once.

We have introduced the “position-based inversion technique” to overcome the MD strengthening and
hence utilize the outputs of a compression function as valid hash values while preparing the rainbow tables. In
this way, the hash values in the table are combined to each other through the compression function along any
row of the table. We have developed an algorithm (Algorithm 1) to recover the position of a given hash value
in the table and to provide a preimage from its position in the table. The connection between the position of a
point and its preimage is given in Proposition 1. This property is the main difference between our rainbow tables
and the conventional rainbow tables or Hellman tables and helps in overcoming MD strengthening. Indeed, the
position does not help to invert the point in the conventional usage of the rainbow tables.

We have extended our attack on several variants of MD constructions such as using output functions,
incorporating the length of message blocks or using random salt values. We have calculated the complexity of
finding preimages when these new parameters were introduced. Moreover, we have introduced a new notion
which we call “near-preimage” and mounted an attack to find near-preimages. Moreover, we have given some
examples of applications where the near-preimage attack scenario is quite realistic. The security threshold of
near-preimage resistance is much less than that of preimage resistance. Hence, the near-preimage attack through
a rainbow table can be a practical attack for small-sized and moderate-sized hash functions.

We have verified the results experimentally by designing two hash functions having digest sizes 32-bit
and 40-bit from MD5. We have prepared two tables for these hash functions. Then, we have computed the
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time complexities and the success rates from the experimental data collected by several tries.

It may be argued that rainbow tables can never be sufficiently effective in practice for large digest sizes.

It is simply impossible to prepare a table of size, for instance 2512 . On the other hand, not all the hash function
applications require large digest sizes. Indeed, rainbow tables can be real threats for some hash functions of
small digest sizes to find preimages with workloads within practical bounds.

Several ubiquitous applications of cryptographic schemes using hash functions of small digest sizes have
emerged recently both in the literature and in industry. Some of the electronic payment schemes, especially
micropayment schemes such as “PayWord” and “MicroMint” [15], “Millicent” [16] and “NetBill” [17], require
small sized hash functions due to efficiency reasons. Moreover, the authentication protocols based on human
comparison of short strings in pervasive computing utilizes hash functions of small digest sizes.

One pervasive application domain is the usage of RFID-tag deployed devices. Some of the RFID schemes
make use of small hash functions to provide privacy and authentication [18, 19]. In particular, the security
protocols in many tag based applications do not require the property of collision resistance. The security is
based on one-wayness property. For example, user privacy is protected through hash chain mechanism, which
requires particularly preimage resistance, in some RFID schemes [18]. dm-present-128 is one of the recent

hash functions designed for such protocols [9]. dm-present-128 is a Davies-Meyer construction based on the
block cipher present. It has 128-bit block size and 64-bit digest size. Hence, it is possible to find preimage in

approximately 243
present calls with 247 bytes of memory, quite within the practical domain after preparing

the rainbow table even though it has relatively large block length.

There may be essentially two ways of foiling the preimage attack we have presented. The first way is
that the length of the chaining value (the internal state size) must be at least twice as large as the length of the

digest size. The results in [20] due to Lucks also support this argument. Indeed, this criterion is even necessary
to supply full security against finding a second preimage to a given message of arbitrary length. In this manner,

the brute force of finding a second preimage for an n-bit hash function costs 2n steps rather than 2n−k steps

for a given message of length 2k . Nevertheless, some parts of the cryptology community deem 2n−k as the
security level of second preimage resistance such as NIST for SHA-3 contest [6].

The second way of avoiding the attack is introducing a random salt and determining the initial chaining
value by the random salt before incorporating any message into a compression function. However, randomized
hash functions may not be compatible with some protocols using hash functions having only one parameter.
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