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Abstract

This paper presents a novel stabilization result for the Furuta pendulum for a large region of attraction

including almost all of the upper half plane. The solution is obtained via constructing a Lyapunov function

after set of coordinate changes. Then, a set of differential equations are solved to achieve asymptotic

stability which is proved in accordance with La Salle’s invariance principle. The effectiveness of the proposed

stabilization method is illustrated with simulation studies.
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1. Introduction

The Furuta pendulum was first introduced in 1991 [1]. The system consists of an actuated arm fixed on a
rotating shaft and an unactuated pendulum which is pivoted at the end of the arm. The rotating axis of the
pendulum is perpendicular to the rotating axis of the arm. The pendulum can only be rotated by applying torque
on the arm. Since the lack of direct control input to the pendulum, the Furuta pendulum is an underactuated
mechanical system. This particular pendulum system is an excellent benchmark problem for control studies and
it is one of the most complex two-degree-of-freedom underactuated mechanical systems [2]. The stabilization
problem of the Furuta pendulum is simply to bring the pendulum to the unstable equilibrium point, namely
upward position, by rotating the arm whose angular position is also supposed to be brought to an exact position
that is assigned before hand.

The stabilization problem of the Furuta pendulum has attracted the attention of many researchers and
numerous control schemes have been proposed in the literature. Although many different control schemes
of linear control techniques have been tested on the system, in all, the system is only stabilized in a small
interval in the neighborhood of the unstable equilibrium point. Due to the lack of (direct) control input to
the pendulum, the system is not fully feedback linearizable, and resulting nonlinear control design for Furuta
pendulum becomes more difficult compared to fully actuated mechanical systems. Nevertheless, in [3] a partial

∗Corresponding author: Department of Control and Automation Engineering, Yıldız Technical University, İstanbul-TURKEY
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feedback linearization procedure is introduced for underactuated mechanical systems which can also be applied
to Furuta pendulum system.

In the literature, the control studies for Furuta pendulum are generally analyzed in two main problem
groups. The first one is based on the swing-up the pendulum from its hanging position while the other aims
the stabilization of the pendulum in a local interval [2].

In [4], a swing-up control strategy using a subspace projected from the whole state space is proposed,
and robustness of the proposed method is shown by means of experimental studies. Some properties of simple
strategies for swinging-up the pendulum based on energy control is studied in [5] and it is concluded with that
pendulum swing-up is closely related to the ratio between the acceleration of the pivot and the acceleration
due to gravity. Another swing-up approach is proposed in [6] which is based on the speed-gradient method.
The obtained control law was supported by means of simulation and experimental studies. Also an interesting
method for swing-up the Furuta pendulum is introduced in [7]. In this method, the swing-up is provided by
bringing the system to a homoclinic orbit.

On the other hand, in [8] a change of coordinates is introduced to simplify the matching equations derived
from total energy shaping control methods. Although a solution is obtained for Furuta pendulum, the region
of attraction of the system depends on physical system parameters. A similar result is given in [9] where the

controller is designed based on a Lyapunov function. Olfati-Saber [10] gives a methodology to obtain a normal
form for a class of underactuated mechanical systems and applies fixed point backstepping method to the Furuta
pendulum. More recently, Lyapunov’s direct method has also been used to stabilize a class of underactuated
mechanical systems in [11, 12] with the example of Furuta pendulum. In this approach, however, the designed

control input applied to the system is dynamic and the stability analysis is skipped. In [13], a procedure is
given to obtain a static feedback controller for the ball and beam system which is inspired from the approach
proposed in [11].

Inspired from the direct Lyapunov methods discussed above, this paper addresses the problem of achieving
the stabilization of Furuta pendulum on unstable equilibrium point with a static feedback controller. Accordingly
the stabilizing controller is produced via partial feedback linearization and Lyapunov’s direct method with
suitable and simplifying coordinate changes. Then, asymptotic stabilization is provided for the system with the
region of attraction including almost all points in the upper half-plane of the pendulum with no dependence on
the physical parameters. This result represents the main contribution of this paper comparing to other similar
studies [2, 8, 9] in which the local asymptotic stabilization is obtained for the Furuta pendulum with the region
of attraction depending on the physical parameters of the system. It should be mentioned that the physical
parameters of the Furuta pendulum are considered to be exactly known in the controller design procedure.

The remainder of this paper is organized as follows. Section 2 is devoted to derive the dynamic equations
of motion of the pendulum on a cart system. The control problem is formulated in Section 3. Controller design
procedure and stability analysis are discussed in Section 4. Following, in Section 5, illustrative simulation
studies is presented. Lastly, Section 6 concludes the paper.

2. Dynamics

Figure 1 illustrates the Furuta pendulum considered in this study. Lagrangian of the system can be derived as

L =
1
2

(
(I1 + m1l

2
1)q̇

2
1 + 2m1l1L2 cos(q1)q̇1q̇2 + (I2 + m2l

2
2 + m1L

2
2 + m1l

2
1 sin2(q1))q̇2

2

)
− m1l1g cos(q1), (1)
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Figure 1. A schematic of the Furuta Pendulum, together with its physical parameters.

where q1, q2 are the pendulum angle from the vertical, and the arm angle, respectively. Quantities q̇1, q̇2 are
the angular velocities of the pendulum and the arm, and g is gravitational acceleration. The rest of the system
parameters are given in Table 1. Dynamic equations of motion for the Furuta pendulum can be obtained by
applying Euler-Lagrange equations as

θ1q̈1 + θ2 cos(q1)q̈2 − θ3 sin(q1) cos(q1)q̇2
2 − θ4g sin(q1) = 0 (2)

θ2 cos(q1)q̈1 + (θ5 + θ3 sin2(q1))q̈2 − θ2 sin(q1)q̇2
1 + 2θ3 sin(q1) cos(q1)q̇1q̇2 = τ, (3)

where τ , the control input, is the applied torque to the shaft of the arm and θi (i=1,. . . ,5) are positive system

parameters defined as θ1 = I1 + m1l
2
1 , θ2 = m1l1L2 , θ3 = m1l

2
1 , θ4 = m1l1 , θ5 = I2 + m2l

2
2 + m1L

2
2 .

3. Problem formulation

This section is devoted to the partial feedback linearization procedure and changes of coordinates to simplify
the control design. The first step of the partial feedback linearization (see [3]) is to calculate q̈2 from (2) as

q̈2 = − θ1

θ2 cos(q1)
q̈1 +

θ3 sin(q1)
θ2

q̇2
2 +

θ4g sin(q1)
θ2 cos(q1)

. (4)

Note that, to obtain (4), cos(q1) should be non-zero which sets the region of attraction to the upper half-plane

of the pendulum. After plugging (4) into (3) and rearranging (2) and (3),

θ1

θ2 cos(q1)
q̈1 + q̈2 −

θ3

θ2
sin(q1)q̇2

2 − θ4g sin(q1)
θ2 cos(q1)

= 0 (5)

(θ2 cos(q1) +
θ1(θ5 + θ3 sin2(q1))

θ2 cos(q1)
)q̈1 − θ2 sin(q1)q̇2

1 + 2θ3 sin(q1) cos(q1)q̇1q̇2

+
θ3(θ5 + θ3 sin2(q1)) sin(q1)

θ2
q̇2
2 +

θ4(θ5 + θ3 sin2(q1))g sin(q1)
θ2 cos(q1)

= τ. (6)
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Table 1. List of parameters and values assigned them in the mechanical system.

Description Symbol Value Unit
Mass of the pendulum m1 67.9× 10−3 kg
Mass of the arm m2 0.2869 kg
Length of the pendulum L1 0.14 m
Length of the arm L2 0.235 m
Distance of the center of mass of the pendulum to pendulum’s pivot point l1 0.07 m
Distance of the center of mass of the arm to arm’s pivot point l2 0.1175 m
Inertia of the pendulum I1 5.5452× 10−5 kg·m2

Inertia of the arm I2 1.9× 10−3 kg·m2

It should be noted that q̈2 has been canceled out in (6). Notably, partially linearizing control input can be
selected as follows:

τ = −θ2 sin(q1)q̇2
1 + 2θ3 sin(q1) cos(q1)q̇1q̇2 +

θ3(θ5 + θ3 sin2(q1)) sin(q1)
θ2

q̇2
2

+
θ4(θ5 + θ3 sin2(q1))g sin(q1)

θ2 cos(q1)
+ (θ2 cos(q1) +

θ1(θ5 + θ3 sin2(q1))
θ2 cos(q1)

)u1, (7)

where u1 is the new control input.

We now define the coordinate transformation (see [14]),

qr = γ(q1) + q2, (8)

where γ(q1) is to be defined. The first and the second time derivatives of the new coordinate qr can be
calculated as

q̇r = γ′(q1)q̇1 + q̇2, (9)

q̈r = γ′(q1)q̈1 + q̈2 +
d

dt
(γ′(q1))q̇1, (10)

where γ′(q1) denotes the derivative of γ(q1) with respect to q1 . After defining γ′(q1) = θ1
θ2 cos(q1)

, γ(q1) can be

calculated as

γ(q1) =
2θ1

θ2
arctanh(tan(

q1

2
)). (11)

Equations (5) and (6) can be rearranged by using (7), and introducing a new coordinate, qs = q1 , we get

q̈r −
θ3 sin(qs)

θ2
q̇2
r +

2θ1θ3 sin(qs)
θ2
2 cos(qs)

q̇rq̇s −
(

θ2
1θ3 sin(qs)
θ3
2 cos2(qs)

+
θ1 sin(qs)
θ2 cos2(qs)

)
q̇2
s − θ4g sin(q1)

θ2 cos(qs)
= 0 (12)

q̈s = u1. (13)

In order to simplify analysis further, we introduce the following change of coordinates (see [13]):

[
pr

ps

]
︸︷︷︸

p̄

=
[
λr(qs) 0

0 λs(qs)

]
︸ ︷︷ ︸

Λ(qs)

[
q̇r

q̇s

]
︸︷︷︸

˙̄q

, (14)
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TÜRKER, GÖRGÜN, CANSEVER: Lyapunov’s direct method for stabilization of the Furuta pendulum,

where λr and λs denote non-zero functions which will be assigned. By using (14) and its time derivative, and

setting 1

u1 =
1
λs

(
−λ′

s

λ2
s

p2
s + c3pr + c4ps + g2 + u2

)
(15)

where c3 , c4 and g2 will be assigned and u2 is the new control input, then the closed-loop system can be
written as

˙̄q = Λ−1p̄ (16)

˙̄p = Cp̄ + G + Fu2 (17)

where

C =
[
c1 c2

c3 c4

]
, G =

[
λrθ4g sin(qs)

θ2 cos(qs)

g2

]
, F =

[
0
1

]

with

c1 =
θ3 sin(qs)

θ2λr
pr −

θ1θ3 sin(qs)
θ2
2 cos(qs)λs

ps +
λ′

r

2λrλs
ps

c2 = − θ1θ3 sin(qs)
θ2
2 cos(qs)λs

pr +
θ2
1θ3 sin(qs)λr

θ3
2 cos2(qs)λ2

s

ps +
θ1 sin(qs)λr

θ2 cos2(qs)λ2
s

ps +
λ′

r

2λrλs
pr.

We pursue from here to the procedure which aims to design stabilizing controller.

4. Control design

In order to find a stabilizing controller, the candidate Lyapunov function is of the form

V (q̄, p̄) =
1
2
p̄TK(q̄)p̄ + φ(q̄), (18)

where K(q̄) ∈ R
2×2 is a positive definite and symmetric matrix, φ(q̄) is a scalar function that has to have

(at least) a local minimum at the point which the system will be driven to. Taking the time derivative of the
Lyapunov function yields

V̇ = p̄TK(q̄) ˙̄p +
1
2
p̄TΛ−1(∇q̄(K(q̄)p̄)T))p̄ + p̄TΛ−1∇q̄φ. (19)

After substituting (17) into (19), a straight forward calculation gives

V̇ = p̄T (KC +
1
2
Λ−1(∇q̄(K(q̄)p̄)T))︸ ︷︷ ︸

W

p + pT (KG + Λ−1∇q̄φ)︸ ︷︷ ︸
Z

+pTKFu2. (20)

If it is achieved to compose a skew-symmetric W (q̄, p) and Z(q̄) = 0, then the time derivative of the
Lyapunov function turns out to be

V̇ = pTKFu2, (21)
1After that point, for all expressions that are functions of q̄ and p̄ or their entries, their dependence will be written only the

first time they appeared for the simplicity.
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which can easily be made negative semi-definite by choosing an appropriate u2 ; so that the system becomes at
least stable. Notably, next challenge is assigning appropriate K and Λ such that W is skew-symmetric and
Z = 0. Under the direction of similar approaches [8, 12, 13], the matrix K is selected as dependent only on qs .
Introduce

K(qs) =
[
k1(qs) k2(qs)
k2(qs) k3(qs)

]
, (22)

then one can compute

W =

[
k1c1 + k2c3 k1c2 + k2c4

k2c1 + k3c3 + k′
1pr

2λs
+ k′

2ps

2λs
k2c2 + k3c4 + k′

2pr

2λs
+ k′

3ps

2λs

]
. (23)

The aim here is to construct the skew-symmetric matrix W . Note that c3 and c4 in the entries of W are also
the components of feedback signal given by equation (15), thus, assigning these parameters properly provides

W to be skew-symmetric. Parameters c3 and c4 can be calculated from equation (23) to satisfy [W ]ii = 0 as

c3 = −k1

k2
c1 (24)

c4 = −k2

k3
c2 −

k′
2pr

2k3λs
− k′

3ps

2k3λs
. (25)

Once c3 and c4 are calculated they can be plugged into the other entries of W , in order to obtain the
differential equation [W ]12 + [W ]21 = 0 that can be constituted as

−(k1k3 − k2
2)

k2
c1 +

(k1k3 − k2
2)

k3
c2 −

k′
2k2 − k′

1k3

2k3λs
pr −

k′
3k2 − k′

2k3

2k3λs
ps = 0. (26)

Plugging c1 and c2 into (26) gives[(
k1k3 − k2

2

) (
−θ3 sin(qs)

θ2k2λr
− θ1θ3 sin(qs)

θ2
2k3 cos(qs)λs

+
λ′

r

2k3λrλs

)
− k′

2k2 − k′
1k3

2k3λs

]
pr

[(
k1k3 − k2

2

) (
θ1θ3 sin(qs)

θ2
2k2 cos(qs)λs

+
θ1 sin(qs)λr

θ2k3 cos2(qs)λ2
s

+
θ2
1θ3 sin(qs)λr

θ3
2k3 cos2(qs)λ2

s

− λ′
r

2k2λrλs

)
− k′

3k2 − k′
2k3

2k3λs

]
ps = 0, (27)

which needs to be satisfied for all pr and ps . That means, both the expressions in brackets in (27) have to be
equal to zero which constitutes two differential equations with four unknowns k1, k2, k3, λr and a free parameter

λs . Selecting λs = z1λr

cos(qs) , k1 = a + cos2(qs) and k2 = k3 = cos2(qs) with the constants of z1 �= 0 and a > 0

brings these differential equations into the form of

α1 sin(qs) +
cos(qs)λ′

r

2z1λr
= 0 (28)

α2 sin(qs) −
cos(qs)λ′

r

2z1λr
= 0, (29)

where
α1 = −θ3

θ2
− θ1θ3

z1θ2
2

α2 = θ1θ3
z1θ2

2
+ θ1

z2
1θ2

+ θ2
1θ3

z2
1θ3

2
.

(30)
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Note that with a > 0, det(K) = a cos2(qs), which is positive definite ∀qs ∈ (−π/2, π/2). Adding both

sides of (28) and (29) yields

α1 + α2 = 0. (31)

This condition can be satisfied by setting z1 as

z1 =

√
θ1θ2

2 + θ2
1θ3

θ2
2θ3

. (32)

After satisfying the condition (31), equation (29) can be rewritten as

2z1α2 sin(qs) −
cos(qs)λ′

r

λr
= 0 (33)

from which
λr = d1[cos(qs)]−2z1α2 (34)

can be calculated with the nonzero integration constant d1 . With that last result, the W is provided to be
skew-symmetric, which means the first term on the right hand side of the derivative of the candidate Lyapunov
function in equation (20) vanishes.

The next step in design is to set the second term of equation (20) to zero. To achieve this, the vector Z

is needed to be equal to zero for every value of q in the region of attraction. The vector can be given as

Z =
[
k1 k2

k2 k3

][
λrθ4g sin(qs)

θ2 cos(qs)

g2

]
+

[ 1
λr

0
0 1

λs

] [
∂φ
∂qr
∂φ
∂qs

]
. (35)

In order to satisfy Z = 0, g2 can be calculated from the first row of (35),

g2 = −k1λrθ4g sin(qs)
k2θ2 cos(qs)

− 1
k2λr

∂φ

∂qr
. (36)

Note that in (36), g2 is another feedback term which is used for setting Z to zero. Next, partial differential

equation is obtained as following by using the second row of equation (35):

−k1k3 − k2
2

k2

λrθ4g sin(qs)
θ2 cos(qs)

− 1
λr

∂φ

∂qr
+

1
λs

∂φ

∂qs
= 0. (37)

This PDE is equivalent to the second term on the right hand side of equation (20), so satisfying that PDE
cancels out the second term in the time derivative of the candidate Lyapunov function. Moreover, the solution
to that equation also constructs the second term in candidate Lyapunov function. Therefore, the solution has
to have a (local) minimum at the desired equilibrium. After plugging all results in, a solution to that PDE can
be calculated as

φ(qr, qs) = d2 +
ad2

1z1θ4g

θ2(4z1α1 + 4)
[cos(qs)]−4z1α1−3 + d3

(
1
z1

(qr − q∗r) + 2arctanh
(
tan

(qs

2

)))2

. (38)

where q∗r denotes the desired angular position for the arm angle.

Stability analysis of the designed control scheme can be summarized with the following result.
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Proposition 1 A Furuta pendulum system (2), (3) in closed loop with the control input given by (7) guar-

antees an asymptotically stable equilibrium at zero with the region of attraction containing the set (q̄, p̄) ∈
((−π/2, π/2) × R

3) .

Proof The Lyapunov function (18) is positive definite in the region of attraction with φ(q̄) given in (38) and

positive definite and symmetric matrix K ∈ R
2×2 defined in (22). Assigning

u2 = −kF TKp̄ (39)

for some constant k > 0, with the inclusion of the skew-symmetric W and Z = 0, the time derivative of the
Lyapunov function (20) can be rewritten as

V̇ = −kp̄TKFF TKp̄, (40)

which is negative semi-definite. Thus, V (q̄, p̄) is non-increasing implying q̄ and p̄ are bounded in the region of

attraction. Note that q is also bounded, since qr and γ(qs) is bounded in (q̄, p̄) ∈ ((−π/2, π/2) × R
3).

We invoke La Salle’s invariant set principle (see [15]), in order to prove the asymptotic stability of the

closed loop system with qs ∈ (−π/2, π/2). Define the set Ωc̄ ∈ ((−π/2, π/2) × R
3) as

Ωc = {(q, p) ∈ ((−π/2, π/2)× R
3|V (q̄, p̄) < c)} (41)

with
c̄ = sup{c > 0 : V (q̄, p̄) < c | Ωc is bounded}. (42)

To proceed, we need to show the largest invariant set in Ωc̄ . Let’s concentrate again on (40) which can be

rewritten by using (8) and (14) as

V̇ = −k(k2pr + k3ps)2 = −k((k2λrγ
′ + k3λs)q̇1 + k2λr q̇2)2. (43)

It can be concluded from (43) that V̇ is equal to 0 only when q̇2 = (k2λrγ′+k3λs)
k2λr

q̇1 . In that expression, the

equality (k2λrγ′+k3λs)
k2λr

= 2θ1
θ2 cos(q1)

is provided which means q̇2 = βq̇1 has to be satisfied with β �= 0 for V̇ in

(43) to be equal to zero. It can be shown using this information that any limit cycle does not exist. Note
that any equilibrium point with q1 �= 0 in the region of attraction can be obtained with only the control input
compensates the gravity force, however, that means a force on q2 which causes q̈2 �= 0 and q̇2 �= 0. So that,

V̇ = 0 with q̇1 �= q̇2 can only be true for a moment which implies V̇ can not stay equal to 0 when q̇1 �= q̇2 .

On the other hand, q̇1 = q̇2 is only satisfied under the velocities of both coordinates are equal to zero
which implies also q̈1 = q̈2 = 0. Recalling the dynamic equations (2) and (3) with the control input given by

(7), (15) and (39), one can observe that these conditions only true when q1 = q2 = 0. Finally it is easy to show

that from (7), (15) and (39), the control input is also bounded under the considerations above. This concludes
the proof.

5. Simulation results

Three simulation studies are performed on Matlab Simulink r© to illustrate the performance of the designed
controller. The design parameters of the control signal and the initial conditions are given in Table 2 for each
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Table 2. The Initial values and the control design parameters used in the present work’s simulation studies.

q1(0) (rad) q2(0) (rad) q̇1(0) (rad/s) q̇2(0) (rad/s) q∗2 (rad) k a d1 d3

Simulation 1 π/6 0 0 0 0 20 5 1 10

Simulation 2 π/3 0 0 0 −π/3 20 5 1 10

Simulation 3 π/2 − π/128 0 0 0 0 25 5 −10 15

simulation. Figures 2-4 show the results for the change of the pendulum angle, the arm angle and the control
signal with respect to time. Some conditions for the effects of the design parameters and the initial values on
the performance are observed during the simulation studies.

It is worth emphasizing that, as the pendulum angle approaches to the borders of the interval (−π/2, π/2)
initially, the control signal increases as expected, because of the necessity of the power to stabilize the system.
This condition can be observed in Figure 4. Since the pendulum angle is almost perpendicular to the effect of

gravity, the control signal takes huge values (∼ ±1.5 × 105 Nm) at the beginning in order to compensate for
gravity. On the other hand, different initial conditions of the arm have only a little effect on the control signal
while they have almost no effect on the transient response.

The effects of the design parameters on the transient response can be summarized as follows. The positive
constant k is proportional to the settling time while it is inverse proportional to the oscillations, up to a certain
value, depending on the system parameters. As k increases after that value, oscillations at the beginning and
the settling time increase. A tuning around the value 20 for k gives the best performance for the system
considered in this study. The constant d1 is proportional to the oscillations and the settling time, a selection
as d1 < −1 gives a better performance and the response gets better as d1 decreases. The positive constant d3

is proportional to the settling time and oscillations. Finally, the positive constant a has the same effect as the
constant d1 .
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Figure 2. Change of the pendulum angle q1 , the arm angle q2 and the control input t for Simulation 1.
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Figure 3. Change of the pendulum angle q1 , the arm angle q2 and the control input t for Simulation 2.
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Figure 4. Change of the pendulum angle q1 , the arm angle q2 and the control input t for Simulation 3.
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Comparing Figure 2 and Figure 3, one can realize that the change of the settling time is very small while
the change of the control input is very big with an increase on oscillations although there are only differences
on the initial values. Also in Figure 4, almost no change on the settling time is observed while there is a big
increase on oscillations and the control input. It can be concluded by mentioning that, the effects of the initial
values are significant on oscillation and the control signal while the control parameters mostly effect the settling
time.

6. Conclusion

A stabilization algorithm based on feedback linearization, coordinate transformations and direct Lyapunov
method has been proposed for the Furuta pendulum. It has been proven that the designed controller asymptot-
ically stabilizes the system if the pendulum is initially in the upper half plane with no dependence on physically
system parameters. The obtained controller stabilizing the pendulum has been successfully supported by means
of the computer simulations and the results were discussed in the related section. It is also shown in simulation
studies that the control algorithm achieves asymptotic stabilization even the pendulum is initially very close to
the horizontal plane. A generalization of the proposed method and robust controller design are considered as
future studies.
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