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Abstract

Experimental and theoretical bit error rate performance evaluations of blind and nonblind training tech-

niques are obtained by using a single-carrier WiMAX (IEEE 802.16-2004) radio for high-order quadrature

amplitude modulation channels. Instead of using a certain type of channel profile, this study concentrates

on true frequency-selective Rayleigh fading channels and also evaluates the fast fading scenario of Rayleigh

channels in a real-time WiMAX radio environment around 3.5 GHz. The popular least mean squares (LMS)

learning algorithm and constant modulus learning algorithm (CMA) are used as benchmarks in an investiga-

tion of nonblind and blind trainings, namely recursive least squares (RLS), modified-CMA, normalized-CMA,

and fuzzy-CMA. The simulation results demonstrate that the theoretical and experimental studies are com-

patible with each other and extremely satisfying.

Key Words: Experimental bit error rate, adaptive blind training, equalization, WiMAX (IEEE 802.16-
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1. Introduction

The IEEE 802.16 working group was set up in 1999 to develop a new standard for broadband wireless access
(BWA) and it published the first IEEE 802.16 standard in October 2001. In the first phase of the standard,

single-carrier (SC) transmissions for 11-66 GHz frequency regions and multi-carrier (MC) transmissions for sub-
11 GHz frequency regions were considered for fixed wireless access. With the publication of IEEE 802.16-2004
[1], these applications were extended to SC transmissions for sub-11 GHz systems. The 802.16e standard was
also ratified in December 2005 allowing the upgrade from fixed BWA systems to mobile service provision up to
vehicular speeds for sub-11 GHz systems [2].

The rapidly increasing usage of communication services leads to a continuous demand for faster and more
robust data transmission systems and also for more efficient bandwidth usage. The major impairments affecting
mobile communication systems are additive white Gaussian noise (AWGN) and intersymbol interference (ISI)
where multipath fading causes considerable destruction in the amplitude and phase of the received signal.
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Additionally, since the obstacles (moving objects, people etc.) are changing between the receiver and the
transmitter, the channel established between these 2 units continuously varies. One of the best ways to mitigate
these effects is to use blind or nonblind equalization/training techniques.

However, channel equalizer filter techniques have challenging convergence problems and implementation
difficulties. In the telecommunications industry, equalizers are considered to be an extra cost for the system;
thus, the simplest method in terms of implementation and training is chosen, without paying considerable
attention to its performance. Simplicity is also very important for high-speed data communication systems;
therefore, complex algorithms such as recursive least squares (RLS) or maximum likelihood sequence estimation

(MLSE) algorithms are generally considered inappropriate even for high-performance equalizations. The most

important part of the least mean squares (LMS) algorithm and the constant modulus algorithm (CMA) are
their simplicity, as well as their stability and reliability; therefore, they have been used in several applications
and implemented in many different units, such as in a digital signal processing algorithm [3] or in a field-

programmable gate array device [4]. However, the training performance and speed of the LMS and CMA
algorithms are quite poor in the case of equalization, since they solve an inverse convolution problem that may
well extend to infinity. It is therefore necessary to improve the speed and accuracy of the LMS and CMA
algorithms for high-performance applications.

The convergence rate of the LMS and CMA training algorithms is quite sensitive to the step-size
parameter, which can be adjusted by monitoring the error value and other system parameters, of the update
equation for an accurate and robust training. Using a large step size will cause a fast initial convergence but
will result in larger fluctuation in the steady state; the results are opposite when a small step size is used.
There are many successful works in the literature on controlling the step-size parameter of LMS and CMA
algorithms to obtain better convergence and error performance using analytical or fuzzy logic-based approaches
[5-11]. The variable step-size methods are also applied to CMA using analytical and recursive optimization

techniques, as in the work by Du et al. [12]. However, this work, inspired by [5-11], aimed to design a training

trajectory for the simple CMA using a fuzzy logic controller (FLC) loop, which provides a simple and more
deterministic control on the training trajectory. Therefore, this study concentrated on fuzzy knowledge-based
rules, and the rules were set up to learn the training behavior of the CMA and then adjust the step size due to
current conditions such as the error level and trend of the mean square error. After obtaining stable training,
the algorithm searches for the best decision by either increasing the step size to increase the convergence rate
or decreasing the step size to execute fine tuning due to error constraints. The step size in the fuzzy logic-based
LMS (F-LMS) [13] and fuzzy-CMA (F-CMA) [14] algorithms is modified by means of a sequence of operation

that is adaptable via an instantaneous error value [15].

Thus far, blind equalizations have not been considered for commercial and high performance applications.
Because the use of higher level of modulations, such as 16-QAM and 64-QAM, is possible in the WiMAX
standard, this study investigates analyses of 16-QAM and 64-QAM modulations. For comparison, this study
evaluates the bit error rate (BER) performance analyses of blind and nonblind equalizations in a real-time
WiMAX radio experimental system, as well as in simulations of the system for frequency-selective Rayleigh
fading channels. The obtained comparative BER performances for the blind and nonblind equalizations were
quite comprehensive for indoor SC WiMAX radio applications.

The rest of the paper is organized as follows: Section 2 introduces the CMA-based adaptive blind equalizer
trainings, which are, to the author’s knowledge, the best blind training techniques. Section 3 explains the
experimental system and measurement conditions. Section 4 presents the obtained BER performances to verify
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the feasibility and robustness of the algorithms and finally, the paper is concluded in Section 5

2. Blind channel equalization

The baseband model of a digital communication channel can be characterized by a symbol-spaced finite impulse
response (FIR) filter and an AWGN source. The received signal at the output of wideband channel vk is given
by:

vk =
M∑

i=0

hixk−i + ηk, (1)

where xk is the transmit data sequence, assumed to be independent and identically distributed (iid); hi is the
ith tap coefficient of the tapped-delay-line filter model of a channel;M + 1is the tap number of the channel; ηk

is the iid AWGN component with zero mean and variance σ2
ηk

; and k is the time index. It should be mentioned

here that, in this study, no offset frequency was considered and the samples are symbol spaced.

One of the best ways to mitigate ISI in Eq. (1) is to use an equalizer filter, which cancels the ISI while

combining the multipath energy. In practice, a linear transversal equalizer (LTE) or a soft-decision data-directed

decision feedback equalizer (DFE) is used for blind and nonblind equalizations. A LTE was used in this study;
it has output x̂k , calculated by:

x̂k =
N∑

i=0

civk−i, (2)

where N +1 is the tap number of the LTE and the ci values are the LTE coefficients. For an ordinary training
case, the error function of an equalizer is calculated by εk = xk−Loffset− x̂k , where a training sequence, known
by both the transmitter and receiver, is available, and where the number indicated by Loffset is attained for

the adjustment of the center tap of the equalizer filter. However, if a training sequence is not issued in the
transmission, one of the blind algorithms has to be applied to recover the transmitted data. For the adaptive
blind training, the CMA is one of the best blind training techniques that use the following cost function:

J̄CMA(C) = E{(|x̂k|2 − Δ2)2}, (3)

where C is the equalizer coefficient vector and C = [c0, c1, ..., cN]T (where [.]T indicates the transpose of the

matrix [.]), x̂k is the k th estimate of the equalizer filter given by Eq. (2), E {} is the expectation operator, and

Δ2 is a real positive constant calculated by Δ2 = E{|xk|4}/E{|xk|2} using the transmit data.

The error function to verify the CMA criterion is:

ε̂k = x̂k(Δ2 − |x̂k|2), (4)

and, similar to the stochastic gradient algorithm, the adaptation of C as according to [16] is given by:

ci = ci + με̂kv∗k−i, i = 0, 1, ...N, (5)

where μ is the step-size parameter of CMA, ε̂k is the k th estimate of the error function using the CMA criterion,
and v∗k−i is the complex conjugate of vk−i .
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While the CMA is the best known of the blind equalizer training algorithms, its improved versions,
modified CMA (M-CMA) and normalized CMA (N-CMA), have been found to be quite effective in blind

training. The author also developed a novel CMA using fuzzy logic, F-CMA, as described in [14,15]. The
modified CMA adjusts the step size by using a time-varying step-size parameter depending upon the squared
Euclidean norm of the channel output vector and on the equalizer output [17]. The normalized CMA controls

the step size for an efficient implementation by using the signal vector energy of the channel output, ‖vk‖2 ,

which is computed recursively, as in the normalized LMS algorithm [18]. The F-CMA has a similar update
equation as in conventional CMA. However, the step-size parameter of F-CMA is adjusted according to the
magnitude of error (MOE) and trend of error (TOE) using a fuzzy outer loop controller. Although the detailed

form of F-CMA is available in [14,15], a brief description and implementation of the technique is given in the
following paragraphs.
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Figure 1. MSE performances of blind adaptive training (CMA) algorithms.

One of the important aspects of fuzzy logic is the implementation of a control system using experience-
based rules defined in linguistic terms such as big, medium, small, or very small. Fuzzy logic enables the use
of linguistic control definitions in the rule decision table (RDT), which is the main control unit developed by
an expert or obtained by applying the fuzzy learning process. The required RDT for controlling the step-size
parameters of CMA, following common rules, is revisited here.

Figure 1 shows the obtained mean square error (MSE) performances of adaptive blind training methods in
simulations. The simulation conditions were similar to the systems in BER performance analysis, as explained
in Section 4. The obtained MSE performances were published in [14], where the training features of blind
training algorithms were extensively studied in order to find the best MSE curves, which were obtained by the
values given in Table 2.

For nonblind equalizer training using the conventional least mean squares, a bigger step size is desirable
to start a faster convergence, and a smaller step size is used to complete the training, as in the fine-tuning
mode [13,15]. However, the convergence features of blind training are different, since an initial recovery of the
equalizer filter is hardly obtained. A noticeable convergence in blind training is obtained after a certain delay,
which is generally more than 100-200 training iterations, as shown in Figure 1. Therefore, in order to obtain a
better recovery, the step size for blind training should start with a very small value, and then the step size of
CMA should be increased to accelerate the convergence, provided that the error level is not increasing. Finally,
if the error level is smaller and stable, then the step size should be decreased for better tuning for the coefficients.
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These common rules of training can be applied to create a primary RDT. It is obvious that these rules can also
be implemented by using conventional control techniques. However, fuzzy logic maintains the general control
constraints at the very beginning, and its smooth transition between rules makes the system appropriate for
development of an accurate control strategy.

The rules defined above can be summarized as follows.
If MOE(k) is small and TOE(k) is negative, then μFCMA(k) is small.

If MOE(k) is small and TOE(k) is zero, then μFCMA(k) is medium.

If MOE(k) is small and TOE(k) is positive, then μFCMA(k) is small.

If MOE(k) is medium and TOE(k) is negative, then μFCMA(k) is medium.
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
If MOE(k) is high and TOE(k) is negative, then μFCMA(k) is high.

MOE is calculated by:

MOE(k) = 1
M

M−1∑
m=0

|ε̂k(k − m)|, (6)

and TOE is calculated by:
TOE(k) = MOE(k) − MOE(k − 1), (7)

where the number of averaged error values, M, is used to obtain a short-term average of error in order to reduce
the effect of instant noise over the control. Thus, a RDT with the explained rules above would be as in Table 1.

Table 1. A 3 × 3 rule decision table as an example.

MOE/TOE Negative (N) Zero (Z) Positive (P)
Small (S) μFCMA(S, N) = small μFCMA(S, Z) = medium μFCMA(S, P ) = small

Medium (M) μFCMA(M, N) = medium μFCMA(M, Z) = small μFCMA(M, P ) = medium
High (H) μFCMA(H, N) = medium μFCMA(H, Z) = small μFCMA(H, P ) = high

At the beginning of the training, the magnitude of error (MOE) is high and the trend of error (TOE) is

small or equal to zero; the step size should then be small, such that for(HMOE , ZTOE), the RDT would have

an output equal to “small” (μFCMA(H, Z)= small). Second, if the error is high but decreasing, then the step

size can be increased, such that for (HMOE , NTOE), the RDT would have a medium output (μFCMA(H, N)=

medium). Third, if the error value is low and not changing, then the algorithm should penetrate the training

algorithm due to changes in the error by increasing the step-size parameters, such that for (SMOE , ZTOE)

the RDT would have a medium output (μFCMA(S, Z)= medium). These linguistic decisions, using an expert
interpretation, can be carried out to fill the RDT.

3. The experimental system

The baseband signal preparation was done on a PC and uploaded to a vector signal generator, E4438C by
Agilent (0-6 GHz), in the experimental WiMAX radio. In transmission, a raised-cosine filter with a cut-off rate

of 0.35 was employed for the baseband filtering. A linear power amplifier (HMC409LP4 by Hittite Microwave)
with 22 dBm and 35 dBm of IP1 and IP3 powers, respectively, was used before sending the signal to the antenna.
During the experimental tests, 2 types of antennas were used: a biquad directional antenna with approximately
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9 dBi of gain and a 60◦ aperture angle, and a bidirectional dipole antenna with a gain of less than 1 dBi (as

measured during experiments).

A program written in C code on a PC at the transmitter side prepares a long experimental data sequence,
as given in Figure 2. The prepared sequence contains a set of 255 symbols of a quadrature phase-shift keying
(QPSK)-modulated pseudorandom noise (PN) sequence followed by 2 subsequences, each representing a burst

set format, 16-QAM and 64-QAM, of the standard [1]. A CAZAC sequence with the length of 64 symbols,

described on page 379 of [1], was used as unique words and repeated 3 times to create a burst set preamble
at the beginning of each subsequence. The burst, as seen in Figure 2, was stored in the signal generator and
transmitted repeatedly with a symbol rate of 20.48 Msample/s. The use of a combined data packet, as in Figure
2, provided for the comparative analysis of the modulation types.

The data packet has a complex PN sequence to detect the beginning of the data packet, since there is no
feedback link in the experimental test bench to obtain the starting time of transmission. For nonblind trainings
and for the phase corrections of blind trainings, 3 CAZAC sequences of 64 symbols are used. The transmitter
repeats the transmission of the same packets for each measurement point; however, the payload data changes
for every new packet in the simulations.
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Figure 2. Transmit data packet structure.

A vector signal analyzer (WCA380 from Tektronix, 0-8 GHz) was used in the receiver of the experimental

RF radio. The baseband of the received signal was sampled at a sampling frequency of 20.48 Msamples/s and
stored by the analyzer with a length of 100 experimental data sequences, as given in Figure 2. This sampled
long sequence was downloaded to a PC for the baseband signal processing and BER calculations. A receiver
algorithm, involving synchronization, equalization, and decoding, was implemented in a program written in C
programming language.

The error count was made after equalization for the raw BER calculations of the system without a
coding gain. The equalized data were decoded by an inner decoder, deinterleaved, and decoded again by the
outer decoder. The final error count was obtained over the decoded data in order to obtain the overall BER
performance of the system. Here, the error rates of all modulation types were calculated at one measurement
point, the single trail of the channel. Thus, in order to obtain an average value, as is done in Monte Carlo
simulation programs, an averaging process was required, which is explained in the following section.

BER performance results were obtained on the grid shown in Figure 3, and the effects of the modulation
types were compared using the same channel. Therefore, a measurement grid of 100 points and a minimum
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distance between measurements points of 8.5 cm, the approximated wavelength of the carrier, were chosen. The
physical placement of the grid is shown in Figure 3. The obtained BER performance was thus the averaged value
over 100 separate channels with a similar expected signal-to-noise ratio (SNR) value. The highest measured
SNR value, 25 dB for 16-QAM and 64-QAM, was the starting point for the BER performance analysis. The
rest of the analyses were carried out by adding the sampled noise sequence to the received signal in order to
obtain the BER values for lower SNR levels. For different levels of SNR, the noise sequence was multiplied
by a constant, which was adjusted according to the desired SNR level before adding the noise sequence to the
received data sequence.

Figure 3. The test area and measurement grid with 100 points.

4. Theoretical and experimental simulation results

In this study, 4 methods of blind equalizer trainings, conventional CMA, M-CMA, N-CMA, and F-CMA, and 2
conventional adaptive training algorithms for nonblind trainings, LMS and RLS, were employed for equalizations
of experimental received data and in simulations. An 11-tap LTE filter was used in both blind and nonblind
training methods. The center tap of the LTE was set to unit value in blind trainings; otherwise, the values of
all taps were initialized to zero before starting the training. Table 2 shows the step-size parameters of the blind
training methods. The step-size parameter for LMS was 0.0025 for 16-QAM and 0.00015 for 64-QAM, and the
forgetting factor of RLS was 0.999 for both 16-QAM and 64-QAM. The given training parameters were used
in both experimental and simulation data. The nonblind trainings, LMS and RLS, were carried out using all 3
CAZAC sequences at the beginning of each assigned subsequence. Thus, 1152 (6 × 192) and 1920 (10 × 192)
steps of nonblind training were executed before starting the recovery of incoming data for the attained 16-QAM
and 64-QAM modulation types, respectively.

Table 2. Algorithm parameter settings in simulation.

Modulation CMA M-CMA N-CMA
type μCMA μMCMA a α σ

16-QAM 0.00115 0.005 0.42 0.0025 0.086
64-QAM 0.00005 0.00032 0.075 0.0014 0.092

213



Turk J Elec Eng & Comp Sci, Vol.20, No.2, 2012

The blind equalizations were completed in 4 steps. First, the beginning of each subsequence was defined in
the received data sequence. Second, the blind training was carried out over the entire length of each subsequence
(4080 (4 × 1020) steps for 16-QAM and 6800 (10 × 680) steps for 64-QAM). Third, the ISI was cancelled
by running the blindly trained equalizer filter over the CAZAC sequences and the received data for each
subsequence. Fourth and finally, the phase correction coefficient was obtained using the CAZAC sequences at
the beginning of the subsequence, as in [19], and the phase correction of the related subsequence was done
before the detection and decoding of the subsequence.

Figure 4 shows sampled channel profiles with 7 taps observed above the noise floor of the receiver used
in the experiments, at the first row of the measurement grid shown in Figure 3.
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Figure 4. A sampled channel profile obtained from the experimental radio.

The obtained BER performances of the blind trainings, CMA, M-CMA, N-CMA, and F-CMA, for
simulated and experimental channel equalizations are given in Figures 5 and 6 for 16-QAM and 64-QAM,
respectively, where 239/256 Reed-Solomon and 1/2 convolutional coding were employed in the cascade, as

explained in [1]. The dashed lines belong to the simulation performances of equalizations using the channel profile

given by (0.407, 0.815, 0.407), which is defined in [20]. The experimental data produced worse performances,
by around 1.5 to 2 dB, than the simulated channels’ data, since the channel delay spreads grew quite larger at
some measurement points, as shown in Figure 4.

Figure 5 compares the BER performances of 4 blind equalizers for 16-QAM. The performance of N-CMA
was a little better than the performances of the conventional CMA, but the obtained result was not remarkable.
M-CMA performed better than conventional CMA and N-CMA, and it also converged to the lower BER floor
value of 1E-2. However, F-CMA, improved in [14,15], provided a satisfactory performance and outperformed
the other blind equalizers, conventional CMA, M-CMA, and N-CMA. The simulation results demonstrated that
the theoretical and experimental studies were compatible with each other.

Figure 6 also compares the BER performances of 4 blind equalizers for 64-QAM. The performances of
M-CMA and N-CMA were better than the performance of the conventional CMA after approximately 10 dB of
SNR, and converged to lower than the BER value of 2E-1. However, F-CMA outperformed all of the simulated
blind equalization algorithms in this study.

The obtained comparative BER performances of nonblind trainings, LMS and RLS, and blind trainings,
CMA, M-CMA, N-CMA, and F-CMA, for simulated and experimental channel equalizations are given in Figures
7 and 8 for 16-QAM and 64-QAM, respectively.
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Figure 5. BER performances of blind equalizers for 16-QAM modulation.
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Figure 6. BER performances of blind equalizers for 64-QAM modulation.

This is among the first experimental studies of blind equalizations to find that the performances of
nonblind equalizations are from 3 to 5 dB better than the considered blind equalization techniques. When the
performances of the 16-QAM modulation are considered, the RLS training is around 2 dB better than the LMS;
however, both algorithms were able to clear the error region below 22.5 dB of the SNR. Of course, the coding
helps the LMS trainings much more than the RLS. The simplicity of the LMS algorithm can then easily lead to
encouragement of LMS as the best candidate for a real-time application. However, the blind trainings are not
too far behind, especially as F-CMA also canceled the error floor around 20 dB SNR and its performance was
quite solid for 16-QAM.
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Figure 7. BER performance comparisons of nonblind and blind equalizers for 16-QAM modulation.
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Figure 8. BER performance comparisons of nonblind and blind equalizers for 64-QAM modulation.

For 64-QAM modulation, the obtained performances of the blind equalizations started to vary, since
CMA, M-CMA, and N-CMA produce an error floor in both experimental and simulated channels while the BER
curves of F-CMA outperformed all simulated blind equalization algorithms in this study. The performance gap
between nonblind and blind trainings in 64-QAM was from 6 to 8 dB, as shown in Figure 8.

5. Conclusion

This study compared the BER performances of adaptive equalizations using blind and nonblind training
techniques in order to obtain a comprehensive performance profile in experimental and simulated wireless
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communication channels for high-order QAM signaling. Instead of using a certain type of channel profile,
this study concentrated on true frequency-selective Rayleigh fading channels and also evaluated the fast fading
scenario of Rayleigh channels in a real-time WiMAX radio environment around 3.5 GHz. The popular LMS
algorithm and CMA were used as benchmarks in an investigation of nonblind and blind training techniques,
namely RLS, M-CMA, N-CMA, and F-CMA. The obtained simulation results demonstrated that the nonblind
training methods have considerably better performance than the blind training methods.
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