
Turk J Elec Eng & Comp Sci, Vol.20, No.2, 2012, c© TÜBİTAK

doi:10.3906/elk-1101-1044

Load sharing based on moving roles in multiagent

systems

Şebnem BORA1,∗, Ali Murat TİRYAKİ2, Oğuz DİKENELLİ1

1Department of Computer Engineering, Ege University, İzmir-TURKEY
2Department of Computer Engineering, Çanakkale Onsekiz Mart University,

Çanakkale-TURKEY
e-mail: sebnem.bora@ege.edu.tr

Received: 23.01.2011

Abstract

In this paper, we present a load-sharing approach based on the refactoring of agents. According to our

approach, the role(s) that makes an agent overloaded is identified and transferred to less loaded agents. The

excess workload of this heavily loaded agent is then transferred to the new agent. This approach defines

a new agent, called the “monitor agent,” which monitors the workload of agents in the organization and

decides about the refactoring of the agents. The monitor agent uses the platform ontology, which explicitly

describes the components of the agent organization, including agents and their roles, plans, and workloads.

This ontology is updated by the monitor agent in every monitor cycle.

Key Words: Distributed computing, dynamic load sharing, multiagent systems, software agents

1. Introduction

As distributed systems, multiagent systems (MAS) consist of autonomous agents that collaborate with each
other to achieve a common goal. Due to the openness of MAS, it is almost impossible to accurately guess the
load of the agents in MAS during the analysis and design phases. Therefore, the load of the agents in MAS
may unexpectedly increase at runtime. If the total request volume at any time is unusually high on an agent,
this often leads to the agent failing, with all requests unable to be performed. In this case, transferring the
workload of an agent that has heavy workloads to idle or lightly loaded agents potentially improves the system’s
performance.

In this paper, we present a load-sharing approach based on the refactoring of agents. According to our
approach, the agent is the container used to execute developed roles, like objects in traditional object-oriented
development. During the deployment phase, roles are assigned to agents on the verge of their execution. Roles
are architectural elements that satisfy system goals collaboratively. Each role has some responsibilities (agent

goals), abilities (plans), authorizations, and rules, all of which are based on system goals. All features of an

∗Corresponding author: Department of Computer Engineering, Ege University, İzmir-TURKEY

219



Turk J Elec Eng & Comp Sci, Vol.20, No.2, 2012

agent come from the roles that are assigned to it. Therefore, the overloading of an agent also comes from its
role(s). In such a condition, the failing agent(s) is overloaded because of the roles that it plays. Assigning the

role(s) to lightly loaded agents in the organization and transferring the excess loads can solve the overloading
problem.

According to our approach, the tasks of the heavily loaded agent are distributed with respect to a policy
held by the “platform ontology.” “Platform ontology” is a general ontology to model a multiagent platform from
load-sharing perspectives. It explicitly describes components of the platform and agents, their initial values,
and the load-sharing policy. The strategy used in our approach is to transfer an agent’s role that causes a
large workload to another agent. The agent with the large workload can then transfer its excess tasks to that
other agent. The process of moving a role to a new agent at runtime is called “agent refactoring” [1,2]. This
approach uses a mechanism that monitors the workloads of the agents in the organization and decides to apply
the load-sharing algorithm to transfer loads from heavily loaded agents to lightly loaded agents.

In order to implement the load-sharing technique in our work, we investigated several architectures that
apply load-distributing policies. Schaerf et al. [3] studied the process of multiagent reinforcement learning in
the context of load balancing in a distributed system without the use of central coordination or communication.
In their work, the information an agent gets is purely local. The agent will not be informed by the other agents
how efficient the service that it requests is or that how large their workloads are.

Appleby and Steward [4] proposed the use of larger numbers of mobile software agents to improve load
balancing. In their approach, there are 2 types of mobile agents: load management agents and parent agents.
The lowest level of control is provided by the load management agents. They move around the network and
find the best routes from all nodes in the network to the source node. Parent agents travel over the network,
gathering information about which nodes are generating the most traffic and which nodes are more congested
than others. A parent agent then decides that network management at certain locations is needed to relieve
congestion.

In [5], Cao et al. focus on grid load-balancing mechanisms using agents. Each agent is responsible for
resource scheduling and load balancing across multiple hosts in a local grid. The agent utilizes application
performance data with iterative heuristic algorithms to dynamically minimize the workload. At a higher
level, agents cooperate with each other to balance the workload using a peer-to-peer service advertisement
and discovery mechanism.

Work on distributed computer systems usually adopts the view of a set of computers, each of which
controls certain resources and workloads that arrive to it in a dynamic fashion [6]. The decision-making
components of such systems share the system’s load by means of communication. In our work, we also take
advantage of the communication between agents. However, the main difference between our work and others is
that our load-sharing approach is based on agent refactoring.

The remainder of this paper is structured as follows: Section 2 presents the context of the work and the
realization of load-distributing components in a MAS environment, Section 3 presents the abstract architecture
that we propose and the monitoring for load sharing in MAS organizations, Section 4 gives the evaluation of
the approach, and Section 5 gives the conclusion.

2. Context of this work

In a computer system, resource queue lengths and CPU queue lengths are good indicators of load, since they
establish mutual relations with the task response time. If the load of a system is large, then the system suffers

220



BORA, TİRYAKİ, DİKENELLİ: Load sharing based on moving roles in multiagent systems...,

from performance degradation. The function of a load-distributing algorithm is to transfer loads from heavily
loaded computers to lightly loaded computers.

Load-distributing algorithms can be classified as static or dynamic. In dynamic load-distributing algo-
rithms, we need to use system state information to reach a decision on distributing loads at runtime. In static
load-distributing algorithms, decisions are taken using a priori knowledge of the system.

Dynamic load-distributing algorithms outperform static load-distributing algorithms, since they are able
to exploit changes in the system state. However, dynamic load-distributing algorithms entail overhead in the
collection, storage, and analysis of system state information.

A large number of distributing algorithms have been proposed in distributed systems. Typically, a
load-distributing algorithm has 4 components: a transfer policy, a selection policy, a location policy, and an
information policy.

Transfer policies determine whether a node may participate in a task transfer. They define threshold
policies. Thresholds are expressed in units of workload. When the workload on a node exceeds a threshold,
some transfer policies decide that the node is a sender. If the workload falls below the threshold, the transfer
policy decides that the node is a receiver.

A selection policy selects a task for transfer when the transfer policy decides that the node is a sender. The
simplest approach is to select tasks that have caused the node to become a sender by increasing the workload.

A location policy finds suitable senders or receivers to share the load. The finding of a suitable node is
achieved through polling. In polling, a node polls another node to find out whether it is a suitable node for
sharing.

The information policy decides when information about the other nodes in the system should be collected,
where it should be collected from, and what information should be collected. The next section describes the
realization of load-distributing components in a MAS environment.

2.1. Realization of load-distributing components in a MAS environment

In this section, we briefly describe our approach for dynamic load sharing in MAS. To define such an approach,
one has to identify a selection policy first. We used the MAS metamodel shown in Figure 1 to define our
selection policy.

* System goal Agent goal

Goal

1

achieves

achieves
1Plan

1 * PlatformRole Knowledge base

Agent

Workload

plays

*

uses

*
Organizational role Domain role

Organizational KB Domain KB
* *

uses

Figure 1. MAS metamodel.

221



Turk J Elec Eng & Comp Sci, Vol.20, No.2, 2012

There are many agent system development methodologies, such as those in [7,8], and different metamodels
have been proposed according to these methodologies in the literature. However, we defined a generic metamodel
that can be used with any methodology. According to our approach, agent systems are built to achieve some
general goals called system goals. Each of the system goals is assigned a role. There are 2 kinds of roles in
our metamodel. Organizational roles have some privileges, and the agents that play these roles can access
organizational knowledge bases. Domain roles are executed by domain agents, which have some domain-
dependent responsibilities. That kind of agent can only access the domain knowledge bases. Roles are assigned
to agents to be executed. Agents achieve the goals of their own roles by executing their plans. System goals
can be achieved by agents that cooperate with each other. In this cooperation, each agent has its own agent
goals based on the roles it plays. An agent goal can be achieved by a plan. Organizational knowledge bases
store information about the current state of the MAS organization. Domain knowledge bases are used to store
domain-dependent information. To apply our load-sharing approach in MAS, we added the workload concept
to our MAS metamodel. This concept includes data about the current state of each agent.

We can now define the selection policy based on the defined metamodel. Since the selection policy selects
the tasks that cause the overloading, we then have to answer the basic question of what makes an agent become
overloaded. Like any computational entity, an agent is overloaded due to task processing and messaging. Since
these tasks and messages belong to the role(s) of the agent, we can conclude that overloading is dependent on

the role(s).

The selection policy simply selects tasks to transfer by considering the workload of the agent. However,
selected tasks are categorized based on roles that make the agent overloaded, since the selected tasks need to
be processed by an agent that plays the same specific role. Although it is possible to dynamically calculate the
workload of an agent, this is not a straightforward process. One needs a complex monitoring mechanism to
observe and calculate the load of each agent. We therefore implemented a monitoring mechanism that observes
the agent’s workload based on its roles. Agents can overload because of their roles. Thus, our selection policy
simply selects the tasks to be transferred based on the workload of the agent and the role played by that specific
agent.

The second policy for load sharing is the location policy, which is used for finding a suitable receiver
that can overcome excess loads. From the MAS perspective, the location policy has to identify a suitable agent
for transferring the selected tasks. The location policy associates with the monitoring mechanism to identify a
suitable receiver agent, since the monitoring mechanism holds the current states of the agents that exist in the
organization. Hence, it computes the excess workload of each agent by comparing the agent’s workload to the
average overall load of the system. The agents with lighter loads are identified as the receivers, or a new agent
is created as a receiver in a suitable ground machine.

In order to determine the workload of each agent, we have to monitor the environment to collect
information. The information policy decides when information about the agents in the system should be
collected, where it should be collected from, and what information should be collected. Our approach uses
a periodic and centralized information policy, in which each domain agent periodically sends its state to the
monitoring mechanism. In the monitoring mechanism, the excess load of agents is evaluated by applying our
threshold policy. The threshold policy will be detailed in Section 3.

222



BORA, TİRYAKİ, DİKENELLİ: Load sharing based on moving roles in multiagent systems...,

3. Monitoring for load sharing in MAS

The proposed abstract architecture for load sharing in MAS is illustrated in Figure 2 and was built on MAS
architecture based on the specifications of the Foundation for Intelligent Physical Agents (FIPA) [9]. To collect
and evaluate the workload-related data, we propose a specific role called the “monitor” role. The agent that plays
the “monitor” role is called the monitor agent. In this abstract architecture, the monitor agent is a centralized
agent that controls domain agents in the organization at runtime. It holds the current state of the platform in
a web ontology language [10] called platform ontology. The monitor agent receives workload messages sent by
domain agents and passes the data extracted from those messages to a plan called the “workload evaluation”
plan of the “monitor” role. This plan evaluates the load of each agent based on their roles in the organization.
If the monitor agent detects that an excess load for an agent exists during this plan’s execution, it then sends
a message to itself to activate the “role moving” plan. This plan decreases the task processing of the agent by
using the load-sharing approach. As previously mentioned, data related to the excess load for each agent are
acquired directly from the domain agents. Domain agents are agents that fulfill requirements of the domain.
Each of these agents has a plan library based on their responsibilities. Naturally, the agent’s responsibility
comes from the roles that agent has to play. All of the domain agents in MAS may execute more than one role
to achieve the general goals of the organization. Roles are identified during the design of the organizational
structure and assigned to the agent when the agent is initiated.

uses
changes

has has Monitor agent

Platform ontology

has 
DF ontologyDF

Communication infrastructure

Domain  agents

Agent-1 Agent-2 Agent-N

Sending workload
information plan

has has has 

Role moving plan
Workload
evaluation plan

Figure 2. The abstract architecture.

Here, each domain agent executes a plan named “send workload” to the monitor agent. This plan is
periodically executed during the agent’s operation. In this plan, the agent’s workload data are first collected
from the agent’s infrastructure within a certain period. The collected data consist of the agent’s roles, the
number of objectives (goals extracted from incoming requests) for each role of the agent (the workload of the

223



Turk J Elec Eng & Comp Sci, Vol.20, No.2, 2012

role), the mean time for each agent to perform requests, and the arrival rates of requests. Finally, the collected
data are sent within the content of the “inform” message to the monitor agent. Next, we explain the evaluation
of the collected information in detail.

3.1. Evaluation of the collected information

In order to explain how we process data, we need to first explain our transfer policy. It is very similar to the
transfer policy proposed by Dhakal et al. in [11]. It uses a threshold policy, which defines the excess workload
of an agent based on its roles. This threshold policy is based on a queuing model, which characterizes the
stochastic dynamics of the distributing of loads in a multiagent organization of n agents that collaborate with
each other.

In this architecture, clients (agents or human users) send request messages to agents to perform some
actions. When an agent receives a request message, it matches the goal extracted from the incoming request
message to an agent plan. This plan is then scheduled and executed by the agent’s internal architecture.

We assume that in this agent system, requests arrive according to a Poisson process of rate λ1 , so the
interarrival times are independent and identically distributed (i.i.d.) exponential variables with a mean of 1/λ1

[12]. We also consider that each agent performs requests according to a Poisson process of rate λ2 and sends
its workload information to the monitor agent at every sampling period.

During system initialization, a period is set for the organization. This period is called the sampling
period, T , and is actually defined over the time window of ((k −−1)T , kT ), where k is the sampling instant.
The workload of an agent at the k th sampling instant is as follows.

Qi (k) = Qi(k − 1) − Pi(k) + Ri(k) − Lij(k) (1)

In Eq. (1), Qi(k) is the length of the ith agent’s internal queue, where the plans are stored to be executed over

a time window of ((k − −1)T , kT ). Qi(k − 1) is the internal queue length of the ith agent from the previous

sampling period. Pi(k) is the number of plans performed by the ith agent over a time window of ((k −−1)T ,

kT ). Ri(k) is the number of requests received by the ith agent over a time window of ((k−−1)T , kT ). Lij(k)is

the excess load of the ith agent, transferred to the j th agent over a time window of ((k −−1)T , kT ).

Thus, each agent sends its workload data as a combination of the partial data, as mentioned above.
If the multiagent organization is implemented by using a semantic web-enabled multiagent system framework
(SEAGENT) [13], the components of Eq. (1) are described for the ith agent as follows.

Qi(k) : The length of the ith agent’s objective queue, where the goals extracted from incoming requests

are stored to be scheduled over time window ((k−−1)T , kT ). Qi(k− 1)is the objective queue length from the
previous sampling period.

Pi(k) : The number of executed plans of the ith agent over time window ((k −−1)T , kT ). We assume
that the executed plan sends a response back to the clients.

Ri(k) : The number of newly arrived requests that are held in the incoming message queue over time

window ((k − −1)T , kT ).

Lij(k) : The excess load of the ith agent, to be transferred to the j th agent over time window ((k−−1)T ,

kT ).

When the monitor agent receives a workload message from the agent, it initiates the “workload evaluation”
plan. The structure of this plan, built by using hierarchical task network (HTN) formalism [14,15], is shown

224



BORA, TİRYAKİ, DİKENELLİ: Load sharing based on moving roles in multiagent systems...,

in Figure 3. According to this plan, the workload data of each agent obtained from the workload message are
transferred to the “compare current workloads” primitive task by an inheritance link. The monitor agent then
computes the excess workload of each agent by comparing the agent’s workload to the average overall load of
the system. The excess workload of an agent at the k th sampling instant is as follows.

Li(k) = Qi(k) − λi
n∑

l=0

λl

n∑

l=0

Ql(k)

In Eq. (2),Li(k) is the excess load of the ith agent at the k th sampling period. Qi(k) is the workload data of
theith agent at the k th sampling period. λi gs the ith agent, which performs requests according to a Poisson
process of rate λi . Ql(k) is the workload data of the lth agent at the k th sampling period. λl is the lth agent,
which performs requests according to a Poisson process of rate λl .

Workload evalvation

Workload

Compare current
workloads

Workload message roleOK

fail

Send message
for continuation

Send request for
mo vin g  ro le

Figure 3. The “workload evaluation” plan in HTN formalism.

Eq. (2) is the fair share of the ith agent from the total workloads in the system. If the monitor agent
detects that an agent has excess workload, then the monitor agent decides that the ith agent is a sender.
According to the “workload evaluation” plan, the “compare current workloads” task returns the “fail” outcome
with respect to the role that makes the agent overloaded. The role definition is admitted by the “send request
for role moving” primitive task. In this task, the monitor agent prepares the message that includes the request
for transferring the role that makes the agent overloaded and sends this message to itself to initiate the related
plan. If there is no excess load condition for the agent, then the “compare current workloads” primitive task
produces an “OK” outcome.

3.2. Moving roles

When the monitor agent receives the message that includes the request for role moving, it initiates the “role
moving” plan shown in Figure 4. This plan takes the role that makes the agent(s) overloaded.

This plan of the monitor agent has the responsibility of moving the role that causes the agent to overload
to one of the other agents in the multiagent platform. The plan takes the definition of the role that causes
the agent’s overloading and passes this provision to its subtask, named “determine ground agent.” In the first
subtask of this behavior, the agents that can play the role are identified according to the current state of the
agents in the platform. As mentioned in the previous sections, the current state of every agent in the platform is
stored in the platform ontology. The monitor agent can decide the proper agents for the role simply by checking
this ontology during this task. In the second task, a request message is sent to the proper agents that have

225



Turk J Elec Eng & Comp Sci, Vol.20, No.2, 2012

been selected in the previous task. This request message includes the role definition and asks a target agent if
it is available to play this role. The “evaluate ground agent” task receives the response messages that are sent
by other agents and selects one of the agents that have sent agreement messages corresponding to the request
message as the ground agent. This task returns the agent identifier (AID) of the selected ground agent via the
outcome named “OK.”

Role moving
role

Determine 
ground agent

role OK
Send roles plan
to ground agent

role OK

AID
Notify DF

role OK

AID

Select
proper agents

role OK Send request
messages

role

agentList
Select

ground agent

resp. OK

Figure 4. The “role moving” plan in HTN formalism.

The AID of the ground agent is taken in the other task, called “send role’s plan to ground agent.” This
task has the responsibility of sending the plan library and knowledge base of the role to the ground agent.

The directory facilitator (DF) stores an ontology that includes the information about the roles that the
agent plays in the platform. Hence, the changing of agent roles has to be communicated to the DF. The final
task in the “role moving” plan takes the role definition and identification of the ground agent as provisions and
sends a notification message to the DF.

At the end of the plan, the role that causes agent overloading has been moved to one of the other agents
in the multiagent platform. Therefore, the load of the overloaded agent has been decreased by this refactoring
operation. The agent with excess workload is notified to share its workload. When the overloaded agent receives
the “notify” message, it will then send its excess workload to the new agent that plays this specific role.

4. Evaluation of the approach

The load-sharing approach presented in this paper was implemented with the SEAGENT multiagent develop-
ment framework [16].

To show the effectiveness of our load-sharing approach, we applied it to an agent system application
implemented by the SEAGENT research group. The case focuses on one of the core scenarios of the tourism
domain. In this scenario, a traveler tries to organize a holiday plan that includes a hotel booking and
transportation details. It is assumed that the accommodation and transportation preferences of the traveler are
known by the system. The aim of the scenario is to arrange the cheapest holiday plan by selecting the proper
accommodation and transportation options based on the traveler’s preferences. The primary roles that agents
have in the scenario are identified as the “Traveler,” “Travel Agency,” “Hotel,” and “Transportation Provider.”
In the initial design of the system, it was realized that the “Travel Agency” role is the most critical role in terms

226



BORA, TİRYAKİ, DİKENELLİ: Load sharing based on moving roles in multiagent systems...,

of the load-sharing perspective, because that agent has 2 critical responsibilities, hotel booking and selection of
proper transportation. The agents with those roles in our design are shown in Figure 5.

Traveler Travel agency

Hotel

Transportation
provider

1,4

2,3

5,6

1. Request for accomodation
2. Availability request for the suitable rooms
3. Negotiation request for a room
4. Request for transportation
5. Availability request for the suitable trans.
6. Negotiation request for a trans. option

Figure 5. Initial role diagram of the “prepare a holiday” scenario.

4.1. Discussion

For the evaluation of our approach, a test was performed on 2 computers with Intel Pentium 4 CPU running
at 1.5 GHz and 512 MB of RAM, with Linux Ubuntu 6.10.

In this test, we evaluated the effectiveness of our load-sharing approach as the number of requests sent
to the organization every 10 s increased. In the first case, while the system did not apply any load-sharing
technique, we observed the response time of the agent that plays the “Travel Agency” role as the number of
requests sent to it every 10 s increased.

In the second case, the agent that plays the role of the “Traveler” agent also sends its requests to the
agent playing the “Travel Agency” role. The monitor agent receives workload messages sent by the “Travel
Agency” agent and some other domain agents, and it evaluates the load of each agent based on their roles in the
organization. When the monitor agent detects that an excess load for an agent exists, it finds a suitable agent
that can play the “Travel Agency” role on another ground computer and sends the “Travel Agency” goal and
plans to it. It then sends a transfer request to the “Travel Agency” agent. This agent transfers the excess load
to the second “Travel Agency” agent by sending the received requests. In this test, while the system applied the
load-sharing technique, we observed the response time of 2 “Travel Agency” agents as the number of requests
each 10 s increased.

The results are illustrated in Figure 6. As can be seen, the response time of the agent increased without
applying load sharing as the number of requests every 10 s increased. This result was expected, since the agent
had to respond to more requests as the number of requests sent to it every 10 s increased. In the second test,
the monitor agent detected that the agent became a sender at a point when the agent’s workload exceeded
the average load. It then decided to share the excess load with 2 agents that played the “Travel Agency” role.

0

500

1000

1500

2000

2500

0 10 200 400 500 1000 2000R
es

po
ns

e 
tim

e 
of

 th
e 

sy
st

em
 (

s)

Request/10 s

Without load sharing

Agent that plays one of roles (after refactoring)

Agent that plays the other role (after refactoring)

Figure 6. The effectiveness of the load-sharing approach.

227



Turk J Elec Eng & Comp Sci, Vol.20, No.2, 2012

Results of the second test are also shown in Figure 6. The system applying the load-sharing approach showed
better performance compared to the system that did not apply load sharing, since 2 agents were running on
different hosts and sharing the system’s load to respond to sent requests.

5. Conclusion

In this paper, we presented a load-sharing approach for multiagent systems. We identified the agents that
became senders and then decreased their workloads by distributing roles to more lightly loaded agents.

While evaluating this approach, we observed that the system applying load sharing outperformed the
system without the load-sharing approach. In conclusion, the results indicate that efficient load sharing in
multiagent organizations is sustainable using this model.

References

[1] K. Beck, Extreme Programming Explained: Embrace Change, Boston, Addison Wesley Longman Publishing, 1999.

[2] M. Fowler, Refactoring: Improving the Design of Existing Code, Boston, Addison Wesley, 2000.

[3] A. Schaerf, Y. Shoham, M. Tennenholtz, “Adaptive load balancing: a study in multi-agent learning”, Journal of

Artificial Intelligence Research, Vol. 2, pp. 475-500, 1995.

[4] S. Appleby, S. Steward, “Mobile software agents for control in telecommunications networks”, BT Technology

Journal, Vol. 18, pp. 68-70, 2000.

[5] J. Cao, D. Spooner, S. Jarvis, G. Nudd, “Grid load balancing using intelligent agents”, Future Generation Computer

Systems, Vol. 21, pp. 135-149, 2005.

[6] M. Singhal, N.G. Shivaratri, Advanced Concepts in Operating Systems, New York, McGraw-Hill, 1994.

[7] F. Giunchiglia, J. Mylopoulos, A. Perini, “The Tropos software development methodology: processes, models, and

diagrams”, Proceedings of First International Conference on Autonomous Agents and Multiagent Systems, pp.

35-36, 2002.

[8] F. Zambonelli, N.R. Jennings, M. Wooldridge, “Developing multiagent systems: the Gaia methodology”, ACM

Transactions on Software Engineering and Methodology, Vol. 12, pp. 317-370, 2003.

[9] FIPA, Review of FIPA Specifications, available at http://www.fipa.org/subgroups/ROFS-SG-docs/ROFS-Doc.pdf,

2006.

[10] Web-Ontology Working Group, Conclusions and Future Work, available at http://www.w3.org/2001/sw/WebOnt/,

2004.

[11] S. Dhakal, M.M. Hayat, J.E. Pezoa, C. Yang, D.A. Bader, “Dynamic load balancing in distributed systems in the

presence of delays: a regeneration-theory approach”, IEEE Transactions on Parallel & Distributed Systems, Vol.

18, pp. 485-497, 2007.

[12] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed., New York, McGraw-Hill, pp. 648-

649, 1991.

228



BORA, TİRYAKİ, DİKENELLİ: Load sharing based on moving roles in multiagent systems...,

[13] O. Dikenelli, R.C. Erdur, O. Gumus, “SEAGENT: A platform for developing semantic web based multi agent

systems”, Fourth International Joint Conference on Autonomous Agents, pp. 1271-1272, 2005.

[14] M. Paolucci, O. Shehory, K. Sycara, D. Kalp, A. Pannu, “A planning component for RETSINA agents”, Lecture

Notes in Computer Science, Vol. 1757/2000, pp. 147-161, 2000.

[15] M. Williamson, K. Decker, K. Sycara, “Unified information and control flow in hierarchical task networks”, Working

Notes of the AAAI-96 Workshop “Theories of Action, Planning, and Control”, 1996.

[16] Ege University, SEAGENT: A Semantic Web Enabled Multi-Agent System Framework, available at

http://www.seagent.ege.edu.tr, 2006.

229


