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Büyükçekmece, İstanbul-TURKEY
2Department of Computer Engineering, Faculty of Engineering, Gebze Institute of Technology,

Gebze, Kocaeli-TURKEY
e-mail: sevilgen@bilmuh.gyte.edu.tr

Received: 01.02.2011

Abstract

In this paper, a novel discrete particle swarm optimization (PSO) algorithm is proposed to solve the team

orienteering problem (TOP). Discrete evaluation is achieved by redefining all operators and operands used in

PSO. To obtain better results, a strengthened PSO, which improves both exploration and exploitation during

the search process, is employed. Our algorithm achieves the best known solutions in a short time compared

to previous heuristics for the TOP.
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1. Introduction

The team orienteering problem (TOP) is a subset selection version of the well-known vehicle routing problem
with profits. The objective of the TOP is to construct a certain number of paths starting at an origin and
ending at a destination that maximizes the total profit without violating prescribed limits. The problem is
inspired from and named after an outdoor sport usually played on mountains or in forested areas.

The TOP can be described in detail as follows: Let G = (N , E) be a graph where N denotes the set of

nodes (control points) and E denotes the set of edges between the nodes in N . Each node ni in N (1 ≤ i ≤ k)

has a score si ≥ 0; the scores of n1 (the origin) and nk (the destination) are 0, such that s1 = sk = 0. Each
edge between ni and nj has a cost, dij , associated with it. There is a set of m vehicles located at n1 . The

objective of the TOP is to find a path for each vehicle. Each path should start at n1 , end at nk , and maximize
the total profit by satisfying a cost constraint (e.g., the total cost of the edges on each path should be less than

a specified limit, Tmax). Because of the limitation, each vehicle cannot visit all control points. Golden et al.
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[1] proved that the orienteering problem, which is a single-vehicle version of the TOP, is NP-hard. A linear

programming model for the TOP can be found in [2].

In this paper, we consider the Euclidean TOP, where the nodes are on the Euclidean plane. In such a
problem, the graph is a full graph and the score of an edge is the Euclidean distance between 2 nodes adjacent
to the edge.

In the literature, exact methods [3,4] and several metaheuristics, including population-based methods such

as memetic algorithm [5], ant colony optimization, [6] trajectory-based methods such as variable neighborhood

search [7], tabu search [7,8], and guided local search [9], have been explored for the TOP.

In this paper, we present a discrete strengthened particle swarm optimization (DStPSO) algorithm based

on strengthened particle swarm optimization (StPSO) to solve the TOP. We proposed StPSO as a variation of

particle swarm optimization (PSO) in [10]. PSO was initially proposed by Eberhart and Kennedy for solving

continuous optimization problems [11]. Later, it was also applied to combinatorial optimization problems [12-

14]. Among other metaheuristic methods, PSO is popular for its ease of application and fast convergence to a
near optimal solution.

We employed StPSO for both continuous and discrete optimization problems in [10] and demonstrated
that StPSO improves both the exploration and exploitation of PSO. The results obtained by using StPSO are
better for both continuous and discrete problems. However, the improvement for discrete problems is limited
due to the simple adaptation of StPSO. Continuous search operation, including all continuous operators and
components of the StPSO, is preserved. To transform the continuous search space to a discrete problem space,
an extra conversion process is used. Because of incongruities between the 2 domains, the performance of the
search operation diminishes.

On the other hand, in DStPSO, we redefine all operators and components in StPSO for the TOP. Although
the general flow of StPSO is preserved in DStPSO, the search operation is performed on a natural discrete search
space using discrete operators.

DStPSO was tested using 138 benchmark problems. It achieved the best known solutions for all instances
within a reasonable amount of time. The results demonstrate that our algorithm is a promising alternative not
only for the TOP but also for similar discrete problems.

2. Particle swarm optimization

PSO is a population-based method in which a swarm includes n individuals called particles. Each particle has a
d -dimensional position vector representing a candidate solution and a d -dimensional velocity vector expressing
the current tendency of the particle during its search journey. The initial swarm can be constructed randomly or
by using predetermined values. At each step, the velocity of each particle is reevaluated based on the particle’s
inertia as well as its social interaction (the swarm’s experience) and personal experience. The experience of

each particle is usually captured by its best position so far (pbest). The experience of the swarm is captured by

the global best position (gbest) obtained by the swarm. In the course of several iterations, particles make use
of this experience and are supposed to move toward the optimum position.

The pseudocode of the standard PSO algorithm is illustrated in Figure 1. Optimization is achieved by
several iterations of update-evaluate steps. During the update step (line 10), the velocity and the position

vector of each particle are calculated by using Eqs. (1) and (2). In these equations, vt
i,j and pt

i,j are the velocity
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and the position of the ith particle (1 ≤ i ≤ n) in the j th dimension (1 ≤ j ≤ d) at iteration t , respectively.
Parameter w is the inertia weight. The inertia weight serves as a balancing factor between exploration and
exploitation. Large inertia weight at the beginning of the search enables more exploration, while smaller inertia
weight facilitates more exploitation later. The parameters c1 and c2 are learning factors, which are the weights
for contributions of personal experience and social interaction. The stochastic behavior of PSO is achieved by
random numbers r1 and r2 , which are positive numbers generally uniformly distributed in [0, 1].

vt
i,j = wvt−1

i,j + c1r1(pbest
t−1
i,j − pt−1

i,j ) + c2r2(gbest
t−1
j − pt−1

i,j ) (1)

pt
i,j = pt−1

i,j + vt−1
i,j (2)

After the update step, the fitness function value is calculated (line 11) for each particle based on its position

(the candidate solution represented by the particle.) The local best position, pbest, of each particle (line 12)

and the global best position, gbest, of the swarm (line 13) are updated if the candidate solution is better than

pbest or gbest, respectively. The stopping condition (line 14) of the update-evaluate iterations is usually the
attainment of a maximum number of iterations or a maximum number of iterations between 2 improvements.

Figure 1. Pseudocode of the standard PSO algorithm.

2.1. Strengthened PSO

Since PSO was introduced, it has been adapted to solve several optimization problems. Meanwhile, some
shortcomings like premature convergence or lack of intensification around the local best locations were observed.
To improve search efficiency and rectify these deficiencies in the standard algorithm, researchers have proposed
several modifications to PSO.

One of the latest improved PSO versions is StPSO. The pseudocode of the StPSO algorithm is illustrated
in Figure 2. The main focus of StPSO is on pioneering particles, which achieve or enhance the swarm’s
experience. These particles are assumed to be either converged or potentially converged. They are processed in
2 steps. First, an external local search is initiated for each pioneering particle (line 11). After the local search,
only the local experience of each pioneering particle is updated. Swarm experience is not changed. This step
strengthens the exploitation mechanism in PSO. Second, at the same iteration, the random moving strategy
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is performed on each pioneering particle in order to force the particle to continue exploration with its past
experience (line 13). In this way, the exploration mechanism of PSO is improved and premature convergence is
largely avoided. The other particles continue to search the solution space as in the standard PSO algorithm.

Figure 2. Pseudocode of the StPSO algorithm.

3. Discrete StPSO for TOP

In DStPSO, the position and velocity vector and all continuous operators in PSO are redefined for discrete
processing in the discrete solution space of the TOP.

Both the position and velocity of a particle are represented as lists of control points. The position includes
m lists representing a candidate TOP solution. Note that m is the number of vehicles and each list denotes
a path for the corresponding vehicle. Each path starts from the starting point, visits all control points in the
corresponding position list, and ends at the destination point. The solution is always feasible; in other words,
the total cost of the edges on the path is less than Tmax . The velocity is a list including the control points that
are not in any paths of the same particle.

The DStPSO algorithm preserves the general flow of the StPSO, which is illustrated in Figure 2. The
algorithm starts with the initialization of the particles in the swarm. The position and velocity of a particle
are initialized by using a random permutation of control points. To obtain position lists, starting from the first
control point in the permutation, the control points are inserted into the first list between the starting point and
the destination point, one by one, until the prescribed cost limit is exceeded. This process is repeated for the
other m−1 lists using the remainder of the permutation. The other control points that are not in the position
lists are inserted into the velocity list while preserving the permutation order.
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3.1. Discrete operators

In DStPSO, the velocity and position update equations used in standard PSO are redefined as follows.

vt
i =

[
wi ⊗ vt−1

i

]
⊕

[
(c1 ⊗ (pbestt−1

i Θ pt−1
i )) ⊕ (c2 ⊗ (gbestt−1Θ pt−1

i ))
]

(3)

pt
i = pt−1

i, ◦ vt
i (4)

vt
i = pall Θ pt

i (5)

In Eqs. (3) and (4), the velocity and position are calculated using new operators, respectively. For the next

iteration, the velocity of the particle is reevaluated in Eq. (5) by using pall and the new position. pall is a
random permutation of the control points. The new operators used in the above equations are explained below.

Θ operator: Let p1 and p2 be 2 positions; then (p1Θp2) is a velocity. The velocity list includes the
control points that are in one of the lists in p1 but not in any list in p2 . If p1 is gbest, the velocity list has high
priority (hp); if p1 is pbest, it has low priority (lp). Otherwise, it has no priority (np).

⊗ operator: The left operand is a coefficient (0 < c < 1) and the right operand is a velocity (v). The

result (c⊗v) is a velocity. The coefficient represents the probability of a control point in v stays in the resulting
velocity list. The result can be calculated as follows: starting from the first control point in v , a random number
that is uniformly distributed in the range of [0, 1] is generated. If the random number is less than c , this control
point is appended to the new velocity list. The operation does not alter the priority attribute.

⊕ operator: This operator combines 2 velocity lists. Remember that a velocity list includes a priority
attribute. The operation is performed based on the priority values of its operands. If an operand has high
priority and the other has low priority, the result (vhp⊕ vlp) is obtained by placing the control points that are
in the intersection of these lists at the beginning, and then placing the remaining control points in vhp and in

vlp in order. If one of the operands has no priority, the result (vhp/lp ⊕vnp) includes the control points in vhp/lp

at the beginning and the remaining control points in vnp at the end.

◦ operator: This operator takes a position and a velocity list as operands. The velocity includes the
control points to be inserted into the position lists. We apply node insert for increasing profit, explained in the
next section, to the position lists for each control point in the velocity list, one by one.

3.2. Local search

Reduced variable neighborhood search (RVNS) is employed in DStPSO as the local search method. RVNS

is a variation of variable neighborhood search (VNS), which was introduced as an optimization method for

combinatorial optimization problems [15]. In RVNS, the solution space is searched with a systematic change

of neighborhood. The details of the algorithm are presented in [10]. In the following text, the neighborhood
structures are explained in the same order as they are used in RVNS.

3.2.1. Node insert for increasing profit

In this structure, a randomly selected control point in the velocity list is inserted into a randomly selected
position list. The control point is inserted into the cheapest location, which minimizes the cost function (cheapest

insertion method). If the list still satisfies the cost constraint, a new solution in the neighborhood is obtained.
Otherwise, the solution is not feasible. To find a feasible solution, a control point that has a lower score than
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the inserted control point and minimizes the path cost when it is removed is selected. If removal of the control
point makes the solution feasible (respects the cost constraint), the control point is removed and a new solution
in the neighborhood is obtained after one insertion and one deletion. Either way, a feasible solution with more
profit than the old one is generated and the RVNS continues to search within this neighborhood. If a feasible
solution cannot be obtained, the RVNS switches to the following neighborhood.

3.2.2. Node insert for decreasing cost

The aim of this structure is to decrease the cost of a TOP solution. To realize this aim, 2 random position
lists are selected from the solution. These 2 lists could be the same list. In such a case, a control point chosen
randomly from the position list is reinserted in the same list using the cheapest insertion method. Otherwise,
a 1-way control-point move or a 2-way interchange is performed between the lists. A control point chosen
randomly from the first position list is inserted into the second list using the cheapest insertion method. If the
second list does not satisfy the feasibility constraint after this 1-way move, a random control point from the
second list is inserted into the first list using the cheapest insertion method to complete the 2-way interchange.

At the end of the operation, a new solution is generated in the neighborhood if the feasibility of the
position is preserved and at least one of the position lists’ cost is reduced.

If a successful neighbor is generated, the RVNS continues to search within the first neighborhood. If a
THRESHOLD-times (back-to-back) unimproved solution is observed from the first 2 neighborhoods, the RVNS
switches to the following last neighborhood.

3.2.3. Path invert

This neighborhood is also called a 2-opt move. To solve travelling salesman-based problems, the 2-opt local
search algorithm is frequently used in order to decrease the length of a tour. In a 2-opt move, if the tour is
crossing over itself, 2 crossing edges are replaced with noncrossing edges to obtain cost reduction. In fact, the
2-opt move is the same as inverting a subsequence of control points in a position list. Therefore, we call this
neighborhood a path invert. The path invert is employed on the position lists many times until either the cost
is reduced or all pairs of edges in the list are tested.

Note that the location of the starting and ending control points are not altered while producing a new
TOP solution in any of the neighborhoods above.

4. Experimental results

To observe the effects of the proposed algorithm, we performed experimental analysis on DStPSO, its 2
subvariants, and discrete standard PSO (DPSO). One subvariant that only performs a random moving strategy
on the pioneering particle without performing the local search is called discrete diversification strengthened
PSO (DDS-PSO). Particles in DDS-PSO tend to perform more exploration than exploitation since they are not
allowed to stay near good positions. The other subvariant, which only conducts RVNS for pioneering particles,
is called discrete intensification strengthened PSO (DIS-PSO).

All PSO algorithms were tested on 138 benchmark problems. Problems were categorized into 3 datasets
containing 32, 21, and 33 control points [2]. Each dataset included problems with 2, 3, and 4 vehicles and
various Tmax values.
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Experiments were performed on an Intel P4 2.8 GHz PC with 1 GB of memory. In the experimentation,
the swarm size was 10 particles. The parameter values were c1 = c2 = 0.5, and the initial value of inertia
weight w for all particles was 0.7. After each iteration, inertia weight decreased by 2%. Runs were terminated
when gbest had no improvement for 300 consecutive times. For RVNS, the THRESHOLD parameter value was
10 and the stopping condition was 20 back-to-back iterations without improvement. The parameter values were
determined experimentally.

Each problem was run 10 times and the results were compared based on the computation time (CPU),

relative percentage error (RPE), and standard deviation (Std. Dev.) of the repetitions. RPE indicates whether
an algorithm finds the best known solution throughout the repetitions. Performances of the 4 PSO versions for
the datasets are given in Table 1.

Table 1. Comparison of various PSO applications: the average results for datasets 1, 2, and 3 based on RPE, Std.

Dev., and CPU time.

Dataset
# of

CPU (s) RPE Std. Dev.

vehicles
DPSO DDS- DIS- DStPSO DPSO DDS- DIS- DStPSO DPSO DDS- DIS- DStPSO

PSO PSO PSO PSO PSO PSO

1

2 1.1 4.3 3.5 1.3 0.3 2.3 0.0 0.0 1.9 2.3 0.9 0.0
3 1.3 4.0 1.7 0.7 0.5 2.6 0.0 0.0 2.0 2.6 1.3 0.7
4 0.9 2.6 0.8 0.4 0.3 1.7 0.0 0.0 1.1 1.7 0.6 0.4

Avg. 1.1 3.7 2.1 0.9 0.4 1.3 0.0 0.0 1.7 2.2 0.9 0.3

2

2 0.2 0.3 0.2 0.2 0.2 0.5 0.0 0.0 2.8 3.1 0.0 0.0
3 0.1 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.6 0.0 0.0
4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Avg. 0.1 0.2 0.1 0.1 0.1 0.2 0.0 0.0 1.0 1.2 0.0 0.0

3

2 2.6 3.6 4.6 3.1 1.2 2.5 0.1 0.0 6.4 6.8 4.5 1.1
3 2.2 3.2 1.7 1.1 2.0 3.7 0.0 0.0 7.4 7.6 6.0 0.8
4 1.6 2.6 0.8 0.6 2.4 4.2 0.0 0.0 8.7 12.4 4.4 0.3

Avg. 2.1 3.2 2.4 1.7 1.9 3.4 0.0 0.0 7.5 8.8 4.9 0.7

Since the algorithms (DPSO, DIS-PSO, and DStPSO), except for DDS-PSO, have inherited or imported
exploitation mechanisms, their results were better than those of DDS-PSO. The RPE values for DPSO indicate
that the inherited exploitation mechanism is not sufficient to produce best known solutions. DIS-PSO and
DStPSO achieved the best known solutions for all problem instances. However, DStPSO outperformed DIS-
PSO based on CPU and Std. Dev. measures. Thus, it provided better solutions in less time.

The DStPSO algorithm is compared with the following algorithms in Table 2:

- CGW: Heuristic algorithm [2]

- TMH: Tabu search [8]

- GTP: Tabu search with penalty strategy [7]

- GTF: Tabu search with feasible strategy [7]

- FVF: Fast VNS [7]

- SVF: Slow VNS [7]

- ACO: Ant colony optimization with sequential method [6]

- MA: Memetic algorithm [5]

The average of the RPE values for the 138 benchmark problems in Table 2 indicate that DStPSO achieved
the best known solutions for all problems, like many other algorithms. The run-time performance of the DStPSO
is competitive with other state-of-the-art algorithms. Note that the experimentations in [5-7] were performed
on a similar computer. Both the quality of the solutions and the execution times indicate that DStPSO is a
promising technique for solving the TOP.
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Table 2. Performance of DStPSO against previous studies.

# Best Avg. RPE Avg. CPU
CGW 112 0.97 11.91
TMH 121 0.42 -
GTP 136 0.05 4.12
GTF 138 0.00 1.22
FVF 138 0.00 0.11
SVF 138 0.00 6.92
ACO 138 0.00 5.45
MA 138 0.00 1.13

DStPSO 138 0.00 1.02

5. Conclusion

In this paper, a novel PSO-based algorithm for solving the TOP was proposed. In our algorithm, new discrete
operators were defined and used for discrete evaluation of position and velocity. To achieve better results,
we employed StPSO, whose exploration mechanism and exploitation mechanism are enhanced by reinitiating
velocities and embedding a local search method, respectively. The performance of DStPSO was examined for 138
benchmark problems. The best known solutions were found in a comparable amount of time for all problems.
The results indicate that DStPSO is a competitive method for the TOP. Investigating the applicability of
DStPSO for other subset selection type problems is a promising future research direction.
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