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Abstract

Maximum power point tracking (MPPT) algorithms are used to force photovoltaic (PV) modules to operate

at their maximum power points for all environmental conditions. In artificial neural network (ANN)-based

algorithms, the maximum power points are acquired by designing ANN models for PV modules. However,

the parameters of PV modules are not always provided by the manufacturer and cannot be obtained readily

by the user. Experimental measurements implemented in the overall PV system may be used to obtain

the ANN dataset. One drawback of this method is that the generalization ability of the neural network

usually degrades and some data reducing the effectiveness of the network may exist. A genetic algorithm

can be used to automatically select the important data among all the inputs, resulting in a smaller and

more effective dataset. In our study, a genetic algorithm is used to improve the MPPT efficiency of a PV

system with induction motor drive by optimizing the input dataset for an ANN model of PV modules. A

variable frequency volts-per-Hertz (V/f) control method is applied for speed control of the induction motor,

and a space-vector pulse-width modulation (SV-PWM) method is used to operate a 3-phase inverter. Both

simulation and experimental results are presented to demonstrate the validation of the method.

Key Words: Photovoltaic systems, artificial neural networks, genetic algorithms, space-vector pulse-width

modulation

1. Introduction

Photovoltaic (PV) systems, making use of the renewable source of solar energy, draw increasing attention due
to improvements in PV technology, environmental concerns, and their lack of fuel costs. The relatively low
conversion efficiency of PV modules encourages the use of maximum power point tracking (MPPT) methods
to increase the efficiency of PV systems. PV cells have a nonlinear relationship between the current and
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University, 42075 Konya-TURKEY

241



Turk J Elec Eng & Comp Sci, Vol.20, No.2, 2012

the voltage, and the maximum power point (MPP) of PV cells changes with environmental conditions such
as solar irradiance and ambient temperature. Therefore, MPPs must be estimated using direct or indirect
methods, which are used to match the PV source and the load impedance for all environmental conditions to
ensure maximum power generation from PV modules. In recent years, numerous MPPT methods have been
proposed. Those most commonly used are the lookup-table method [1], perturb and observe (P&O) method

[1-3], incremental conductance method [1,4], and artificial intelligence methods [1,5-8]. The drawback of P&O
method is that, at steady state, the operation point oscillates around the MPP. The P&O and incremental
conductance methods furthermore do not perform well in rapidly changing atmospheric conditions, which make
them less favorable [1].

The ability of artificial neural networks (ANN) to construct complex nonlinear mapping through a training
process makes them a suitable alternative in the field of PV technology. Using the noise-rejection capability of
ANNs, problems such as oscillations around the MPP and trapping in local points can be alleviated [5]. Using
an ANN-based method, no prior knowledge of the physical parameters related to the components of the PV
system is required. In our research, experimental measurements implemented in the PV system are used to
obtain an ANN dataset, which is used to extract a relationship between the input and the output.

Several authors have demonstrated that, by using the genetic algorithm (GA) approach in dataset

optimization, a better performance can be obtained compared to approaches using only input datasets [9,10]. In
our research, GA optimization is used to enhance the accuracy of an ANN-based MPPT algorithm. The GA is
used to automatically select the important data from among all inputs, and a smaller and more effective dataset
is obtained. The MPPT algorithm was employed in a stand-alone PV system with a direct-coupled induction
motor drive, which employs only an inverter stage to extract maximum power from PV modules. MPPT
was implemented by adjusting the speed of the induction motor, and the power required by the mechanical
load was controlled. For inverter control, which is a key aspect in a PV system, a space-vector pulse-width
modulation (SV-PWM) method was employed. Thus, advantages such as low total harmonic distortion (THD),
a well-defined output harmonic spectrum, and better DC-link voltage utilization were achieved.

The paper is organized as follows. Section 2 explains the ANN-based MPPT algorithm. In Section 3, the
GA used for training data optimization in the MPPT controller is discussed. Section 4 presents an experimental
description and the software implementation of the system. The constant variable frequency volts-per-Hertz
(V/f) control and space-vector PWM methods are also briefly explained in Section 4. In Section 5, the simulation
and experimental results obtained from the proposed PV system are given, and the conclusions are addressed
in Section 6.

2. ANN-based MPPT algorithm

The objective of MPPT controllers is to draw maximum power from PV modules for changing solar irradiance
(G) and temperature (T) conditions. With that aim, PV modules are matched to the load and maximum power
generation is ensured. In our research, PV module voltage was used as the control parameter and a MPPT
controller was implemented based on the voltage. The primary concern was to obtain a reference voltage value
(VMPP ) at which the PV modules operate at the MPP. In this research, an ANN was used to determine the
reference voltage in real time, dependent upon G and T. The dataset used to train the ANN was obtained using
experimental measurements, and a relation between the inputs (G and T) and output (VMPP ) was established.
The developed ANN configuration, shown in Figure 1, is a multilayer-perceptron structure including an input
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layer, a hidden layer with 5 hidden nodes obtained based on a trial-and-error method, and an output layer.
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Figure 1. The ANN configuration used to determine the reference voltage value at the MPP.

In order to ensure operation of the MPPT controller in a wide range of operating conditions, the training
data must cover a large range. For that purpose, the measurements made to obtain the training dataset covered

the range of 91-1105 W/m2 for irradiance and 11-72.2 ◦C for cell temperature. A total of 500 measurements
were made; 350 of them were used for training, 100 of them were used for cross-validation, and 50 of them were
used for testing. The transfer functions of the hidden and output layers were chosen to be tangent hyperbolics.

The iteration number was 100 and the error target was 1.10−10 .

3. Using GA for training data optimization in MPPT controller

The GA can be used to optimize the input dataset of the ANN to obtain a smaller and more effective input
dataset. This method is particularly important if noisy and unimportant data, which reduce the generalization
ability and effectiveness of the ANN, are present. The GA can be used to keep the most decisive data and
remove insignificant data, and, when using the new dataset, a smaller error value may result at the end of
training [6].

In GA optimization of the input dataset, each individual in the population represents the feature subset,
which must be solved for the optimization problem. Individuals in the GA are usually represented by n-bit binary
vectors. Thus, the search space corresponds to an n-sized Boolean space. In each generation, the evaluation of
an individual, i.e. input data, requires the training of the ANN and use of the result in an objective function.

The flowchart used for the GA-based input dataset optimization used in the ANN is shown in Figure
2 [6,11]. At first, the GA creates an initial population, trains the ANN for each chromosome, and evaluates
that population. The population then grows with a large number of generations to search for the best input
parameters. The generalization performance of the ANN trained with the current dataset is transferred to the
GA as a fitness function. The GA continues to operate until a predefined number of generations are complete
to generate the population with new numbers. The evaluation is done for each individual in the population.
Thus, GA optimization provides an adaptive approach to choosing the most useful and important members of
the input dataset [12].
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Figure 2. The flowchart for input dataset optimization in ANN.

GAs use fitness-proportionate selection to create individuals for the next generation. Genetic operators
are performed on the selected individuals to generate successive generations, and the algorithm explores the space
of candidate solutions. Applications of fitness-dependent selection and crossover and mutation genetic operators
are repeated until a satisfactory solution is obtained [12]. In practice, the performance of the GA is determined
by the genetic representation and the choosing of the operator, fitness-dependent selection, population size, and
so on.

The implemented neural network was trained using the Levenberg-Marquardt (LM) algorithm. The Table
presents the GA parameters used in GA optimization.

Table. GA parameters used in input data set optimization.

Mutation operator, Pm 0.02
Crossover operator, Pc 0.9
Population size 20
Maximum number of generations 250
Selection type Roulette
Crossover Single point

The input dataset optimization algorithm was implemented in a MATLAB environment. The best values
of the objective functions over GA generations are shown in Figure 3. As a result of the GA optimization, a
new dataset consisting of 187 samples was obtained.

By means of GA optimization in the ANN, better results were obtained than those without using GA
optimization. When the ANN was trained without GA optimization, the obtained values for training and cross-
validation errors were 0.2137 and 0.2802, respectively. For the ANN trained with the new GA-optimized dataset,
the training and cross-validation errors were 0.1806 and 0.2381, respectively. For both of the training algorithms,
the training was ended with the early termination method. By this method, when the cross-validation error
started to increase, the training was terminated to prevent the ANN from overtraining.
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Figure 3. Best values of objective functions over GA generations.

To demonstrate the accuracy of the results obtained from the neural network, random test data with
50 samples, which were not included in the training data, were used. The relative error values, which are the
difference between the real values and the ANN output values, are shown for the ANN without GA optimization
and for the ANN with GA optimization in Figures 4a and 4b, respectively.
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Figure 4. The relative error values for test samples in an ANN trained a) without GA optimization and b) with GA

optimization.

Although the training is a very time-consuming and laborious process, this does not pose any difficulties
for microcontroller or DSP implementations as the training is implemented once beforehand. The weight and
bias values are saved and the ANN structure can be executed offline.
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Figure 5. a) Block diagram and b) overview of the proposed PV system.

4. Experimental description and software implementation of the

system

The basic configuration of the proposed stand-alone PV system with an ANN-based MPPT controller is shown in
Figure 5a. The system was experimentally implemented in the laboratory and an overview of the experimental
setup is shown in Figure 5b. The system basically consists of PV modules, a 3-phase inverter, a 3-phase
induction motor, a digital signal processor, and other peripherals such as voltage measurement, isolation, and
scaling devices. The proposed system was implemented on an ADSP-21992 digital signal processor (DSP) analog
device. The DSP unit has a 160-MHz, ADSP-219x DSP core and features an 8-channel, 14-bit, 20-Msps ADC
with on-chip voltage reference. It also features a 3-phase PWM generation unit with additional auxiliary PWM
outputs, and 3 general-purpose timers of 32 bits.
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The system prototype realized in the laboratory consists of 2 series-connected photovoltaic modules, each
having a peak power of 60 W [13]. For solar radiation and temperature measurements, a silicon irradiance sensor
is used. The sensor has active temperature compensation; its irradiance measurement error with temperature
compensation is ±6% and the temperature measurement accuracy at 25 ◦C is ±1.5 ◦C.

The experimental prototype circuit includes an intelligent power module (IPM) [14], which uses insulated-

gate bipolar transistors (IGBT). The IPM realizes highly effective over-current and short-circuit protection
through the use of advanced current sense IGBT chips that allow continuous monitoring of the power device
current. The inverter is rated for 600 V DC and 20 A.

The executed operations implemented in the controller are demonstrated in the flowchart in Figure 6.
The controller fundamentally implements a GA-optimized ANN-based MPPT algorithm, a constant V/f control
algorithm, and SV-PWM inverter control. Because the output power of the PV modules change nonlinearly
with solar irradiance (G) and cell temperature (T), and the proposed system does not include battery back-up,
the power induction motor must be operated at varying powers to make full use of the available power. This is
achieved by adjusting the motor speed to vary the mechanical power output.

Return

Initialize 

Measure VPV, G, and T 

Calculate VPVref value from 
ANN-based MPPT algorithm 

Calculate the error value: 
error = VPVref - VPV

Calculate and limit the new 
frequency value

Calculate inverter switching signals in 
regard to SV-PWM method 

Implement constant V/f control method 

Figure 6. Flowchart of control algorithm.

As shown in Figure 6, the PV modules’ output voltage, solar irradiance, and cell temperature values
are input into the controller, and the reference voltage value of the PV modules (VPV REF ) corresponding to
the MPP is calculated by the GA-optimized ANN structure. When the output voltage of the PV modules is
adjusted to these values, the system is assumed to operate at the MPP. The error value, which is the difference
between reference and measurement values, is obtained and the polarity of the step change of frequency (Δf)
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is calculated. The new frequency value is employed in the V/f control algorithm to determine the modulation

index (M), and SV-PWM switching signals are synthesized accordingly. Thus, the extracted power from the
PV modules is adjusted to its optimum value.

The main control loop, which includes the calculation of the ANN-based MPP of the PV modules, polarity
determination of step size, and a constant V/f control algorithm, occurs at a rate of 150 Hz. The calculations

required to synthesize the SV-PWM output signal are implemented in an interrupt service routine (ISR) evoked
with a frequency of 9 kHz. The switching frequency is also 9 kHz, and ADC sampling is realized every 15 PWM
cycles.

In the implemented system, battery back-up is eliminated as the proposed system is mostly suitable for
water-pumping applications, which use a water tank for storage, or fan applications, which show a comple-
mentary nature for the source and demand sides. The DC-DC converter requirement is also eliminated by
implementing a MPPT algorithm in the inverter stage. Therefore, the accompanying losses of these factors
could be eliminated.

In the following subsections, the theoretical basis of the implemented constant V/f method and the
SV-PWM method are briefly described.

4.1. Constant V/f control

In practice, the rate between the amplitude and frequency is determined by the nominal values of the motor
given on its nameplate. However, for lower values of frequency and voltage, the voltage decrease cannot be
neglected and must be compensated. In our study, in order to compensate the voltage decrease that occurs due
to low stator resistance at low frequencies, the phase voltage was increased for a constant value (C). Thus, as

given in Eq. (1), a relationship between the inverter voltage and frequency was used.

V = C + kf (1)

Here, for f < fN , C is assumed as 0.2, and for f > fN , it is assumed as 0. The fN value was determined as 20
Hz, and thus the increase in voltage amplitude was provided for 0 ≤ f < 20 Hz. The other constant, k, was
determined using motor characteristic values.

4.2. Space-vector PWM method

Space-vector modulation is based on the representation of 3-phase voltages as space vectors. If 3 time-varying
quantities sum to 0 and are spatially separated by 120◦ , then these quantities can be expressed as a single space
vector that contains a real (α) and an imaginary (β) component by using the forward Clarke transformation

shown in Eq. (2).
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As shown in Figure 7, the 8 possible states of an inverter are represented as 2 null vectors and 6 active-state
vectors forming a hexagon [6]. The SV-PWM method now approximates the rotating reference vector in each
switching cycle by switching between the 2 nearest active-state vectors and the null vectors. In order to maintain
the effective switching frequency of the power devices at a minimum, the sequence of toggling between these
vectors is organized such that only one leg is affected in every step.
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Figure 7. Representation of the inverter states in the stationary reference frame.

Thus, given a space vector of angle θ (in sector 1) and modulation index M, the approximation can be
constructed by applying vectors V1 and V2 for percentage times Ta and Tb , respectively. The times can be
calculated and applied to the appropriate inverter states. The equations for the effective time of the inverter
switching states can be given as follows [15].

Ta = MTs sin(π/3 − θ)
Tb = MTs sin θ
T0 = T7 = Ts − Tm

(3)

Here, Ta is the time of the switching vector that lags Vref , Tb is the time of the switching vector that leads
Vref , T0 and T7 are the times of zero-switching vectors, Tm = Ta + Tb is the active modulation time, Ts

is the sampling time, and the modulation index M can be given as:

M = (
√

3Ts)/(4Vd), (4)

where Vd is the bus voltage of the 3-phase voltage source inverter. The times are distributed to generate
symmetrical PWM pulses.

5. Results and discussion

The proposed system was simulated and some experimental results from the laboratory prototype were obtained.

5.1. Simulation results

In order to assess the effectiveness of the proposed PV system with MPPT, simulations were implemented
employing a PSIM software tool [16]. In Figure 8, the schematic of the PSIM implementation of the PV system

with the proposed GA-optimized ANN-based MPPT algorithm is shown [6].

In Figure 8a, the circuit used to determine the magnitude and direction of reference voltage vector Vref is

shown. Using from 3-phase to 2-phase transformations, 3-phase modulation waves are converted into magnitude
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(a) (b)

(c)

(d)

Figure 8. a) Space vector calculation; b) vector location; c) time interval calculation, switching-state selection, and
look-up tables for producing signals for gate drivers; d) circuit schematic of the proposed photovoltaic system.
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(Vref ) and direction (θ). Gain values are given here after processing the 3-phase modulation waves through

a 0-order sample-and-hold (ZOH) circuit. A tangential block is used to obtain real and imaginary parts of the
expression. It should be noted here that modulation signals are obtained from the ANN-based MPPT algorithm.

The vector location is obtained by the circuit in Figure 8b. Here, the location of the vector is determined
by comparators. In Figure 8c, initially, the time interval for which the adjacent vectors must be turned on to
get the required reference voltage vector is determined. In the vector location section of the circuit, a controlled
monostable multivibrator and AND gates, connected in such a way as to select the various switching states
in the space-vector diagram, are used to select a suitable switching state. The switching period and switching
frequency are adjusted to the desired values here. Gating tables are 2-dimensional matrix tables consisting of
zone numbers as rows and time periods as columns. The conduction periods of predetermined switches are
determined by these tables.

The switching signals obtained in regard to the SV-PWM method are used in the 3-phase inverter shown
in Figure 8d. Here, the model of the PV modules (PVmodel.dll), proposed ANN-based MPPT algorithm

(ann.dll), and V/f control algorithm (Vf.dll) are coded respectively in Visual C++ software and linked to the
simulation by dynamic link libraries. Modulation waves were obtained from the proposed ANN-based MPPT
algorithm and the SV-PWM switching signals were synthesized in regard to the method explained in Figures
8a-8c.

The simulation curves were obtained for a 3-phase induction motor. Figures 9a and 9b show PV module

voltage, current, and power curves obtained in the start-up of the system at a solar irradiance of 915 W/m2

and a cell temperature of 37 ◦C for a frequency step change (Δf) of 0.25 and 0.5, respectively.
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Figure 9. PV module voltage, current, and power curves obtained at the start-up of the system for a) Δf = 0.25 and

b) Δf = 0.5.

5.2. Experimental results

A laboratory prototype was constructed to study the application of the ANN-based MPPT algorithm on a
stand-alone PV system with induction motor drive. To evaluate the effectiveness of the proposed algorithm, the
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ANN-based MPPT algorithm with fixed step sizes (chosen as 0.25 and 0.5, respectively) was also programmed
in a digital signal processor and both algorithms were tested. The experimental results were obtained in the

Figure 10. PV module voltage and current waveforms for the step change values of a) Δf = 0.25 and b) Δf = 0.5

(volt/div: CH1 13.3 V, CH2 1.5 A; time/div: 1 s).

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

PV
 P

ow
er

 (
W

)
PV

 P
ow

er
 (

W
)

Time (s)

Time (s)

0.
0

0.
6

1.
2

1.
7

2.
3

2.
9

3.
4

4.
0

4.
6

5.
1

5.
7

6.
3

6.
8

7.
4

8.
5

9.
1

9.
7

8.
0

0.
0

0.
6

1.
1

1.
6

2.
2

2.
7

3.
2

3.
8

4.
3

4.
8

5.
4

5.
9

6.
4

7.
0

8.
0

8.
6

9.
1

7.
5

9.
6

(a)

(b)

Figure 11. PV module power curves for the step change values of a) Δf = 0.25 and b) Δf = 0.5.
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start-up of the system. In Figures 10a and 10b, PV module voltage and current waveforms obtained with the
proposed algorithm with fixed step sizes of 0.25 and 0.5, respectively, are shown. The results were obtained

for a solar irradiance value of 915 W/m2 and a cell temperature of 37 ◦C. The power curves calculated from
the recorded values of PV voltage and current are respectively shown in Figures 11a and 11b. As shown here,
choosing a small value for the step size reduces the speed of reaching the MPP. However, the oscillations around
the peak power point are reduced. For a higher step-size value, although the peak power point is reached faster,
the oscillations increase.

6. Conclusions

The proposed GA-optimized ANN-based MPPT algorithm was implemented on a stand-alone PV system with
a direct-coupled induction motor drive. By means of the proposed algorithm, the requirement of any prior
knowledge and the laborious process of obtaining module parameters were eliminated and more accurate results
than those of the algorithm without using the GA optimization were obtained.

Compared with the conventional P&O MPPT method, the proposed ANN-based method improved the
transitional state and reduced the oscillations in steady state, as the maximum power point was obtained
beforehand by the ANN model. Implementing the control algorithm with a variable step size by using a control
method such as a proportional-integral controller or a fuzzy logic controller can further improve the tracking
ability and efficiency of the PV system.

By implementing the MPPT algorithm in the inverter stage, the requirement of a DC/DC converter was
eliminated and, thus, switching elements, their losses, and the requirement of using a bulky inductor in the
DC/DC converter stage were eliminated.

Employing the SV-PWM method for the inverter provided advantages such as a wide linear modulation
range, less switching loss because of the prevention of unnecessary switching, better utilization of DC-link
voltage, and lower base-band harmonics than in regular PWM.
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