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Abstract

This paper introduces a modified particle swarm algorithm to handle multiobjective optimization problems.
In multiobjective PSO algorithms, the determination of Pareto optimal solutions depends directly on the
strategy of assigning a best local guide to each particle. In this work, the PSO algorithm is modified to
assign a best local guide to each particle by using minimum angular distance information. This algorithm
is implemented to determine field-effect transistor (FET) model elements subject to the Pareto domination
between the scattering parameters and operation bandwidth. Furthermore, the results are compared with
those obtained by the nondominated sorting genetic algorithm-II. FET models are also built for the 3 points
sampled from the different locations of the Pareto front, and a discussion is presented for the Pareto relation

between the scattering parameter performances and the operation bandwidth for each model.

Key Words: FET modeling, multiobjective optimization, pareto optimal analysis, particle swarm optimiza-
tion

1. Introduction

During the past decades, population-based evolutionary computation methods have been investigated and
implemented to various optimization problems by utilizing the cooperation and competition among the potential
solutions. In single-objective optimization problems, potential solutions aim to find an optimum solution vector
including optimized parameters by minimizing/maximizing the objective function. However, many real-world
problems consist of multiple objectives that conflict with each other; this is called the multiobjective optimization
problem. In such a case, all of the conflicting objectives are transferred to a single objective function. In
order to balance the conflicting objectives, additional approaches, such as weighted sums or fuzzy membership

functions, are used [1]. An alternate way is to find, instead of a singular solution vector, a set of solutions
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including nondominated solutions of conflicting objectives; this is called the Pareto optimal solution. Therefore,
stochastic optimization methods have to be reconfigured in accordance with the Pareto optimal concept so as
to overcome multiobjective optimization problems.

The particle swarm optimization (PSO) algorithm is an evolutionary algorithm capable of solving difficult
multidimensional optimization problems in various fields. Since its introduction in 1995 by Kennedy and
Eberhart [2], PSO has gained increasing popularity with its superior optimization performance. In PSO,
particles keep searching to find the optimum solution based on the best experience of the swarm (global best,
or ghest) by using their past experiences (personal best, or pbest) until the expectation is met. The guidance of
the global best particle is essential for convergence to the minima/maxima. However, because of the presence
of a set of nondominated solutions, the guide selection procedure is redefined in multiobjective particle swarm
optimization algorithms. A new term, “best local guide,” is defined for each particle for the determination of
Pareto optimal solutions of conflicting objectives. In [3,4], new methods were proposed in order to find the best
local guide for each particle of the swarm.

In this work, the PSO algorithm is modified to assign a best local guide to each particle by determining its
minimum angular distance to the current Pareto front in the polar coordinate system. The current Pareto front is
built by the particles whose current positions satisfy the Pareto domination relation in the objective space. The
modified PSO algorithm is implemented to a multiobjective microwave field-effect transistor (FET) modeling
problem. The problem consists of the determination of 9 unknown FET model elements with technological
limitations for optimum scattering parameters and operation bandwidth. The resulting Pareto optimal solutions
are compared with those obtained by the nondominated sorting genetic algorithm-IT (NSGA-II).

In the following section, the multiobjective optimization concept will be explained. The modified PSO
algorithm and the strategy for assigning the best local guide are addressed in Section 3. In Section 4, the FET
modeling problem will be defined as a multiobjective optimization problem. In Section 5, the attributes of
the optimization procedure will be given and the results and comparison will be discussed. The work will be

concluded in the final section.

2. Multiobjective optimization

Multiobjective optimization is the process of the simultaneous minimization or maximization of m objective

—

functions f(Z) = (f1(Z), f2(Z),. .., fm(Z)) with respect to n decision variables ¥ = (z1, 2, x3,...,x,) subject
to the given constraints in the decision space X. The Pareto domination relation between these solution vectors

can be defined as follows:
o 71 < ¥y (&1 weakly dominates &) if and only if f;(#1) < f;(Z2) forall i € {1,2,...m},

o Ty < Iy (& dominates &'3) if and only if &1 < Z2 and f;(Z1 ) < f;(Z2) for at least onej € {1,2,...m},

and
o I'1 ~To(Z; is indifferent to &) if and only if #; does not dominate 2 and Zs does not dominate .
In the case where ¥y and 75 dominate other solution vectors but not each other, they are deemed
mutually optimal solutions and are referred to as the Pareto optimal. The set of Pareto optimal solutions

reflects the trade-off surfaces between the different objectives. This set of Pareto optimal solutions is referred

to as the Pareto front.
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3. Modified PSO algorithm

PSO is a population-based optimization method and can be formulized as follows. For an N- dimensional
problem, the position and velocity can be specified by M x N matrices, where M is the number of particles
in the swarm. Each row of the position matrix represents a possible solution to the optimization problem, and

the ith particle of the swarm is represented by N-dimensional vector X; = [;1, Z42,...,7in]T . Similarly,

the velocity of the ith particle is represented by N-dimensional vector V; = [v;1, vie,. .., v;in]T . Each particle

has a memory of the best position of the search space that has ever been obtained at each iteration, and the
personal best performance of the ith particle is defined as pbest; = [pbest;1, pbest;a, . .., pbest;n]T . The global
best position vector defines the position in the solution space at which the lowest cost value was achieved by
all particles, defined by gbest = [gbesty, gbesta, ..., gbesty]T. The velocity of each particle depends on the
distance of its current position from that resulting in lower cost values. To update the velocity matrix at each
iteration, every particle should know its personal best and the global best position vectors. Thus, all of the
information needed by the PSO algorithm is contained in X, V| pbest, and gbest. The core of the PSO algorithm
is the method by which these matrices are updated in every iteration of the algorithm. In our work, the velocity
matrix and the position matrix are updated according to the following equations.

vi(n) = w' x 0] (n) + ¢y x Uy = (Pbestt(n) — i (n)) + co * U}y * (Gbest' (n) — zi ' (n)) (1)

K2

zin) = 27t n) + vi(n), i=1,...M; n=1,...N (2)

K2

Here, the superscripts t and t-1 refer to the time index of the current and the previous iterations, w is the
inertia weight, ¢ and co are the learning factors of the swarm, and U}, and U}, are 2 uniformly distributed
random numbers in the interval [0,1] and are different for each of the n components of the particle’s velocity
vector.

In single-objective PSO algorithms, particles converge to the optimum solution with the guidance of the
particle that has the best position. Because of the presence of a set of nondominated solutions in multiobjective
optimization problems, each optimal solution on the Pareto front can guide the particles to change their position.
Assigning a proper guide to each particle is a vital stage for the determination of Pareto optimal solutions.

In this work, the single-objective PSO algorithm is modified to overcome multiobjective optimization
problems based on the Pareto domination concept. A new approach is proposed to assign a best local guide to
each particle using minimum angular distance information. In Figure 1, the main steps of the modified PSO
algorithm are given. These steps can be explained as follows.

Step 1: The dimension of the optimization problem, the lower and upper boundary values for each
parameter to be optimized, conflicting objective functions, and the number of particles are defined.

Step 2: The position of the population is initialized randomly within the lower and upper values. The
initial velocity values of the particles are set to zero and the initial personal best values are assigned from the
initial position values of population. For each iteration, nondominated solutions are stored in the archive.

Step 3: Each particle in the population evaluates objective functions and is mapped into biobjective
space. Each particle updates its personal best position by comparing the current and last values in biobjective
space. After the evaluation of all particles, the current nondominated solutions are obtained and stored in the
archive. The particles update their velocities and positions with the guidance of an assigned best local guide and
by using their past experiences at each iteration. The strategy of assigning a best local guide to each particle

can be explained as follows.
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Figure 1. Main steps of modified PSO algorithm.

The nondominated solutions (stored in the archive) obtained in biobjective space are mapped from
Cartesian coordinates into a polar coordinate system. Thus, each solution is defined in terms of the radius
and polar angle. Let N be the number of optimal solutions stored in the archive. A;; (i =1,..,Nandj = 1,2)
denotes the values of the optimal solutions in biobjective space. The members of the archive are mapped into

polar coordinates, as given below.

A Ape i bh
& ' ' (3)

An1 Ane rny On

Similarly, the position of each particle in biobjective space is mapped and each particle has a radius and a polar
angle value. Each particle then calculates the polar angle distance between the members of the archive.

The optimal solution with the minimum angular distance is assigned as the best local guide for each
particle. Thus, particles in the population change their position toward the Pareto optimal solution, as shown
in Figure 2. The position and velocity of each particle is updated by Egs. (1) and (2), and the best local guide

replaces gbest.

4. FET modeling as a multiobjective optimization problem

The conventional and complete FET model that is commonly available to designers is shown in Figure 3. The
complete FET model consists of intrinsic parameters such as Cgq, Cys, Ri, gm, Cas, and Rgs and extrinsic
elements such asry, Ly, rq, Lg, rs, and L. The scattering parameters of the complete FET model in Figure

3 can be derived using their definitions, as follows [5,6].
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Here, R, = 50 Q) as the reference termination, and the other parameters, in terms of the model parameters,

are as follows.

Rdso - RoRdse/(Ro + Rdse) (8)
Rio = Ric + R, (9)
Rdsh - Rd + Rs + Rds(]- + ngs) (10)

Cus
Cyan = Cyq (1 + Rogm + == ) (11)

Coa

1 R,
Cgsw = Rngd 9m + E + Cgs ]- + Rd + Cds (12)
Cgse = Cgs + ng(]- - ga) (13)
Cdse = Cds + ng(ga - ]-)/ga (14)
RoRdse
ie — A4 s ) a = “9m—ms T 5 1
R Ri+Rs+Ry, g I Bt R (15)
R, + Rys

Rdse = 7“1»7];’7"& = Rd+Rs(1 +ngds) (16)
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Here, f denotes discrete frequencies in the desired operation band. As clearly seen from Eqs. (4) through (16),
the S-parameters are expressed in terms of FET model elements by neglecting parasitic inductances Ly, Lg,

and L. For input and output terminations of 50 €2, the transducer power gain of the FET device is equal to:

Gr(f) = 1Sa()I* (17)

Generally, maximizing the transducer power gain is considered as the main design objective in FET modeling
applications. FET modeling for the transducer power gain is very essential, but reflection and reverse transmis-
sion losses should also be taken into account in the design stage. Since the FET device is terminated with 50 €2,
the input and output reflection losses are equal to S1; and Ssas, respectively. Thus, minimizing the reflection
losses and the reverse transmission (S12) should be considered as important design objectives. Another design
objective is to obtain an FET model ensuring these objectives in the maximum operation bandwidth. FET
modeling subject to these design objectives is said to be a multiobjective optimization problem because of the
conflicting relations between the design objectives.

5. Optimization procedure and results

In our implementation, we used 100 particles, the inertia weight was chosen as 0.25, and the algorithm was run

for 400 iterations. Objective functions were established as follows.

OF; = min <f21f1> (18)
f2
> 1S11(f) x S12(f) x Sa2(f)]
OF, = min | =L - (19)
> 8o ()
f=f

The first objective function represents the maximizing operation bandwidth; here, f; is set to 1 GHz and f5 is
equal to the maximum frequency value where |So1]| > 1. The other objective function aims to minimize losses
and maximize the transducer power gain.

The modified PSO algorithm was implemented to the objective functions and a fast and elitist method,
the NSGA-II [7-8] algorithm, was implemented to the FET modeling problem. Figure 4 shows the results of
the modified PSO algorithm and the NSGA-II algorithm. At the end of 400 iterations, 77 particles converged
to the resulting Pareto front. As shown, the modified PSO algorithm has an efficient Pareto front performance.
Furthermore, the algorithm is capable of obtaining an expanded Pareto front (Pareto A and Pareto C points).

In order to demonstrate the conflicting relation between the design objectives, 3 sample optimal solutions
were chosen. FET model element values ensuring these optimal solutions are given in the Table. Scattering
parameters and transducer power gain variations of the FET models chosen from the Pareto optimal solutions
are given in Figures 5 and 6, respectively. It can be seen from Figure 4 that the FET model corresponding to
the Pareto A solution ensures the maximum operation bandwidth and highest transducer power gains among
the chosen solutions. However, because of the conflicting behavior, the highest loss values occur for this FET
model. The Pareto C point offers a compromise, with lower gain, lower losses, and a narrow bandwidth. The
FET model resulting in the Pareto B solution has average levels for all of the design objectives, as shown in
Figures 5 and 6.
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Figure 4. Comparison of modified PSO and NSGA-II algorithms.
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6.

In this work, a modified PSO algorithm was introduced and the performance of the algorithm was investigated
by implementation to the 9-dimensional multiobjective FET device modeling problem. The results show that
the proposed algorithm can handle multiobjective optimization problems. As future work, implementation of

the algorithm to several benchmark test functions and comparison with other multiobjective PSO algorithms

Figure 6. Transducer power gain variation of the FET models chosen from Pareto optimal solutions.

Conclusion

is planned.
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