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Abstract

In this paper, performance analysis of joint source-channel coding techniques for error-resilient transmis-

sion of three dimensional (3D) models are presented. In particular, packet based transmission scenarios are

analyzed. The packet loss resilient methods are classified into two groups according to progressive compres-

sion schemes employed: Compressed Progressive Meshes (CPM) based methods and wavelet based methods.

In the first group, layers of CPM algorithm are protected unequally by Forward Error Correction (FEC)

using Reed Solomon (RS) codes. In the second group, embedded bitstream obtained from wavelet based coding

is protected unequally with FEC as well. Both groups of methods are scalable with respect to both channel

bandwidth and packet loss rate, i.e. they try to optimize FEC assignments with respect to channel bandwidth

and packet loss rates (PLR). In-depth analysis of these techniques are carried out in terms of complexity, ro-

bustness to losses and compression efficiency. Experimental results show that wavelet based methods achieve

considerably better quality compared to CPM based methods.

Key Words: Visual communications, error correction, computer vision, 3D models, wavelet transform,

error resilience

1. Introduction

With increasing demand for visualizing and simulating three dimensional (3D) objects in applications such as
video gaming, engineering design, architectural walkthrough, virtual reality, e-commerce, scientific visualization
and 3DTV, it is very important to represent 3D data efficiently [1] [2]. Among different representations,
triangular 3D meshes are very effective and widely used. Typically 3D mesh data consists of geometry and
connectivity data. While the geometry data specifies 3D coordinates of vertices, connectivity data describes
the adjacency information between vertices. In this paper, we interchangeably use terms “3D model” and “3D
mesh.”

To maintain a convincing level of realism, many applications require highly detailed complex models
represented by 3D meshes consisting of huge number of triangles. Due to storage space and transmission
bandwidth limitations, there has been a great deal of research effort into the efficient compression of 3D meshes
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[1] [2]. On the other hand, transmission of 3D meshes over error-prone channels where packets may be lost or
delayed because of congestion, buffer overflow, uncorrectable bit errors or misrouting is not tackled at the same
level.

The pioneering work in error resilient 3D model streaming is that of Bajaj et al. [3] where compressed
VRML streaming problem is addressed. In this method, the encoded bitstream is classified into independent
layers according to the depth-first order of the vertices. In this way, a layer can be decoded regardless of whether
other layers are received or not. In [4], error resilience is achieved by segmenting the mesh and transmitting
each segment independently. At the decoder, these segments are stitched using the joint-boundary information
which is considered the most important. Drawbacks of these algorithms are that they are not scalable with
respect to the channel packet loss rate, PLR and they do not provide a coarse-to-fine representation of the
model.

In [5], [6], transmission of 3D objects represented by texture and mesh over unreliable networks is
described. For arbitrary meshes, stripification of the mesh and distributing nearby vertices into different packets
are considered, combined with a strategy that does not need texture or mesh packets to be retransmitted,
with the exception that only the valence (connectivity) packets need to be retransmitted. Lost geometry is
interpolated and different interpolation strategies are evaluated for this algorithm in case of losses. Each packet
is compressed independently to support loss resilience at the expense of decreasing compression efficiency with
increasing number of packets. However, no optimization is done with respect to channel characteristics.

In [7], an error resilient packetization scheme is proposed for 3D models with the motive of decreasing
the dependencies among packets. To model the packetization, first a Non-Redundant Directed Acyclic Graph
(DAG) is constructed to encode the dependencies among the vertex splits of a progressive mesh. A special
Global Graph Equipartition Packing Algorithm is then applied to partitioning this graph into several equal
size sub-graphs, which is packed as packets. However, there is again no optimization with respect to channel
characteristics and the method requires retransmission.

Multiple Description Coding (MDC) is also used to achieve error resiliency in [8], [9], [10]. In [8], multiple
descriptions are generated by splitting the mesh geometry into submeshes and including the whole connectivity
information in each description. In [9], multiple description scalar quantization (MDSQ) is applied to wavelet
coefficients of a multiresolution compression scheme. The obtained two sets of coefficients are then independently
compressed by the SPIHT (Set Partitioning in Hierarchical Trees) coder [11]. In [8] and [9], descriptions are

created with heuristic methods and no optimum solutions are proposed for varying network conditions. In [10],

wavelet coefficient trees obtained by Progressive Geometry Compression (PGC) [12] algorithm are partitioned
into multiple descriptions. Each set of trees is independently coded with SPIHT. In this scheme, bit-rate for
each set is optimized for a given description loss rate. The MDC schemes mentioned above are resilient to
description losses. This is useful in scenarios such as multipath transmission or multiple storage. However, the
MDC schemes are not directly applicable to packetized streaming/transmission scenarios where the packet sizes
and description sizes differ considerably.

In [13], [14], [15], [16], [17] error resilient techniques that are scalable with respect to both channel

bandwidth and packet loss rate (PLR ) are proposed. The methods in [13], [14], [15], [16] try to achieve error

resilience by assigning optimal Forward Error Correction (FEC) codes to layers of a progressively coded 3D

mesh. The progressive scheme employed in these works is Compressed Progressive Meshes (CPM) [18]. While

the ideas are similar in these works, a more general optimization problem is tackled in [14] which maximizes
expected decoded model quality for a given model, total bit budget and PLR . Another important property of
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these methods is that the 3D model can be reconstructed at a resolution between coarse and fine representation
with respect to varying packet loss rates.

On the other hand, in [17], a wavelet based method for robust transmission of 3D models in a packet
loss network is proposed. The proposed algorithm depends heavily on FEC based packet lost resilient image
transmission schemes [19]. The method is based on obtaining an embedded bitstream from wavelet based

Progressive Geometry Compression (PGC) [12] and protecting the embedded bitstream with optimal FEC with
respect to channel bandwidth and PLR .

In this work, we address error resilient techniques that are scalable with respect to both channel bandwidth
and packet loss rate, i.e. CPM based and wavelet based methods. Our purpose is to give in depth analysis of
these techniques in terms of complexity, robustness to losses, compression efficiency and suitability for real time
transmission using a common measure and also propose improvements. Even though each of these methods
are addressed in the literature, to our knowledge, there is no study that performs such an analysis. In the
first group, we compare CPM based methods and propose modifications to decrease the complexity, using both

original L2 error and quadric error metric. In this way we manage to do performance evaluation for 3D models
with high number of triangles. Then, we compare CPM based methods with the wavelet based methods in
terms of average distortion of received model, complexity of optimization. The experimental results show that,
higher quality with more flexible packetization can be achieved by the proposed algorithm.

The remainder of this paper is organized as follows. Section 2 describes the CPM and wavelet based loss
resilient 3D mesh coding techniques and proposes improvements to CPM based methods. Section 3 provides
overview of the distortion metric used for 3D meshes and ways of reducing computation times for optimization.
Section 4 describes the channel model employed in experiments. Experimental results are presented in Section
5 and, finally, we conclude in Section 6.

2. Loss resilient 3D mesh coding

Performance of loss resilient coding techniques is highly correlated with the compression techniques on which
they are based. 3D mesh compression techniques can be classified into two categories: Single-rate compression
and Progressive compression. In single-rate compression, the aim is to compress the mesh as much as possible.
The single-rate compressed mesh can only be decompressed if the whole compressed bitstream is available, i.e. no
intermediate reconstruction is possible with fewer bits. Progressive compression is more suited for transmission
purposes in which some parts of the compressed bitstream can be missing or erroneous. By progressive
compression, the mesh is represented by different levels of detail (LODs) having different sizes. Progressive
compression techniques can further be classified into two categories: connectivity driven and geometry driven
compression. In connectivity driven progressive mesh compression schemes, the compact representation of
connectivity data is given a priority and geometry coding is driven by connectivity coding. On the other hand,
in geometry driven compression data is compressed with little reference to connectivity data, i.e. even the mesh
connectivity can be changed in favor of a better compression of geometry data. It is shown in [2] that better
compression ratios can be obtained by geometry driven progressive compression methods.

In this section, we analyze two loss resilient 3D mesh coding approaches that are classified according to
the progressive mesh compression schemes employed, namely Compressed Progressive Meshes (CPM) [18] which

belong to the connectivity driven schemes and wavelet based Progressive Geometry Compression (PGC) [12]
which belong to the geometry driven schemes. Since these works are the best representatives of each category,
we carry out the analysis based on them.
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2.1. Compressed progressive meshes-based loss resilient coding

2.1.1. Compressed progressive meshes

As noted earlier, the CPM method is a connectivity driven progressive mesh compression scheme. Therefore if
the whole bitstream is received successfully, then the original connectivity of the model can be reconstructed.
The encoder starts with the original mesh and generates meshes at different LODs iteratively. During each
iteration a simplified and coarser model LOD is generated from the present LOD of the model.

The basic operation for coarsening the present LOD is the edge collapse operation. This operation
combines two vertices of an edge into one vertex by collapsing the edge. This results in a decrease in the number
of triangles by two. The destroyed triangles form the cut-edges that are incident on the newly generated vertex.
In each iteration, a certain subset of edges are chosen to be collapsed. The encoder decides to stop generating
coarser LODs at a point and ends up with the simplest base mesh and M LODs.

The decoder performs in the reverse direction of encoder. It starts with the base mesh and constructs
finer LODs in each iteration. The basic operation for this construction is the vertex split operation. This
operation produces two new vertices from the vertex that was generated by collapsing an edge in the encoder.
The locations of new vertices are predicted and displacement errors are corrected. The details of the levels
increase in each iteration as new triangles are generated from the cut-edges.

All the operations needed for the decoder to decode a finer level from the present level in an iteration
is coded as a batch in the encoder. The encoded batch bitstream is composed of (a) a Collapse Status, one

bit to specify whether a vertex is to be split or not; (b) Cut Edges, the indices of cut-edges for the vertices to

be split; and (c) Position Error, quantized and entropy coded difference in geometric coordinates between the
collapsed vertex and the predicted vertex locations. Compressing the base mesh with a single-rate coder, the
final bitstream of the CPM algorithm is generated by the concatenation of compressed bitstream of base mesh

(base layer) of size R(0) and the M batches (M enhancement layers) of size R(i) , i = 1, . . . , M .

2.1.2. Loss resilient coding

For error resilient transmission of the data generated by the CPM algorithm, optimal error correcting codes
(in particular, Reed-Solomon (RS) codes) can be assigned to the layers of the progressively coded mesh. Let

RS(N, k0) denote the RS code applied to base layer (level-0) and RS(N, kj) denote the RS code applied to

j-th enhancement layer (level-j), where j = 1, . . . , LM . Here, LM denotes the number of enhancement layers
transmitted out of M enhancement layers according to the bitrate of the channel. RS codes are applied vertically
and packetization is performed horizontally. Therefore, receiving any kj out of N packets allows successful

decoding of level-j. A simple protected CPM output bitstream is illustrated in Table 1.

The problem definition can be formulated as follows. Given a 3D model and a total bit budget B ,
the aim is to determine an optimal combination of the following parameters to minimize the expected de-
coded model distortion (ED(LM )): (a) a value l , for the number of bits used in quantizing the position

error; (b) LM , the number of transmitted batches; (c) C , the total number of channel coding bits; and (d)

CL = [C(0), C(1), . . . , C(LM)] , in which C(i) denotes the number of channel coding bits applied to level i (or

[k0, k1, . . . , kLM ] , since ki is a function of C(i) , R(i) and N ).

To quantify the expected distortion ED(LM ), first let Pj denote the probability of terminating the
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Table 1. An example CPM output with LM + 1 = 3 layers. P i denotes Packet i generated horizontally, while FEC is

applied vertically. In this simple example, N = 6, k0 = 2, k1 = 3 and k2 = 4.

Base Mesh Batch 1 Batch 2
P1 1 2 P7 5 6 P13 11 12 13
P2 3 4 P8 7 8 P14 14 15 16
P3 FEC FEC P9 9 10 P15 17 18 19
P4 FEC FEC P10 FEC FEC P16 20 21 22
P5 FEC FEC P11 FEC FEC P17 FEC FEC FEC
P6 FEC FEC P12 FEC FEC P18 FEC FEC FEC

decoding operation at level-j and it can be calculated as

Pj =
N∑

m=N−kj +1

p(m, N), (1)

where p(m, N) is the probability of losing m packets within a block of N packets. Then the expected distortion

ED(LM ) can be calculated as

ED(LM ) = P0DNR +
LM∑
j=1

PjDj−1

j−1∏
i=0

(1 − Pi) + DLM

LM∏
j=0

(1 − Pj), (2)

where Dj is the distortion of level-j, DNR is the distortion when no reconstruction of the model is possible

(i.e., if the base mesh is lost), DLM is the distortion if all the levels are successfully received.

2.2. Proposed modifications for CPM based loss resilient coding

In [14], Al-Regib et al. have proposed an algorithm to find the optimum solution for this problem. The algorithm

is based on selecting the best ( l , LM ) pair for each value of C . Since it is not feasible to change C bit by bit,

the unknown variable C is quantized by a step size Q . In each step the best ( l , LM ) pair is selected using

rate-distortion (RD) curve. For each selected l and LM in that step, best expected distortion and CL are
found using a local search algorithm. Final output of the algorithm is the CL corresponding to best distortion
among all steps.

A drawback of this algorithm is that it contains many repeated operations since the results are iterated
by varying C using the step size Q . As there are finite choices of l , LM and kj values for a C , it is very

likely to encounter same l , LM and kj values for several C values during the local search. In [13], this

computational redundancy is removed by iterating only the finite kj values and putting the constraint that

k0 ≤ k1 ≤ · · · ≤ kL . Although in [13] the problem definition also states that C is given and LM is fixed, we can
generalize the algorithm by removing the assumptions that C and LM are fixed. In our experimental results,
we propose to generalize the problem by combining the methods of [14] and [13] such that, for given possible
finite sets of l and LM ,

• The combined algorithm computes expected distortion for every kj values satisfying the bit budget

requirement and the condition k0 ≤ k1 ≤ · · · ≤ kL .
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• kj values corresponding to the least expected distortion is chosen as the optimum FEC assignment.

In [15], Al-Regib et al. tackle with a similar problem in which l is also assumed to be given in addition

to our general problem definition. An exhaustive search of [C(0), C(1), . . . , C(L)] is proposed to find the optimal

solution. In [16], Ahmad et al. propose improvements on [15] in terms of complexity and packetization flexibility

inspired from the work in [20]. As this algorithm assumes that l is given, we propose a minor modification to
handle the general problem definition. The modified algorithm is such that, first the local optimum parameters
are found for a set of l values and the parameters corresponding to the best expected distortion is chosen as
the global optimum parameters. The experimental results are obtained using the modified algorithm.

2.3. Wavelet based loss resilient coding

2.3.1. Wavelet based scalable mesh coding

As noted earlier, wavelet based mesh coding techniques belong to the geometry driven progressive mesh coding
category. Very efficient wavelet based compression schemes have recently been reported in literature [12], [21],

[22], [23], [24] and have inspired the wavelet subdivision surfaces tool of MPEG-4’s Animation Framework

eXtension (AFX) [25],[26].

In this paper, we use PGC scheme [12] to produce scalable bitstream since this scheme represents the

basic idea behind all wavelet based codecs. The other wavelet based compression schemes [21],[22] can also
be used with minor modifications. PGC is a progressive compression scheme for arbitrary topology, highly
detailed and densely sampled meshes arising from geometry scanning. The method is based on smooth semi-
regular meshes, i.e., meshes built by successive triangle quadrisection starting from a coarse irregular mesh.
Therefore the original model in PGC should be remeshed [27] to have a semi-regular structure which allows

subdivision based wavelet transform. Resulting semi-regular mesh undergoes a loop-based [28] or butterfly-based

[29] wavelet decomposition to produce a coarsest level mesh and wavelet coefficients [12]. Since coarsest level

connectivity is irregular, it is coded by Touma and Gotsman’s (TG)[30] single-rate coder. Wavelet coefficients

are coded with Set Partitioning in Hierarchical Trees (SPIHT) algorithm [11]. For improved progressivity, a
predetermined number of bit-planes of the coarsest level geometry can be transmitted initially with the coarsest
level connectivity. The remaining refinement bit-planes can be transmitted as the SPIHT coder descends a
given bit-plane of wavelet coefficients [12]. As a result, an embedded bitstream is generated as illustrated in
Figure 1.

2.3.2. Loss resilient coding

After the embedded bitstream is defined, the problem of optimum loss protection is stated as follows [17]: The
embedded bitstream is to be protected with RS codes and transmitted over an erasure channel as N packets,
each of which contains L symbols (bytes, in this paper). The protection system builds L source segments Si of

mi symbols each where i = 1, . . . , L and mi ∈ {1, . . . , N} and protects each segment with an RS(N, mi) code.
For each i = 1, . . . , L , let fi = N −mi denote the number of RS redundancy symbols that protect segment Si .
An example of the above FEC assignment is illustrated in Table 2. If n out of N packets are lost, then the RS
codes ensure that all segments that contain at most N − n source symbols can be recovered. Thus, by adding
the constraint that f1 ≥ f2 ≥ · · · ≥ fL , if at most fi packets are lost, then the receiver can decode at least the
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Figure 1. Diagram showing generation of the embedded bitstream from a PGC coder. The bitstream starts with

compressed coarsest level connectivity C, as it is the most important part on which the whole mesh connectivity depends.

The next part of the bitstream is a predetermined number of bit-planes (5 shown in the figure) of the coarsest level

geometry (G1 G2 G3 G4 G5 ) since wavelet coefficients would have no use without the coarsest level geometry. The

remaining part of the bitstream consists of the output bitstream of SPIHT for different quantization levels (S1 S2 S3. . . )

and after each quantization level, refinement bit-planes of coarsest level geometry (G6 G7. . . ) are inserted for improved

progressivity.

first i segments. Let F denote the set of L-tuples (f1, . . . , fL) such that fi ∈ {0, . . . , N − 1} for i = 1, . . . , L

and f1 ≥ f2 ≥ · · · ≥ fL . Let p(m, N) denote the probability of losing exactly m packets of N and let

cN(k) =
k∑

m=0

p(m, N) for k = 0, . . . , N . (3)

Then cN(fi) is the probability that the segment Si can be decoded successfully.

Let D(R) denote the distortion-rate (D-R) function of the source coder. Then in order to achieve an

optimum the packet loss protection, it is needed to find F = (f1, . . . , fL) ∈ F such that the expected distortion

ED = cN(N)D(r0) +
L∑

i=1

cN(fi)(D(ri) − D(ri−1)) (4)

is minimized, where

ri =

{
0, for i = 0∑i

k=1 mk = iN −
∑i

k=1 fk, for i = 1, . . . , L.
(5)

The next step is to determine the optimum FEC assignments by minimizing ED in equation 4. In the
literature, there are several efficient methods for similar optimization problems used for scalable image coders
[19], [31], [32], [33], [34], [20]. The CPM based methods can also be used for FEC assignment assuming that
partitions of an embedded bitstream are batches of a progressive coder. However, since embedded coders are
highly progressive, efficient optimization methods are needed other than limited iteration steps used in CPM.

In [34], it is shown that the method in [31] performs very well in terms of expected distortion and the

method in [34] has the lowest computational complexity with slightly worse expected distortion performance.

In [31], given p = LN points on the operational D-R curve of the source coder, the algorithm first

computes the h vertices of their convex hull. Then a solution is found in O(hN logN) time. This solution is
optimal under the assumption of the convexity of the D-R function and of fractional bit allocation assignment.
In [34], a local search algorithm with O(NL) complexity is presented that starts from a solution that maximizes
the expected number of received source bits and iteratively improves this solution. The reader is referred to
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[31], [34] for the details of the algorithms. Since we also use a scalable bitstream produced by PGC coder, we

employ the optimization methods in [31] and [34] in our experiments.

Table 2. A table showing an example of FEC assignment. There are N = 5 packets, each composed of L = 4 symbols.

as such, there are 4 source segments, Si , i = 1, 2, 3, 4, each of which contains mi data symbols and fi FEC symbols,

where mi + fi = N . In this example, m1 = 2, f1 = 3, m2 = 3, f2 = 2, m3 = 3, f3 = 2, m4 = 4 and f4 = 1. Earlier

parts of the bitstream are assigned more FEC symbols since they contribute more to overall quality.

P1 P2 P3 P4 P5
Segment 1 1 2 FEC FEC FEC
Segment 2 3 4 5 FEC FEC
Segment 3 6 7 8 FEC FEC
Segment 4 9 10 11 12 FEC

3. Distortion metric and simplifications in calculations

In order to use equations 2 and 4, we need to quantify quality of the model, i.e. distortions Dj and D(R)

in the equations. To be able to describe the quality of a processed/reconstructed 3D model, either objective
or subjective quality measures need to be defined. There is no immediate objective distortion metric in 3D
meshes like mean-square error in images. One distortion metric used in the literature is the Hausdorff distance
dH(X, Y ) between two surfaces X and Y , defined by

dH(X, Y ) = max{max
x∈X

d(x, Y ), max
y∈Y

d(y, X) }, (6)

where d(x, Y ) is the Euclidean distance from a point x on X to the closest point on Y . Another distortion

metric is the L2 distance, dL(X, Y ), between two surfaces X and Y and is defined by

dL(X, Y ) = max{ d(X, Y ), d(Y, X) } (7)

where

d(X, Y ) =
(

1
area(X)

∫
x∈X

d(x, Y )2dx

)1/2

. (8)

Hausdorff distance takes the maximum of Euclidean distances, whereas L2 distance (Euclidean length)

involves the root mean square of the distances. Therefore, L2 distance reflects the average distortion of a 3D

model while the Hausdorff distance reflects the maximum error. For this reason we use L2 distance to denote
the objective distortion metric in the experiments. We use Metro tool [35] to compute this distance.

As the L2 distance has an expensive computation cost, considerable offline computations can be required
during optimization. To reduce this complexity, some simplifications need to be employed. For CPM based
methods, quadric error metric can be used and, for wavelet based methods, distortion rate curve modeling can
be employed, as explained in following two sections.

3.1. Simplification by quadric error metric

In both Al-Regib and Ahmad’s works, complete D-R curves are required for each quantization level during

optimization. But since the calculation of L2 distance is not an inexpensive operation, obtaining D-R curves
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Figure 2. Comparison between the Weibull model (10 points) and operational RD curve (L2 ) for Bunny model. (a)

Relative L2 error; (b) PSNR.

can be a very long process. In order to account for this problem, quadric error metric can be used during
optimization as proposed in [13]. In this way, the distortion is estimated by using a conservative upper bound
on the maximum distortion that results from edge collapses in a batch, which might be obtained using the sum
of the squares of the distances between each vertex V of the simplified mesh and the planes that support the
original triangles that were incident upon all the vertices that collapsed to V [18]. Since CPM coder inherently
uses this metric during compression, it does not have an extra time cost at all.

3.2. Simplification by distortion rate curve modeling

In wavelet based loss resilient mesh coding, there are many rate values where the mesh can be reconstructed
due to embedded bitstream. Calculation of the whole distortion rate (D-R) curve requires considerable time.

Therefore we employ the Weibull modeling of D-R curve presented in [36] that is used for coding of images. It

is found in [10] that output of PGC coder can also be approximated with this model. The model is described
by

D(R) = a − be−cRd

, (9)

where real numbers a , b , c , and d are the parameters which depend on the D-R characteristics of the source
and the bitstream. As there are four parameters in this model, D(R) curve can be found by using at minimum

four points. This model can approximate both L2 and PSNR curves where PSNR = 20 log10 1/L2error . To
fit this model to RD samples, we use nonlinear least-squares regression.

Figure 2 shows a comparison of true operational D-R curves of Bunny model and their Weibull models.

The Weibull models are D(R) = 1283.24− 1283.24 e−0.158R−1.550
and D(R) = 82.78− 142.05 e−0.216R0.269

for

L2 -distance and PSNR, respectively.

One can see that the model closely approximates the real data. Moreover, the model has a nice feature
of convexity, which is desirable for bit allocation algorithm.
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4. Channel model

In order to consider packet loss behavior to optimize expected decoded model quality, the channel is needed to
be modeled with an appropriate model. In this paper we use the two state Markov model [37] for packet losses.

This model is investigated and shown to be very effective to model packet losses in [38] and [39].

pGB
pBG

PBG

PGB

B G

Figure 3. Two state Markov channel model [37].

In this section, we briefly review the model and the reader is referred to [38] and [39] for more details.

The Markov model described in [38] and [39] is a renewal model, i.e., the event of a loss resets the memory of

the loss process. Such models are determined by the distribution of error free intervals (gaps). Let a gap of
length v be the event that after a lost packet v − 1 packets are received and then again a packet is lost. The

gap density function g(v) gives the probability of a gap length v , i.e., g(v) = Pr(0v−11|1), where ‘1’ denotes a

lost packet and ‘0v−1 ’ denotes v − 1 consecutively received packets. The gap distribution function G(v) gives

the probability of a gap length greater than v − 1, i.e., G(v) = Pr(0v−1|1). In our model, in state B all packets

are lost (‘1’), while in state G all packets are received (‘0’), yielding

g(v) =

{
1 − pBG, if v = 1,

pBG(1 − pGB)v−2pGB, if v > 1,
(10)

G(v) =

{
1, if v = 1,

pBG(1 − pGB)v−2, if v > 1.
(11)

Let R(m, N) be the probability of m − 1 packet losses within the next N − 1 packets following a lost
packet. It can be calculated using the recurrence

R(m, N) =

{
G(N), m = 1,∑N−m+1

v=1 g(v)R(m − 1, N − v), 2 ≤ m ≤ N.
(12)

Then the probability of m lost packets within a block of N packets given in equations 3 and 1 is

p(m, N) =
N−m+1∑

v=1

PBG(v)R(m, N − v + 1), if 1 ≤ m ≤ N , (13)

where PB is the average loss probability.

5. Experimental results

We have performed the experiments with Bunny and Venus head models. Bunny model is composed of 34835
vertices and 69472 triangles and Venus head model is composed of 50002 vertices and 100000 triangles. The
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original uncompressed models are shown in Figure 4. The simulated distortions given in the results are calculated
by averaging 100 experiments of channel simulation. The packets are sent over a packet erasure channel which
is modeled as two-state Markov process with average burst length of 5. The reconstruction distortion is relative

L2 error, which is calculated by Metro tool[35]. Relative error is calculated by dividing L2 distance to the

original mesh bounding box diagonal. All the relative L2 errors in this paper are in units of 10−4 . We also
provide the same numbers in PSNR scale where PSNR = 20 log10 peak/d, where peak is the bounding box

diagonal, and d is the L2 error. The bitrate values are presented in terms of bits per vertex (bpv).

(a) (b)

Figure 4. Images of the test data used in this work: (a) Bunny model; (b) Venus head model.

For computation complexity experiments, we measure the time taken for an algorithm to run with an
Intel Pentium 4, 2.2 GHz, 1 Gb RAM, Windows XP installed computer. Although it is not possible to achieve
exact complexity results with these settings (e.g. due to possible inefficient implemented parts of algorithms or

multitasking of OS), we provide the results to mention the order of complexity of the algorithms compared to
each other.

In the following experimental results, if the 3D model name and the coding bitrate are not explicitly
specified, then these results correspond to the Bunny model coded at 3.5 bpv and packetized with N = 100.

In the rest of this section, we categorize the experiments and present in different subsections. We start
with the results of CPM based methods which include the proposed kStep parameter and comparison of CPM
based method simulation distortions. Then we provide the results for D-R curve modeling for PGC based
methods followed by the comparison of CPM and PGC based methods in terms of simulation distortions. Then
we examine the mismatch scenario which occurs when the real loss rate and the one used in optimization differ.
We continue the results with complexity comparisons for the optimization methods and finally we provide visual
results for subjective evaluation.
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5.1. Proposed kStep for CPM based methods

For Al-Regib’s CPM based methods, since iterating all possible RS(N, kj) pairs for each layer is not feasible due
to significant complexity requirements, we propose a new parameter, kStep . With parameter kStep , instead
of iterating kj ’s in RS(N, kj) pairs one by one, we increment and decrement kj values by an amount of kStep

in the iterations. Figure 5 shows the simulated PSNR values and Figure 6 shows the optimization times for
different kStep values.
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Figure 5. Graph showing effect of step size k (kStep) on quality: Simulated PSNR vs. step size k for Bunny model,

optimized for PLR = 2%, 4% and 10%, coded at 3.5 bpv.
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Figure 6. Graph showing effect of step size k (kStep) on complexity: Optimization time vs. step size k for Bunny

model optimized for PLR = 4% and coded at 3.5 bpv.

From the figures, it can observed that it is possible to save great amount of time during optimization by
increasing the kStep value. In addition, while increasing the kStep value, the decrease in the simulated PSNR
value is not significant for different packet loss rates.
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5.2. Comparison of CPM based methods

After defining the kStep parameter, we proceed to comparison of all aforementioned CPM based methods.
Figure 7 summarizes all of the mentioned CPM based error resilient methods. In the figure, simulated PSNR
vs PLR values are presented for several configurations. The curves in the figure are Al-Regib’s method with a
fine kStep value of 2 (Al-Regib kStep = 2 ), Al-Regib’s method with a coarser kStep value of 5 (Al-Regib kStep

= 5 ), Al-Regib’s method with kStep = 5 and using quadric error metric during optimization (Al-Regib kStep

= 5 Quad), generalized Ahmad’s method (Ahmad) and generalized Ahmad’s method with using quadric error

metric during optimization (Ahmad Quad).
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Figure 7. Comparison of CPM based methods for Bunny model in terms of simulated distortions for various PLR ’s.

From the figure, it can be deduced that all the CPM based methods similar performance, where none
of the methods achieve significantly higher simulated PSNR. Nonetheless, best PSNR is achieved by Al-Regib
kStep = 2 expectedly.

5.3. Performance of D-R Curve modeling for PGC based methods

After examining the CPM based methods, we start the analysis of PGC based methods. For the PGC based
methods, FEC assignments are optimized with the algorithms of Mohr et al. and Stankovic et al. [31], [34] and
labeled as PGCMohr and PGCStankovic in the rest of the paper.

We initially examine the performance of the proposed D-R curve modeling described in Section 3.2.
Figure 8 shows simulated distortions corresponding to various PLR ’s for PGCMohr employing the original D-R
curve and modeled D-R curve during optimization. It is observed that quite acceptable results can be achieved
by D-R curve modeling. Therefore we present the remaining PGC based results with modeled D-R curves which
significantly reduce optimization times.

5.4. Comparison of CPM and PGC based methods

In this part, we present comparison of the CPM and PGC based methods in terms of simulation distortions for
three cases: 1) Bunny Model Coded at 3.5 bpv, 2) Bunny Model Coded at 1.2 bpv and 3) Venus Model Coded
at 4 bpv.
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Figure 8. Comparison of using original D-R curve and using modeled D-R curve during optimization for Bunny model

in terms of simulated distortions for various PLR ’s.

5.4.1. Bunny model coded at 3.5 bpv

For this case, a comprehensive summary of the results for all methods is presented in Table 3. Also, comparison
of CPM based and PGC based methods in terms of simulated PSNR can be seen in Figure 9. From the results,
one can notice that PGC based method significantly outperform the CPM based methods.

Table 3. Simulated distortion results of the first scenario for various PLR values. The distortion metric is relative L2

error in units of 10−4 .

Simulated distortion for different PLR
PLR = 0% PLR = 2% PLR = 4% PLR = 6% PLR = 10% PLR = 15% PLR = 20% PLR = 30% PLR = 40%

PGCStankovic 1.89 2.52 2.61 2.78 3.09 3.48 3.78 4.7 5.89
PGCmohr 1.85 2.42 2.62 2.66 3.06 3.32 3.87 4.55 6.67

Al-Regib kStep = 2 6 7.8979 8.5275 8.7846 9.9071 11.0633 12.3032 14.2119 17.1574
Al-Regib kStep = 5 6 7.9356 8.5464 8.8324 10.0043 11.0837 12.355 14.32 17.2934
Al-Regib kStep = 5 6 7.9362 8.5464 8.8324 10.1721 11.0837 12.3602 14.32 17.2934

Quad

Ahmad 6 7.92 8.5411 8.8165 10.0053 11.113 12.3531 14.3025 17.2771
Ahmad Quad 6 7.9823 8.5455 8.8319 10.0355 11.1606 12.3983 14.3486 17.2771

5.4.2. Bunny model coded at 1.2 bpv

In this case, we decrease the bitrate and code Bunny model at 1.2 bpv to observe low bitrate error resilient
characteristics. Comparison of PGC and CPM based methods is provided in Figure 10. We observe that the
results do not change by decreasing the coding bitrate.

5.4.3. Venus model coded at 4 bpv

Finally in this case, we repeat the experiments performed on Bunny model with Venus head model which is
coded at 4 bpv and packetized with N = 100. Simulated PSNR comparison of PGC based and CPM based
methods can be seen in Figure 11. Similar to the results with the Bunny model, we observe that PGC based
methods, again, significantly outperform the CPM based methods.
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Figure 9. PLR vs. Simulated distortion in PSNR scale for the Bunny model coded at 3.5 bpv.
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Figure 10. PLR vs. Simulated distortion in PSNR scale for Bunny model coded at 1.2 bpv.
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Figure 11. PLR vs Simulated distortion in PSNR scale for Venus head model coded at 4 bpv.
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5.5. Mismatch cenario

In the experiments presented so far, the assumption is that, during the optimization, we know the channel
loss rate and optimize the protection parameters accordingly. However, in real cases, the channel packet loss
rate used during the optimization and the actual loss rate encountered may differ. Therefore in this part, we
investigate what happens when a model optimized for a loss rate is transmitted over a channel with a different
lost rate. The results of this experiment are shown in Figure 12.
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Figure 12. Bunny model is coded at 3.5 bpv and FEC assignment is optimized with respect to three different PLR ’s

for PGCStankovic and Al-Regib kStep = 5 methods. Performance of the three different assignments for various PLR ’s in

terms of simulated distortion in PSNR scale.

The first observation in the figure is that, when the transmission packetization is optimized for a low loss
rate and a channel with a higher loss rate is encountered, the performance degradation can be severe. On the
other hand, when the model encounters a channel with a lower loss rate, the performance loss is not significant.
Another observation is that both CPM and PGC based methods behave similarly in mismatch scenario and the
performance gap between the methods does not vary.

5.6. Complexity comparison

In the packet loss resilient 3D mesh transmission frameworks presented in this paper, it should be noted that
the methods are not suitable for real time transmission. The reason is that the algorithms need to compress
the model first and obtain D-R curves, which require significant amount of time. However, if we are allowed
to compress models and store D-R curves offline, then real time transmission may be possible unless the time
spent during the optimization, so called optimization time, is high. In this case, the optimization time of an
algorithm becomes an important measure for real time transmission.

In order to compare the complexities of the optimization parts of the methods, we measured the optimiza-
tion time for each algorithm as described at the beginning of Section 5. Table 4 summarizes time requirements
for different optimization schemes mentioned in this paper.

The table shows that PGCStankovic has the smallest complexity. However, as seen in previous results,
the complexity is smaller than that of PGCMohr at the cost of occasional slightly worse simulated PSNR.
Examining the CPM based methods, we see that Ahmad and Al-Regib kStep=5 show significantly higher
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Table 4. Optimization times of different methods. Each method is optimized for PLR = 4%.

Optimization Times
Methods Time (sec) PSNR

PGCMohr 0.250 71.63
PGCStankovic 0.004 71.68

Ahmad 11.110 61.37
Al-Regib kStep = 5 8.350 61.36
Al-Regib kStep = 8 0.365 61.35

complexity. However, from kStep = 8, the complexity values are comparable with those of PGC based methods.

5.7. Visual comparison of CPM and PGC mased methods

Apart from the objective distortion metric results, we also present results of Bunny model coded at 3.5 bpv
and Venus head model coded at 4 bpv in terms of visual reconstructions. Figure 13 and Figure 14 show visual
reconstructions for Bunny and Venus head model for various PLR values respectively.

6. Conclusion

In this paper, we presented an extensive analysis of loss resilient coding methods for 3D models. The methods are
based on optimally protecting compressed bitstreams with FEC codes with respect to given channel bandwidth
and packet loss rate constraints.

We first examined the CPM based methods reported in the literature and came up with a general problem
definition and solution. We introduced a kStep parameter to iterate protection rates with different steps and
showed that increasing kStep considerably decreases optimization times at the expense of very small PSNR
degradation.

Then we compared CPM and PGC based methods and experimental results show that PGC methods
achieve approximately 10 db better PSNR for all loss rates. It was already reported in [12] that, compression
performance of PGC method is 10 dB better than CPM method. In our results, we show that the 10 dB
compression performance gap between the methods is preserved in packet loss resilient transmission. For the
same reason, expected reconstructed models of PGC method at the decoder have a better subjective quality
than the ones of CPM method. Apart from the PSNR performance, PGC based methods have an advantage
of flexible packetization. Since the bitstream of PGC method is embedded, the bitstream is generated only
once. Given the channel and bandwidth conditions, the bitstream can be truncated to desired bitrate precisely
and FEC assignment is performed easily. The CPM based methods need to generate different bitstreams for
different quantization values and number of bitrate values that can be achieved is limited.

Finally, we simulated performance of optimization methods in a mismatch scenario i.e. the model is
protected with FEC codes optimized for a given loss rate but transmitted through a channel with a different
loss rate. We observed that when the model is optimized for a low loss rate and encounters a channel with a
higher loss rate, the performance degradation can be severe. On the other hand, when the model encounters a
channel with a lower loss rate, the loss in the performance is not significant. Therefore we conclude that when
the channel conditions are uncertain or time varying, it is more robust to optimize loss protection with respect
to a higher loss rate.
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Expected reconstructions of the Bunny model, left column by PGCStankovic method and right column by

Al-Regib kStep = 5 method. Images (a)–(b): PLR = 2%; (c)–(d): PLR = 10%; (e)–(f): PLR = 20%. PSNR values: (a)

72.18 dB (b) 62.44 dB (c) 70.52 dB (d) 61.57 dB (e) 69.09 dB (f) 58.61 dB.
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(a) (b)

(c) (d)

(e) (f)

Figure 14. Expected reconstructions of the Venus head model, left column by PGCStankovic method and right column

by Al-Regib kStep = 5 method. Images (a)–(b): PLR = 2%; (c)–(d): PLR = 10%; (e)–(f): PLR = 20%. PSNR values:

(a) 76.95 dB (b) 67.79 dB (c) 75.04 dB (d) 65.19 dB (e) 74.24 dB (f) 65.19 dB.
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One of the future works includes extension of the error resilient techniques to the recently popular area of
dynamic meshes which compose of series of static meshes. Another future work includes comparing with other
scalable mesh coding techniques such as [40].
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