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Abstract

Most independent component analysis (ICA) algorithms use mutual information (MI) measures based on

Shannon entropy as a cost function, but Shannon entropy is not the only measure in the literature. In this

paper, instead of Shannon entropy, Tsallis entropy is used and a novel ICA algorithm, which uses kernel

density estimation (KDE) for estimation of source distributions, is proposed. KDE is directly evaluated from

the original data samples, so it solves the important problem in ICA: how to choose nonlinear functions as

the probability density function (pdf) estimation of the sources.
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1. Introduction

Independent component analysis (ICA) has attracted much attention recently for blindly separating mixtures
of signals generated by independent sources. As a result, ICA techniques have rapidly growing applications
in various subjects, such as image enhancement, biomedical signal processing, telecommunication, pattern
recognition, and speech processing [1]. Several efficient ICA algorithms have been developed for applications in

these areas [2-5]. Despite such wide application areas, most of the current ICA algorithms can separate mixed
signals for some cases, but the performances of the algorithms are not so good. These performance weaknesses
stem from 2 factors: the entropy estimation technique and the optimization of the entropy performance function
[6].

After Shannon’s famous work, there have been numerous generalizations of Shannon entropy, but only
Tsallis entropy [7] has succeed in a natural generalization of the usual Boltzmann-Gibbs statistical mechanics
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[8,9]. As a result of this, the Tsallis entropy measure is finding a place in many applications, including

optimization [10] and electroencephalographic (EEG) signal analysis [11]. Indeed, it is a generalization of
Shannon entropy and was inspired by the fractal behavior of many phenomena. Before Tsallis, Havrda and
Charvat introduced similar forms of this entropy measure in 1967 [12]. Therefore, this entropy is subsequently

called Havrda-Charvat-Tsallis (H-C-T) entropy.

Like other entropy measures, Shannon entropy can be retrieved from Tsallis entropy in the q →1 limit.
In addition, Tsallis entropy has the remarkable property, not yet understood, that in the case of independent
signal experiments, it does not satisfy the additivity property. Hence, Tsallis entropy is also termed nonextensive
statistics. Another interesting property of Tsallis entropy is that it can present nice interpretations for long-range
interactions and long-term memories, which cannot be explained systematically in the usual Boltzmann-Gibbs
statistical mechanics [9].

To investigate Tsallis entropy for an ICA algorithm, in this paper, Tsallis entropy measure is utilized
as an alternative to Shannon entropy with different order parameters (q). Unlike classical ICA algorithms
that rely on a priori assumptions about the sources and mixing matrix for determining the unknown unmixing
matrix, the new ICA algorithm uses the kernel density estimation (KDE) method to estimate the probability

density function (pdf) of the reconstructed signals. Most ICA algorithms restrict the probability distribution of

the sources to a particular shape or class via fixed or parametric estimates [7-12]. When the pdf of the source
signals matches the restricted probability distribution of the sources, the ICA algorithms are capable of quickly
and efficiently achieving the desired source separation. However, such algorithms can perform suboptimally
or even fail to separate the desired source signals when the assumed statistical model is inaccurate [13]. As
a solution for this problem, a more flexible model for pdfs of the source signals that consists of kernel-based
techniques has been exploited [14].

In this paper, a new ICA algorithm is developed using the nonadditivity property of Tsallis entropy. A
review of Tsallis entropy is given in Section 2. The actual algorithmic implementations of the new and the old
techniques are given in Section 3. Simulations were conducted to demonstrate the performance comparisons
obtained with the nonparametric ICA (NpICA) and the new ICA algorithm; these are given in section 4. Section
5 contains concluding remarks.

2. Tsallis entropy

The entropy of a discrete source is often obtained from its pdf, where p = {pi} is the probability of finding the

system in each possible state i . Therefore, 0 ≤ pi ≤ 1 and
∑k

i=1 pi = 1, where k is the total number of states.

Using the pdf definition, Shannon entropy can be written as:

H = −
∑k

i=1
pi log (pi). (1)

Like Shannon entropy, the Tsallis entropy of random variable is defined from its pdf as:

Sq =
1 −

∑k
i=1 (pi)

q

q − 1
, (2)

where the real number q is an entropic index that characterizes the degree of nonextensivity. Note that Tsallis

entropy is concave for any q ∈ R+ [15,16].
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It can be noticed that, since in all cases Sq ≥ 0, then q < 1,q = 1, and q > 1 respectively correspond to
superadditivity, addivity, and subadditivity. The naming of these cases can be easily understood if it is noted

that pq
i > pi for q < 1 (the superadditive case), because the probability values are between 0 and 1. In this

sense, Tsallis entropy presents us with a mean emphasizing the rare and frequent events.

Another general structure underlying the definition of Tsallis entropy is given in terms of deformed
exponentials. In this framework, a q -deformed logarithm and q -expectation Eq are defined as follows.

lnq (x) =
x1−q − 1

1 − q
(3)

Eq (x) =
∫

xpx (x)q
dx∫

px′ (x′)qdx
(4)

The q-exponential is defined as:

expq (x) = (1 + (1 − q)x)
1

1−q . (5)

Eqs. (3) and (5) become the ordinary logarithm and exponential in the q →1 limit. Now Tsallis entropy can
be rewritten in terms of the q -deformed logarithm as:

Sq =
∑k

i=1
pi lnq

(
1/pi

)
. (6)

A distinctive property of Tsallis entropy is that it is nonextensive; that is, the entropy of the joint density of 2
independent random variables is not equal to the sum of the entropies of random variables. Instead, it fulfills
the following relation:

Sq(A, B) = Sq(A) + Sq(B) + (q − 1)Sq(A)Sq(B), (7)

where A and B are 2 independent random variables with no correlation. The parameter q is associated with
the nonadditivity of the entropy values of the independent random variables A and B . When q = 1, the
nonadditivity of Eq. (7) reverts to the standard additivity, such that Shannon entropy is considered to be an
extensive entropy in contrast to Tsallis entropy.

3. ICA algorithm

Typically, ICA is a mathematical technique for recovering latent source signals from observed signal mixtures.
Depending on the mixing process, ICA can be modeled as linear, nonlinear, and convolutive. In this work, the
mixing process is considered as instantaneous linear mixing:

x = As, (8)

where the sources s = [s1, ..., sm]T are mutually independent and Amxm is an unknown mixing matrix. The
aim is to find a matrix, W , only from observations, x , such that the output

y = Wx (9)

is an estimate of the possible sources. Due to the fact that source signals are not known, estimating the demixing
matrix W in the closed form cannot be possible. For this reason, different cost functions were proposed in the
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literature [4,17,18]. The solutions to ICA algorithms are found at the minimum or maximum of these cost
functions. Minimization of these functions, possibly under some constraints on the solutions, is the subject of
the optimization theory.

Using basic information theory equalities [19], mutual information (MI) can be written as a cost function
for ICA algorithms. The reason for this is that MI is a measure of dependence between the random variables,
and it is equal to zero if and only if the random variables are independent. Boscolo et al. used MI with the
KDE method in their works on NpICA [3,20]. MI is defined between m (scalar) random variables yi , i = 1...m ,
as follows.

I (y1, y2, ..., ym) =
m∑

i=1

H (yi) − H (y) , (10)

where H (yi)are the marginal entropies of the random variables and H (y) is the joint entropy of the random
variables. Minimization of the MI between the reconstructed signals can be written as:

min
W

{
m∑

i=1

H (yi) − log |det W | − H (x)

}
. (11)

In Eq. (10), calculation of joint probability density is a burdensome task. Therefore, in Eq. (11), linear
transformation is applied to the joint probability density; it can be seen that the entropy of the joint probability
density of x is a constant with respect to W . As a result of this, the cost function is reduced to the following:

L (W ) =
m∑

i=1

H (yi) − log |detW | , (12)

L (W ) =
m∑

i=1

E [log pyi (wix)] − log |detW | , (13)

where wi is the ith row of the matrix W . In order to evaluate Eq. (13), entropy definitions and a model for
the distribution of the unknown signals are required. As a solution for this, we use KDE techniques, where the
pdfs pyi are directly estimated from the data [21,22].

Another advantage of KDE techniques is that they allow direct evaluation of the cost function, and thus
separating the optimization step from the step involving the reestimation of the score function, as in [23,24], is

not necessary [3]. Using the KDE technique, the marginal distribution of a dataset is approximated as follows:

pyi (yi) =
1

Mh

M∑
m=1

ϕ

(
yi − Yim

h

)
, i = 1, ..., N, (14)

where M is the size of the sample data, h is the kernel bandwidth
(

h = 1.06M
−1/5

)
, and ϕ is the Gaussian

kernel:

ϕ (t) =
1√
2π

e−
t2/2 . (15)

The kernel centroids are equal to:

Yim = wix
(m) =

N∑
n=1

winXnm, (16)
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where x(m) is the mth column of the mixture matrix X . Replacing pyi in Eq. (13) with Eq. (14), the cost
function can be written as:

L (W ) =
N∑

i=1

E log

[
1

Mh

M∑
m=1

ϕ

(
yi − Yim

h

)]
− log |det W | . (17)

The overall optimization problem can be written as:

min
W

{
− 1

M

N∑
i=1

M∑
k=1

log

[
1

Mh

M∑
m=1

ϕ

(
yi − Yim

h

)]
− log |det W |

}
. (18)

Optimizing the cost function on the unit sphere, this step must be complemented by projecting w on the unit
sphere by dividing w by its norm.

w ← w

‖w‖ (19)

A new ICA algorithm using Tsallis entropy as the entropy measurement can be established by utilizing Kullback-
Leibler divergence, D , between the random variable Y of n dimensions, and the product of its components,
n∏

i=1
Yi , is derived as in [16,25].

Dq

(
Y

∣∣∣∣∣
N∏

i=1

Yi

)
= −Sq (Y ) + Eq

[
lnq

N∏
i=1

pYi (Yi)

]
, (20)

where N is the number of the components of independent sources, and lnq and Eq are defined in Eqs. (3) and

(4), respectively. For 2 signals, the cost function of the new ICA algorithm using the KDE technique and Eq.

(20) can be obtained as follows.

L (W ) =

2�
i=1

Eq lnq

�
1

Mh

M�
m=1

ϕ

�
yi − Yim

h

��
+(q − 1) Eq lnq

�
1

Mh

M�
m=1

ϕ

�
y1 − Y1m

h

��
Eq lnq

�
1

Mh

M�
m=1

ϕ

�
y2 − Y2m

h

��

−Eq lnq

[
1

Mh2

M∑
m=1

2∏
d=1

ϕ

(
yd − Ydm

h

)]
(21)

when Eq. (21) is compared with Eq. (17), it can be seen that the calculation complexity of the new ICA
algorithm increases in cases of m ≥ 3. The other difficulty of the new ICA algorithm is due to the intractable
computational cost of estimation for the joint density function of reconstructed signals. As a partial solution
to this problem, linear transformation can be applied to the Tsallis entropy of the joint density function of the
reconstructed signals; that is:

Eq lnq

⎡
⎢⎢⎢⎣

1
Mh2

M∑
m=1

2∏
d=1

ϕ
(

xd−Xdm

h

)
|det W |

⎤
⎥⎥⎥⎦ , (22)

where x is the observed signals. Eq. (22) calculates the Tsallis entropy of y with respect to xand |det W | . It is
obvious that this equation cannot be eliminated in the optimization stage. Thus, it is necessary to estimate the
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joint density of the observed signals only once, and then using this estimation and Eq. (22), the Tsallis entropy
estimation of the joint density of the reconstructed signals can be estimated for every step of the optimization
stage. For simplicity, the first derivatives of the cost function (m =2) with respect to wij are computed as:

∂L (W )
∂wij

=
∂

∂wij
Sq (Yi) + (q − 1) Sq (Y3−i)

∂

∂wij
Sq (Yi) −

∂

∂wij
Sq (Y ) , (23)

where Sq (Yi) is the Tsallis entropy of the marginal distributions (i, j= 1,2) and Sq (Y ) is the Tsallis entropy

of the joint distribution. ∂
∂wij

Sq (Yi) can be calculated as follows.

∂

∂wij
Sq (Yi) =

1
q − 1

∂
∂wij

[
N∑

t=1

M∑
k=1

1
Mhϕ

(
w

(k)
t

�
x
(k)
t −x(m)

�

h

)]q

N∑
t=1

M∑
k=1

1
Mhϕ

(
w

(k)
t

�
x
(k)
t −x(m)

�

h

) (24)

∂

∂wij
Sq (Yi) =

1
q − 1

− q
(Mh)qh

N∑
t=1

M∑
k=1

x(m)
(
yt − wtx

(m)
)
ϕ

(
w

(k)
t

�
x
(k)
t −x(m)

�

h

)
N∑

t=1

M∑
k=1

1
Mh

ϕ

(
w

(k)
t

�
x
(k)
t −x(m)

�

h

) (25)

It is easy to extend to the case of any m ∈ N , but the calculation becomes very complicated.

The final step for ICA algorithms is to minimize the cost functions. In this respect, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [26] algorithm, derived from Newton’s method, is utilized for the new ICA algorithm
and Boscolo’s ICA algorithm in optimization. In the BFGS algorithm, the Hessian matrix of second derivates of
the cost function to be minimized does not need to be computed at any stage. The Hessian matrix is updated
by analyzing successive gradient vectors, instead. The BFGS algorithm can be summarized as follows.

Step 1. Given x1 ∈ Rn, B1 ∈ Rnxn positive definite, f (x) is a function,

compute g1 = ∇f (x1). If g1 = 0, stop; otherwise, set k = 1.

Step 2. Set dk = −B−1
k gk .

Step 3. Carry out a line search along dk , getting αk > 0,

xk+1 = xk + αkdk, and gk+1 = ∇f (xk+1).

If gk+1 = 0 or (f (xk+1) − f (xk)) < 10−10 , stop.

Step 4. Set

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ykyT

k

sT
k yk

,

where
sk = αkdk,

yk = gk+1 − gk.

Step 5. k := k + 1; go to Step 2.

Using Eqs. (23) and (25) in the BFGS algorithm, the new ICA algorithm can be obtained for m= 2.
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A well-known problem in ICA algorithms is that, although the global minimum of Eq. (11) is known
to yield the desired source separation, there is no proof to show that such a function has no local minimum.
Therefore, Comon [27] proved that convergence to any local minimum rather than global minimum would result

in a failure to separate the source signals. Rattray and Basalyga [28] and Rattray [29] showed that this issue

can be overlooked in ICA algorithms, and Amari [17] showed that ICA algorithms can separate source signals
for arbitrary initial guess. In light of these works, convergence conditions were not investigated in this study.

4. Performance evaluation

Experiments were performed using 5 synthetic data sets for different pdfs. Whereas 4 of them had super-
Gaussian and sub-Gaussian pdfs, the last 1 had a Gaussian pdf. To validate the new ICA algorithm using the
nonparametric method as a pdf estimation method, synthetic datasets were adopted as input mixtures.

In order to produce the test data, 1000 synthetic datasets were linearly mixed by 1000 randomly generated
mixing matrixes with sample sizes ranging between 512 and 4608. One of the source signals and one of the
synthetic datasets are shown in Figures 1 and 2, respectively.
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Figure 1. Source signals.
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Figure 2. Synthetic signals.

The NpICA algorithm was compared with the new ICA algorithm for different entropic indexes (q =

1.1, ..., 1.5) on these datasets. These algorithms were quantitatively compared using only one measure, which

was the median signal-to-noise ratio (SNR) of the separated signals. The equation describing the SNR is:

SNR = 10 log10

(
E

[
s(t)2

]
E [n(t)2]

)
, (26)

where E (.)is the mean of the arguments, s(t)is the desired source signal, and n(t) = s(t) − ŝ(t) is the noise,

indicating an undesired signal. Here ŝ(t) is the estimated source signals, and s(t) and ŝ(t) are at the same
energy.

The results of these experiments are shown in Figure 3, and it can be seen clearly that raising the number
of samples increases performance gains obtained with both nonparametric ICA algorithms. Nevertheless, for
the new ICA algorithm, increasing the q entropic index decreases the median SNR. If median SNR levels are
below 8-10 dB, this indicates that the system has failed to obtain the desired source separation.

For the super-Gaussian sources (Source 1 and 2), the median SNR is higher than those for the other
sources. It can be seen in Figure 3 that the Gaussian source, Source 5, has the lowest gains among the sources.
Although for q= 1.1 and 1.2, the new ICA algorithm appears to match the performance of Boscolo’s algorithm,
both algorithms appear to be capable of separating the sources even when the sample size is very small (e.g.

512 samples).
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Figure 3. The results of separation of the 5 different sources are shown for nonparametric ICA algorithms (averaged

over 1000 simulations).
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5. Conclusions

The properties of the proposed method in this paper were investigated for large-scale problems and different
entropy indexes. For this purpose, the results of the proposed method were compared with the results of the
NpICA algorithm for synthetic datasets. It can be noticed that neither algorithm needs the distributions of the
source signals and parameters or nonlinearity for the contrast functions.

The results of the synthetic datasets demonstrate that although the proposed algorithm is capable of
separating signals, noticeable performance improvement cannot be seen when the performance of the proposed
algorithm is compared with that of the NpICA algorithm (q > 1.1). Nevertheless, the performance of the
proposed method comes closer to the performance of the NpICA algorithm when the entropy index reaches
a value of 1. From the other point of view, the cost function and calculation of the entropy of the proposed
algorithm are different from the NpICA algorithm. A lower SNR value is therefore very natural for different
entropy indexes. On the other hand, the proposed algorithm has a lower step size (1 or 2, as averaged over 1000

simulations).

The other important result is that if the source signals have super-Gaussian pdfs, the performances of
both algorithms are higher than performances of other source signals with sub-Gaussian or Gaussian pdfs.
Another parameter that increases the performances of the algorithms is the sample size. It can be seen clearly
from the Figures that increasing the sample size improves the performances of the algorithms.
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