
Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012, c© TÜBİTAK

doi:10.3906/elk-1012-942

Simulated annealing algorithm-based Elman network for

dynamic system identification

Adem KALINLI
Kayseri Vocational High School, Computer Division, Erciyes University,

38039 Kayseri-TURKEY
e-mail: kalinlia@erciyes.edu.tr

Received: 27.12.2010

Abstract

One of the well-known recurrent neural networks is the Elman network. Recently, it has been used in

applications of system identification. The network has feedforward and feedback connections. It can be

trained essentially as a feedforward network by means of the basic backpropagation algorithm, but its feedback

connections have to be kept constant. For training success, it is important to select the correct values for the

feedback connections. However, finding these values manually can be a lengthy trial-and-error process. This

paper investigates the use of the simulated annealing (SA) algorithm to obtain the weight values of both the

feedforward and feedback connections of Elman networks used for dynamic system identification. The SA

algorithm is an efficient random search procedure, which can simultaneously obtain the optimal weight values

of both the feedforward and feedback connections.

Key Words: Elman network, simulated annealing, tabu search, dynamic system identification

1. Introduction

The use of artificial neural networks (ANNs) to identify or model dynamic inputs is a topic of much research
interest. The advantage of neural networks for these types of applications is their ability to learn the behaviour
of a system without much a priori knowledge about it. From a structural point of view, there are 2 main types
of neural networks: feedforward neural networks (FNNs) and recurrent neural networks (RNNs) [1]. When the
connections in a network allow the flow of information from the input layer to the output layer in one direction
only, it is called a FNN. Connections that allow information to loop back to the same processing element are
called recursive, and neural networks with these types of connections are known as RNNs. Feedforward networks
can implement static input-output mapping. However, networks with a dynamic memory or recurrent networks
are more suitable for representing a dynamic system, which has dynamic mapping between its input(s) and

output(s). FNNs generally require a large number of input neurons and thus necessitate a long computation
time as well as having a high probability of being affected by external noise. Due to their structure, RNNs
do not suffer from these drawbacks. RNNs have attracted the attention of researchers in the field of dynamic
system identification [1-9].

569

Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

Although gradient-based search techniques such as backpropagation (BP) are currently the most widely
used optimisation techniques for training neural networks, it has been shown that these techniques are severely
limited in their ability to find global solutions. Global search techniques such as the genetic algorithm (GA),

simulated annealing (SA), tabu search (TS), and particle swarm optimisation (PSO) have been identified as
potential solutions to this problem. Although the use of GAs for ANN training has mainly focused on FNNs
[10-12], there are several works on training RNNs using GAs in the literature [8,13-15]. However, SA, TS, and

PSO have not found as many applications for the training purposes of ANNs [16-22].

A special type of RNN is the Elman network [23]. The Elman network and its modified models have
been used in applications of system identification. These networks have feedforward and feedback connections.
However, so that they can be trained essentially as feedforward networks by means of the simple BP algorithm,
their feedback connections have to be kept constant. For the training to converge, it is important to select
the correct values for the feedback connections. However, finding these values manually can be a lengthy trial-
and-error process. In order to improve the performance of Elman networks, Kalinli and Karaboga introduced
an approach to train some network models for dynamic system identification based on the TS algorithm [19].

Furthermore, feedforward connections of a modified Elman network were trained using the SA algorithm [18].
They showed that the performances of the TS and SA algorithms were better than that of the BP algorithm as
introduced in [3,4].

In order to improve the performance of the Elman networks introduced in [3,5,19], in this paper, the
SA algorithm is also used to obtain the weight values of both the feedforward and feedback connections of the
Elman networks. The performance of the SA algorithm was also compared with the results of the BP and
TS algorithms taken from [5,19]. Section 2 gives the basic principles of the SA and TS algorithms. Section 3
reviews the dynamic system identification and the structure of the Elman network and explains how SA was
used to train the given networks to identify a dynamic system. The results obtained for 9 different single-input
single-output (SISO) systems are covered in Section 4. The work is concluded in Section 5.

2. Simulated annealing and tabu search algorithms

The great difficulty encountered by optimisation problems in practical areas such as production, control,
communication, and transportation has motivated researchers to develop new powerful algorithms. The most
popular of these new algorithms include GAs, SA, ant colony optimisation (ACO), and TS. Although all of these
algorithms have a convergence property to the global optimum, they cannot always guarantee the optimum
solutions for the problem. Therefore, they are called approximate or heuristic algorithms.

One group of approximate algorithms for optimisation problems is known as the iterative improvement
(local search) method. An iterative improvement algorithm starts from a feasible solution and repeatedly seeks to
improve it by altering the solution through the application of search mechanisms until no further improvements
are possible. At this stage, the algorithm stops at a local optimum solution. The local optimum depends heavily
on the starting feasible solution and the search mechanisms. These local optima are often of low quality. Recent
advances in the design of sophisticated approximate methods have resulted in the development of innovative
approaches called metaheuristic algorithms that overcome some of the disadvantages and limitations of local
search methods. Two of these metaheuristic algorithms are the SA and TS algorithms [24,25].

Both SA and TS algorithms are devised so as to avoid being trapped in poor local optima. They allow
the local search method to be continued after a local minimum is detected at which no further search for a

570

KALINLI: Simulated annealing algorithm-based Elman network for...,

global minimum can be performed. Hence, they can be viewed as enhanced versions of local search techniques.

The SA algorithm is particularly effective for the optimisation of nonlinear and multimodal functions. In
comparison with other optimisation techniques, the SA algorithm has 2 unique features. First, it is not easily
fooled by the quick payoff achieved by falling into unfavourable local minima. Second, configuration decisions
tend to proceed in a global order. The algorithm initially explores the objective function with coarse detail over a
wide region, progressing to finer detail in regions where global optima are likely to exist. The algorithm employs
a random search that not only accepts the changes that reduce the objective function, but also some changes
that increase it. Although SA has found many applications in both combinatorial and numerical optimisation
areas, the TS algorithm has been generally applied to solve combinatorial-type optimisation problems rather
than numerical ones.

2.1. Simulated annealing algorithm

SA is a random-search technique that is motivated by an analogy to annealing in solids. The algorithm employs
a random search that not only accepts changes that reduce the objective function (assuming a minimisation

problem), but also some changes that increase it, which is accepted according to the Metropolis criterion [1].
The Metropolis criterion always accepts the perturbed solution as the next current solution if its cost is lower
than that of the current solution. The criterion also allows for the probabilistic acceptance of higher-cost
perturbed solutions as the next current solutions. Probabilistic acceptance enables the SA algorithm to avoid
becoming trapped in local minima. According to the Metropolis criterion, if the difference between the cost
function values of the current and the newly produced solutions, Δ, is equal to or larger than zero, a random

number δ in [0,1] is generated from a uniform distribution, and if δ ≤ eΔ/T , then the newly produced solution
is accepted as the current solution. Otherwise, the current solution remains in its current state. The main steps
of the basic SA algorithm are shown in Figure 1.

Step 1. Generate an initial solution, S
Step 2. Choose a solution Sʹ ∈N(S) and compute the difference in the objective values,

Δ= C(S)-C(Sʹ)
Step 3. If:
 (i) Sʹ is better than S (Δ>0), or

 (ii) T/Δ≤δ e
Then replace S by Sʹ (S←Sʹ)
Else retain the current solution

Step 4. Update the temperature
Step 5. If a “stopping criterion” is satisfied STOP, else GO TO step 2

Figure 1. Main steps of the basic SA algorithm.

In order to use the algorithm for a problem, important factors that must be taken into consideration
when making choices fall into 2 classes [26]:

a) Problem-specific choices: representation of possible solutions, definition of the cost function, and the
generation mechanism for the neighbours.

b) Generic choices for cooling schedules: the initial value of the temperature, the cooling rate and the
temperature update rule, the number of iterations to be performed at each temperature, and the stopping
criterion.

571

Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

The performance of the SA algorithm depends strongly on the chosen cooling schedule. A great variety of
cooling schedules have been suggested by many authors in the literature. One of them is the geometric cooling
rule. This rule updates the temperature sequence in the following way: T (t + 1) = r.T (t), t = 0, 1, ... , where
r is a temperature factor that is a constant smaller than 1.0 but close to 1.0. Experience has shown that r

should be between 0.8 and 0.99 [1].

2.2. Tabu search algorithm

The TS is a general heuristic search procedure devised for finding a global minimum of the function f (x),

x ∈ ÎX. The function f (x) may be linear or nonlinear and the condition x ∈ ÎX describes the constraints on

the solution x . The first step of the TS starts with the present solution xnow . xnow ∈ ÎX has an associated set
of feasible solutions, Q, which can be obtained by applying a simple modification to xnow . This modification
is called a move. In order to be able to get rid of local minima, a move to the neighbour, x*, is created even
if x* is worse than xnow . This causes the cycling of the search. In order to avoid the cycling problem, a
tabu list, T, is introduced. The tabu list stores all of the tabu moves that cannot be applied to the present
solution, xnow . The moves stored in the tabu list are those carried out most frequently and recently according
to some criteria called tabu restrictions. The use of the tabu list reduces the possibility of cycling because it
prevents returning within a certain number of iterations to a solution visited recently. After a subset of feasible
solutions, Q*, is produced according to the tabu list and evaluated for f (x), the next solution is selected from
it. The highest evaluation solution is selected as the next solution, xnext . This loop is repeated until one of
the stopping criteria is satisfied.

The TS algorithm usually uses the following 2 constraints, which are based on recency and frequency
memories: recency(x*) ≥ restriction period and frequency ratio(x*) ≤ frequency limit. The recency of a
move is the difference between the current iteration count and the last iteration count at which the move was
created. The frequency of a move is the count of its changes. The frequency measure is the frequency ratio,
whose numerator represents the count of the number of occurrences of a specific move and whose denominator
represents the average numerator value over all possible moves. A tabu restriction is activated when the reverse
of a move recorded in the tabu list occurs within a predetermined number of iterations or with a certain
frequency over a longer range of iterations. The former produces a recency-based restriction and the latter a
frequency-based restriction. Tabu restrictions may sometimes prevent the search from finding solutions that
have not yet been visited or even cause all available moves to be classified as the tabu. Therefore, it should
be possible to forget the tabu constraints when a freedom is required for the search. A criterion called the
aspiration criterion is employed to determine which moves should be freed in such cases.

The flowchart of a basic TS is presented in Figure 2. In the initialisation unit, a random feasible solution,

x initial ∈ ÎX, for the problem is generated, and the tabu list and other parameters are initialised. In the
neighbour production unit, a feasible set of solutions is produced from the present solution according to the
tabu list and aspiration criteria. The evaluation unit evaluates each solution, x*, produced from the present
xnow solution. After the next solution, xnext , is determined by the selection unit, in the last unit the history
record of the search is modified. If the next determined solution is better than the best solution found so far,
x best , the next solution is replaced with the present best solution.

In the algorithm used, the highest evaluation move is selected as the next solution. The aspiration by
default is employed as the aspiration criterion. According to this criterion, the least tabu solution is selected as

572

KALINLI: Simulated annealing algorithm-based Elman network for...,

the next solution. This is the solution that loses its tabu classification by the least increase in the value of the
present iteration number.

Initialisation

Initial solution

Creation of the

solutions Q *

Evaluation

Selection

Modification

Figure 2. Flowchart of the basic tabu search.

3. Training Elman network using SA algorithm for system identifi-

cation

3.1. Dynamic system identification

System identification is the process of constructing a model for an unknown dynamic system and estimating its
parameters from experimental data. The behaviours of the systems can be linear or nonlinear. The objective of
system identification techniques is to establish a suitable model and adjust it to approximate the system under
investigation. The adjustment of the model is usually based on the error between the system output and model
output [3].

The area is already fairly mature, with various conventional techniques being developed and implemented
in practical applications. However, most of the identification methods, such as those based on least mean
squares or maximum likelihood estimates, are in essence gradient-guided local search techniques. They require
a smooth search space or a differentiable error energy function. These conventional approaches can thus easily
fail in obtaining the global optimum if the multimodal search space is not differentiable or the performance
index is not well-behaved in practice. Furthermore, these conventional identification methods cannot easily
be applied to nonlinear systems [27,28]. Therefore, more research is needed in order to have systematic and
generally applicable approaches for system identification.

Neural networks have proven themselves to be useful in many application areas, because they possesses
many advantages, such as a general-purpose nature, massive parallelism, nonlinear properties, adaptive learning

573

Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

capabilities, and powerful fault tolerant capabilities, and they are suitable for simple very-large-scale integration
implementations. The ability of neural networks to deal with nonlinear systems is of prime interest in control
engineering. Therefore, neural networks constitute a promising tool for system identification and control.
Compared to FNNs, the advantage of using RNNs for identification is that fewer processing elements are
required and the identifiers are less noise-sensitive. The identification structure based on RNNs is parallel, as
shown in Figure 3.

u (k)
e(k)

Weight adjustments

-
Σ

y(k)

ynet(k)

+

RNN identifier

System

Figure 3. A RNN identifier for system identification.

3.2. Training Elman network using SA algorithm

The Elman network is a special type of RNN. Figure 4 depicts the original Elman network with 3 layers of
neurons [23]. U(.), X(.), C(.), Y(.), and W in Figure 4 represent the inputs to the network, the outputs of the
hidden units, the outputs of the context units, the outputs of the network, and the weight vector, respectively.
The first layer of this network consists of 2 different groups of neurons. These are the group of external input
neurons and the group of internal input neurons, also called context units. The inputs to the context units are
the outputs of the hidden neurons. The outputs of the context units and the external input neurons are fed to
the hidden neurons. Context units are also known as memory units, as they store the previous output of the
hidden neurons. In the Elman network, the values of the feedback connection weights have to be fixed by the
user if the basic BP algorithm is employed to train the network; usually, their strengths are fixed at 1.0 [7].

X(k)

Y(k)

C(k)

U(k)

Output

Hidden

Context Input

W
xu

W
xc

Wyx

αq

Figure 4. Structure of the Elman network.

The following equations are generated from this representation:

X(k) = F {W xcC(k), W xuU(k)} , (1)

574

KALINLI: Simulated annealing algorithm-based Elman network for...,

C(k) = X(k − 1), (2)

Y (k) = W yxX(k), (3)

where W xc , W xu , and W yx are weight matrices and F is a function. In particular, when linear hidden units
are adopted and the biases of the hidden and output units are zero, Eqs. (1) and (3) become:

X(k) = W xcX(k−1) + W xuU(k), (4)

Y (k) = W yxX(k). (5)

If inputs U(k) are delayed by one step before they are sent to the input units in Eq. (4), the following equation
is obtained:

X(k) = W xcX(k−1) + W xuU(k − 1). (6)

Eqs. (5) and (6) are standard state-space descriptions of dynamic systems. The order of the model depends on
the number of states, which is also the number of hidden units. Therefore, theoretically, the Elman network is
able to model an nth-order dynamic system [3]. When a neural model is used to model a SISO system, only
one unit is needed in the input and output layers.

In this work, the SA algorithm is used to train the weights of the Elman network, assuming that the
structure of the network has been decided. That is, the number of layers, the type of activation functions and
number of neurons in each layer, the pattern of connections, the permissible ranges of trainable connection
weights, and the values of constant connection weights are all known. The SA algorithm used in this work is
the one described in [1]. An initial solution is produced with a random number generator. Using this solution
representing a possible weight set of the Elman network, the SA algorithm searches for the best weight set by
means of some strategies.

A solution to the problem is a string comprising n elements, where n is the number of trainable
connections (Figure 5). When all connections are trainable, feedback connections have weight values in the
range of 0.0 to 1.0, while feedforward connections can have positive or negative weights between –1.0 and 1.0.
Note that from the point of view of the SA algorithm, there is no difference between feedforward and feedback
connections, and training one type of connection is carried out identically to training the other, unlike the case
of the commonly used BP training algorithm.

. . . .
w1 w2 w3 wp α1 α2

. . . .
αq

1 2 3 p p +v p+1 p+2

Figure 5. Representation of the trainable weights of a RNN in string form.

The use of SA to train a RNN to identify a dynamic system is illustrated in Figure 6. Here, ym(k)

andyp(k) are the outputs of the network and the system at time k , respectively. The training of the Elman

network can be considered as a minimisation problem defined by:

min
w∈W

J (w) , (7)

where W = [w11w12w13...wpq]
T is the weight vector of the RNN. The time-averaged cost function J (w) to be

minimised by adaptively adjusting w can be expressed as:

minJ(w) =

(
1
M

M∑
k=1

(yp(k) − ym(k))2
)1/2

, (8)

575

Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

where M is the number of samples used for the calculation of the cost function.

ym (k)

yp (k)

Recurrent
neural network

SA algorithm

System
+

-

Error

u(k)

Figure 6. Scheme for training a RNN to identify a system using the SA algorithm.

In the training process, first of all, a sequence of the input signals u(k), (k=0,1,. . .) is fed to both
the system and the RNN, which is designed with the weights obtained from the current solution. After that,
the root mean square (rms) error value between the system and network outputs is computed using Eq. (8).
According to the rms error values computed for the current solution and the new solution in the neighbourhood
of the current solution, the next solution is then selected. If the new solution has less error, the new solution is
taken directly as the current solution. Otherwise, it is accepted according to the Metropolis criterion.

4. Simulations results

The structure of the network employed in this work was selected from [4,5,19] to compare the results. Since the
systems to be identified are SISO, a number of the external input and output neurons will have linear activations.
The number of neurons in the hidden layer is equal to 6. In cases where only feedforward connections are
trainable, a solution is represented as a string of 48 weights. When all connections have trainable weights,
then the string consists of 54 weights, of which 6 are feedback connection weights. Simulations were conducted
to study the ability of the RNN trained by the SA algorithm to model 1 linear and 2 nonlinear systems. A
sampling period of 0.1 s was assumed in all cases.

System 1. This is a third-order linear system described with the following discrete-time equation:

y(k) = A1y(k − 1) + A2y(k − 2) + A3y(k − 3) + B1u(k − 1) + B2u(k − 2) + B3u(k − 3), (9)

where A1 = 2.627771, A2 = –2.333261, A3 = 0.697676, B1 = 0.017203, B2 = –0.030862, and B3 = 0.014086.

The Elman network with all linear neurons was tested. The training input signal, u(k), k=0,1,...99, was
randomly produced and varied between –2.0 and 2.0. First, the results were obtained by assuming that only
the feedforward connection weights were trainable. Next, the results were obtained by considering that all of
the connection weights of the Elman network were trainable. For each case, experiments were repeated 6 times
for different initial solutions. The results obtained using the BP, SA, and TS algorithms are given in Figure
7. The performance of SA was also compared with the results of the basic TS algorithm taken from [19]. The
average rms error values and the improvement percentages for this system were obtained using the BP, SA, and
TS algorithms presented in Table 1. As an example, the responses of the system and the network designed by
SA are illustrated in Figure 8.

576

KALINLI: Simulated annealing algorithm-based Elman network for...,

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1 2 3 4 5 6 7

BP

TS (only FF
connections
variable)
TS (all
connections
variable)
SA (only FF
connections
variable)
SA (all
connections
variable)

rms error

Trial

Figure 7. The rms error values obtained for System 1 for 6 different runs.

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8 10

Network Plant

Time (s)

Output

Figure 8. Responses of the system and the network trained by the SA algorithm (rms error = 5.22282E-03).

Table 1. Comparison of the results for System 1.

Model Average rms error Improvement (%)
BP 7.6754E-02 -
TS (α = 1) 9.6077E-03 87.48
TS (all weights trainable) 8.1664E-03 89.36
SA (α = 1) 6.5135E-03 91.51
SA (all weights trainable) 4.9653E-03 93.53

System 2. The second system model adopted for simulations was that of a simple pendulum swinging
through small angles [3]. This is a second-order nonlinear system and the discrete time description of the system
is:

y(k) = A1y(k − 1) + A2y(k − 2) + A3y
3(k − 2) + B1u(k − 2), (10)

where A1 = 1.040000, A2 = –0.824000, A3 = 0.130667, and B1 = –0.160000. The Elman network with
nonlinear neurons in the hidden layer was employed. The hyperbolic tangent function was adopted as the
activation function of nonlinear neurons. The networks were trained using the same sequence of random input
signals as mentioned above.

As in the case of System 1, the results were obtained for 6 different initial solutions. The rms error values
obtained by using the BP, SA, and TS algorithms are presented in Figure 9. The time response obtained using
the SA algorithm for the Elman network, assuming that all of the connections were trainable, is presented in

577

Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

Figure 10. The average rms error values and the improvement percentages for the system obtained by using
the BP, SA, and TS algorithms are presented in Table 2.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5 6 7

BP

TS (only FF
connections
variable)
TS (all
connections
variable)
SA (only FF
connections
variable)
SA (all
connections
variable)

Trial

rms error

Figure 9. The rms error values obtained for System 2 for 6 different runs.

-0.90

-0.60

-0.30

0.00

0.30

0.60

0.90

0 2 4 6 8 10

Network Plant

Time (s)

Output

Figure 10. Responses of the system and the network trained by the SA algorithm (rms error = 2.57737E-02).

Table 2. Comparison of the results for System 2.

Model Average rms error Improvement (%)
BP 2.6182E-01 -
TS (α = 1) 1.9589E-01 25.18
TS (all weights trainable) 1.1990E-01 38.79
SA (α = 1) 9.1310E-02 65.12
SA (all weights trainable) 2.9430E-02 88.76

System 3. This is a nonlinear system with the following discrete time equation:

y(k) =
A1y(k − 1) + A2y(k − 2) + B1u(k − 1) + B2u(k − 2)

1 + y2(k − 2)
, (11)

where A1 = 1.752821, A2 = –0.818731, B1 = 0.011698, and B2 = 0.010942. The random training input

sequence u(k), k=0,1,...99 had values of |u(k)| ≤ (a2 + w2)/w where a= 1 and w= 2π /2.5 [3]. The rms error
values obtained for 6 different initial solutions by using the BP, SA, and TS algorithms are presented in Figure

578

KALINLI: Simulated annealing algorithm-based Elman network for...,

11. The responses of the system and the network designed by the SA algorithm are presented in Figure 12. The
average rms error values and the improvement percentages for this system, which were obtained by using the 3
algorithms, are presented in Table 3.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 1 2 3 4 5 6 7

BP

TS (only FF
connections
variable)
TS (all
connections
variable)
SA (only FF
connections
variable)
SA (all
connections
variable)Trial

rms error

Figure 11. The rms error values obtained for System 3 for 6 different runs.

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0 2 4 6 8 10

Network Plant

Time(s)

Output

Figure 12. Responses of the system and the network trained by the SA algorithm (rms error = 0.017705).

Table 3. Comparison of the results for System 3.

Model Average rms error Improvement (%)
BP 1.2863E-01 -
TS (α = 1) 8.6820E-02 32.50
TS (all weights trainable) 6.1720E-02 52.01
SA (α = 1) 4.6370E-02 63.95
SA (all weights trainable) 2.1760E-02 83.08

Systems 4-9. In addition to the systems given above, a number of computer simulations were carried
out to test the proposed identification approach. A total of 6 systems, given in Table 4, were used for testing.
Systems 4 and 5, Systems 6 and 7, and Systems 8 and 9 represent first-, second-, and third-order systems,
respectively. The training and test data files with 200 data points were obtained by applying uniform sequences
u(k) ∈ [–1.0,1.0], k= 1,...,199,200 [5]. The average rms error values and the improvement percentages obtained
for 6 different initial solutions by using the BP and SA algorithms are presented in Table 5.

In this work, the parameters of the SA algorithm are as follows: the number of temperature points is
15, the number of points with constant temperature is 15, and the temperature decrease factor is 0.9. These
parameters were determined after many trials (at least 20 trials).

579

Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

Table 4. Linear systems used for the proposed identification scheme.

System Orders Discrete-time domain representation of the systems
4

First-order
y(k) = 0.5y(k − 1) + 0.1u(k − 1)

5 y(k) = 0.4y(k − 1) + 0.3u(k − 1)

6
Second-order

y(k) = 1.1953y(k − 1) − 0.4317y(k − 2)
+0.1348u(k − 1) + 0.1017u(k − 2)

7 y(k) = 1.8y(k − 1) − 0.837y(k − 2)
+0.019u(k − 1) + 0.018u(k − 2)

8
Third-order

y(k) = 2.038y(k − 1) − 1.366y(k − 2) + 0.301y(k − 3)
+0.0059u(k − 1) − 0.018u(k − 2) + 0.0033u(k − 3)

9 y(k) = 2.0549y(k − 1) − 1.3524y(k − 2) + 0.2894y(k − 3)
+0.0049u(k − 1) + 0.0032u(k − 2)

Table 5. Comparison of the results for Systems 4-9.

System Model Average rms error Improvement (%)

System 4
BP 5.4280E-03 -

SA (α = 1) 2.2908E-04 95.78
SA (all weights trainable) 5.3355E-05 99.02

System 5
BP 7.0190E-03 -

SA (α = 1) 5.0187E-04 92.85
SA (all weights trainable) 3.2348E-04 95.39

System 6
BP 2.8961E-02 -

SA (α = 1) 2.3984E-03 91.72
SA (all weights trainable) 8.0753E-04 97.21

System 7
BP 3.2905E-02 -

SA (α = 1) 3.7838E-03 88.50
SA (all weights trainable) 2.2652E-03 93.12

System 8
BP 2.8389E-02 -

SA (α = 1) 1.5146E-03 94.67
SA (all weights trainable) 9.7394E-04 96.57

System 9
BP 2.8919E-02 -

SA (α = 1) 1.1816E-03 95.92
SA (all weights trainable) 6.6473E-04 97.70

The original Elman network could identify the third-order linear system successfully. Note that the
original Elman network, which had an identical structure to that adopted for the original Elman network
employed in this work and was trained using the basic BP algorithm, failed to identify even second-order linear
systems [3]. Moreover, when the original Elman network was trained by the basic GA, the third-order system

could not be identified, although the second-order system was identified successfully [8]. It can be clearly seen
that for the 9 systems, the training was significantly more successful when all connection weights of the network
were trainable than when only the feedforward connection weights could be changed. Training of the feedback
connection weights was simple using the SA algorithm. It is clearly seen from Figures 7-12, Tables 1-3, and
Table 5 that, for both of the network structures (with all connection weights variable and with only feedforward

connection weights trainable), SA trained the networks better than the BP and TS algorithms. The performance
of SA is more effective for training nonlinear systems, although the performance of the TS is similar for training
linear systems.

580

KALINLI: Simulated annealing algorithm-based Elman network for...,

5. Conclusion

This paper investigated the use of the SA algorithm to train the original Elman network for the identification
of linear and nonlinear dynamic systems. The main conclusion is that the SA algorithm was successful and
produced superior results compared to the BP and TS algorithms. As a result, the original Elman network can
be trained successfully using a more efficient algorithm instead of using more complex network structures. The
obtained results show that the SA algorithm can be used for this purpose.

It can be seen from the simulation results that the SA algorithm is quite versatile since it does not rely
on problem constraints. Furthermore, the SA algorithm can be easily tuned for any given optimisation problem.
Finally, it can also be concluded that the proposed approach is applicable for training other recurrent neural
network models.

References

[1] D.T. Pham, D. Karaboga, Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search, Simulated

Annealing and Neural Networks, London, Springer-Verlag, 2000.

[2] D.T. Pham, S.J. Oh, “A recurrent backpropagation neural network for dynamic system identification”, Journal of

Systems Engineering, Vol. 2, pp. 213-223, 1992.

[3] X. Liu, Modelling and Prediction Using Neural Networks, PhD Thesis, University of Wales College of Cardiff,

Cardiff, UK, 1993.

[4] D.T. Pham, X. Liu, “Identification of linear and nonlinear dynamic systems using recurrent neural networks”,

Artificial Intelligence in Engineering, Vol. 8, pp. 67-75, 1993.

[5] A. Kalinli, S. Sagiroglu, “Elman network with embedded memory for system identification”, Journal of Information

Science and Engineering, Vol. 22, pp. 1555-1568, 1996.

[6] D. Karaboga, A. Kalinli, “Training recurrent neural networks using tabu search algorithm”, 5th Turkish Symposium

on Artificial Intelligence and Neural Networks, pp. 293-298, 1996.

[7] D.T. Pham, X. Liu, Neural Networks for Identification, Prediction and Control, 4th ed., London, Springer-Verlag,

1999.

[8] D.T. Pham, D. Karaboga, “Training Elman and Jordan networks for system identification using genetic algorithms”,

Artificial Intelligence in Engineering, Vol. 13, pp. 107-117, 1999.

[9] A. Thammano, P. Ruxpakawong, “Nonlinear dynamic system identification using recurrent neural network with

multi-segment piecewise-linear connection weight”, Memetic Computing, Vol. 2, pp. 273-282, 2010.

[10] R.S. Sexton, J.N.D. Gupta, “Comparative evaluation of genetic algorithm and backpropagation for training neural

networks”, Information Sciences, Vol. 129, pp. 45-59, 2000.

[11] P.A. Castillo, J.J. Merelo, A. Prieto, V. Rivas, G. Romero, “G-Prop: Global optimization of multilayer perceptrons

using GAs”, Neurocomputing, Vol. 35, pp. 149-163, 2000.

[12] J Arifovic, R. Gençay, “Using genetic algorithms to select architecture of a feedforward artificial neural network”,

Physica A, Vol. 289, pp. 574-594, 2001.

581

Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

[13] K.W. Ku, M.W. Mak, W.C. Siu, “Adding learning to cellular genetic algorithms for training recurrent neural

networks”, IEEE Transactions on Neural Networks, Vol. 10, pp. 239-252, 1999.

[14] A. Blanco, M. Delgado, M.C. Pegalajar, “A genetic algorithm to obtain the optimal recurrent neural network”,

International Journal of Approximate Reasoning, Vol. 23, pp. 67-83, 2000.

[15] A. Blanco, M. Delgado, M.C. Pegalajar, “A real-coded genetic algorithm for training recurrent neural networks”,

Neural Networks, Vol. 14, pp. 93-105, 2001.

[16] R. Battiti, G. Tecchiolli, “Training neural nets with the reactive tabu search”, IEEE Transactions on Neural

Networks, Vol. 6, pp. 1185-1200, 1995.

[17] P.A. Castillo, J. Gonzalez Peñalver, J.J. Merelo, A. Prieto, V. Rivas, G. Romero, “SA-Prop: optimization of

multilayer perceptron parameters using simulated annealing”, Lecture Notes in Computer Science, Vol. 1606, pp.

661-670, 1999.

[18] A. Kalinli, “Training Elman network using simulated annealing algorithm”, Journal of the Institute of Science and

Technology of Erciyes University, Vol. 19, pp. 28-37, 2003 (in Turkish).

[19] A. Kalinli, D. Karaboga, “Training recurrent neural networks by using parallel tabu search algorithm based on

crossover operation”, Engineering Applications of Artificial Intelligence, Vol. 17, pp. 529-542, 2004.

[20] R.S. Sexton, B. Alidaee, R.E. Dorsey, J.D. Johnson, “Global optimization for artificial neural networks: a tabu

search application”, European Journal of Operational Research, Vol. 106, pp. 570-584, 1998.

[21] B. Dengiz, C. Alabas-Uslu, O. Dengiz, “A tabu search algorithm for the training of neural networks”, Journal of

the Operational Research Society, Vol. 60, pp. 282-291, 2009.

[22] H.W. Ge, Y.C. Liang, M. Marchese, “A modified particle swarm optimization-based dynamic recurrent neural

network for identifying and controlling nonlinear systems”, Computers & Structures, Vol. 85, pp. 1611-1622, 2007.

[23] J.L. Elman, “Finding structure in time”, Cognitive Science, Vol. 14, pp. 179-211, 1990.

[24] S. Kirkpatrick, C.D. Gelatt Jr, M.P. Vecchi Jr, “Optimization by simulated annealing”, Science, Vol. 220, pp.

671-680, 1983.

[25] F. Glover, “Future paths for integer programming and links to artificial intelligence”, Computers and Operations

Research, Vol. 5, pp. 533-549, 1986.

[26] D.S. Johnson, C.R. Aragon, L.A. McGeoch, C. Schevon, “Optimization by simulated annealing: an experimental

evaluation. Part I, graph partitioning”, Operations Research, Vol. 37, pp. 865-892, 1989.

[27] K.C. Tan, Y. Li, D.J. Murray-Smith, K.C. Sharman, “System identification and linearization using genetic al-

gorithms with simulated annealing”, First IEE/IEEE International Conference on GA in Engineering Systems:

Innovations and Applications, pp. 164-169, 1995.

[28] İ. Eksin, O.K. Erol, “A fuzzy identification method for nonlinear systems”, Turkish Journal of Electrical Engineering

and Computer Sciences, Vol. 8, pp. 125-135, 2000.

582

