
Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012, c© TÜBİTAK

doi:10.3906/elk-1009-756

Fast software multiplication in F2[x] for embedded

processors

Serdar Süer ERDEM
Gebze Institute of Technology, 41400 Çayırova, Gebze, Kocaeli-TURKEY

e-mail: serdem@gyte.edu.tr

Received: 14.09.2010

Abstract

We present a novel method for fast multiplication of polynomials over �2 which can be implemented

efficiently in embedded software. Fast polynomial multiplication methods are needed for the efficient imple-

mentation of some cryptographic and coding applications. The proposed method follows a strategy to reduce

the memory accesses for input data and intermediate values during computation. This strategy speeds up the

binary polynomial multiplication significantly on typical embedded processors with limited memory bandwidth.

These multiplications are usually performed by the comb method or the Karatsuba-based methods in embedded

software. The proposed method has speed and memory advantages over these methods on embedded platforms

for the polynomial degrees usually encountered in practical cryptosystems. We perform a detailed complexity

analysis of the proposed method and complexity comparisons with the other methods. Finally, we present the

running times of the proposed method and its alternatives on ARM7TDMI processor.

Key Words: Finite fields, computer arithmetic, cryptography, algorithms

1. Introduction

The multiplication of polynomials over F2 has important applications in number theory and cryptography. For
example, it is extensively used in factorization of polynomials over F2 [1, 2] and elliptic curve cryptosystems

[3, 4, 5].

The comb method [4, 6], the Karatsuba algorithm [5, 7, 8], and the Karatsuba-like formulae [9] are
very suitable for multiplication of polynomials over F2 in software, if polynomial degrees do not exceed one
thousand. Actually, this is the case for most practical applications. For multiplication of larger polynomials,
fast subquadratic algorithms are given in [10]. However, these algorithms are inefficient when applied to the
multiplication of small polynomials. Therefore, the practical implementations of these algorithms also include
some implementation of the comb method or some Karatsuba-based multiplication method.

This work proposes an efficient alternative to the comb method and the Karatsuba-based multiplication
methods to multiply the polynomials over F2 of several hundred degrees in software. Practical cryptosystems
generally deal with the polynomials in this range. The proposed method has some similarities to the comb
method. However, the comb method aims at decreasing the number of shifts performed on computer words

593



Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

while the proposed method aims at decreasing the number of memory load and store operations. Since the
load and store operations are more costly than shift operations in a typical embedded processor, the proposed
method is very suitable for embedded applications. According to simulation results on ARM7TDMI processors,
the proposed method is faster than the comb method and the Karatsuba algorithm, while it shows similar
performance to the Karatsuba-like formulae. However, the Karatsuba-like formulae consist of several specialized
multiplication methods splitting their inputs into 3, 4, 5, 6, and 7 parts. Thus, its code size is several times
more than the proposed method.

Remainder of this paper is organized as follows. Section 2 introduces the polynomials over F2 . Section
3 describes the comb method. Section 4 presents the proposed method. Section 5 compares the complexities of
the proposed method and its alternatives. Section 6 provides timing data and performance comparisons.

2. Polynomials over F2

The polynomials over F2 are the polynomials whose coefficients are the elements of F2 . The field F2 consists
of only the integers {0, 1} under modulo 2 addition and multiplication.

The addition and subtraction of polynomials over F2 can be performed by simply XORing their corre-
sponding binary valued coefficients. This is because modulo 2 addition and subtraction on the set {0, 1} are
both equivalent to the logical XOR operation.

The multiplication of polynomials over F2 requires both coefficient additions and coefficient multiplica-
tions. While coefficient additions are performed by logical XOR operations, as mentioned above, coefficient
multiplications are performed by logical AND operations. This is because modulo 2 multiplication on the set
{0, 1} is equivalent to logical AND.

2.1. Multiprecision representation

Let w denote the size of a computer word. Then, each computer word can store w polynomial coefficients since
the coefficients are binary 0 or 1. Thus, the polynomial

Fi =
∑w−1

j=0 fiw+jx
j,

defined from the w -consecutive coefficients of a polynomial f(x), can also be viewed as a w -bit word:

Fi = fiw+w−1 , . . . , fiw+j , . . . , fiw+1 , fiw .

Note that f(x) has the multiprecision representation

f(x) = FN−1x
(N−1)w + . . . + F1x

w + F0 (1)

for some single word polynomials FN−1 , ... , F2 , F1 , F0 . Naturally, N must satisfy the inequality xm ≤ xwN

for m = deg(f(x)).

2.2. Multiplication by powers of x

This section shows how the multiplications by powers of x are performed by word and bit level shifts in practical
implementations.

594



ERDEM: Fast software multiplication in F2[x] for embedded processors,

2.2.1. Computation g(x) = xkf(x) for k < w

Let g(x) = xkf(x) < xNw . Then, we can use the notation f(x) =
∑N−1

i=0 Fix
iw and g(x) =

∑N−1
i=0 Gix

iw for

some words Fi and Gi . The word level computations for the polynomial operations can be given as

Gi = xkFi mod xw + �xkFi−1/xw�
= (Fi � k) XOR (Fi−1 � (w − k)),

where F−1 = 0 by the definition, while “�” and “�” denote logical left and right shifts, respectively. The
pseudo code in Figure 1 implements this computation.

U = F0

G0 = U � k

for i = 1 to N − 1

H = U � (w − k)

U = Fi

Gi = (U � k) XOR H

Figure 1. Pseudo Code for the computation of g(x) = xkf(x) , where xk < xw and xkf(x) < xNw .

2.2.2. Computation g(x) = g(x) + f(x)xiw+k for k < w

Let f(x) =
∑N−1

j=0 Fjx
jw < xNw . Then,

g(x) = g(x) +
∑N−1

j=0 xkFjx
(i+j)w.

The word level computations for the polynomial operations can be given as

Gi+j = Gi+j + xkFj mod xw + �xkFj−1/xw�
= Gi+j XOR (Fj � k) XOR (Fj−1 � (w − k))

,

where F−1 = 0 by the definition. The pseudo code in Figure 2 implements this computation.

Table 1 gives the numbers of the operations for the pseudo codes given in this section. Table 1 includes
only the cost of the loads and stores required to access Fi and Gi . The cost of accessing variables U and H

is excluded, since they can be stored in registers.

Table 1. The Complexities of the Pseudo Codes in Figure 1 and 2.

XOR Shift Load/store
Pseudo code 1 N − 1 2N − 1 2N
Pseudo code 2 2N 2N 3N + 2

595



Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

U = F0

Gi = Gi XOR (U � k)

for j = 1 to N − 1

H = U � (w − k)

U = Fj

Gi+j = Gi+j XOR (U � k) XOR H

H = U � (w − k)

Gi+N = Gi+N XOR H

Figure 2. Pseudo Code for the computation of g(x) = g(x) + f(x)xiw+k , where xk < xw and f(x) < xNw .

3. Comb method

The comb method is a fast and efficient technique for multiplication in F2[x] [4, 6]. Let d(x) = a(x)b(x). If

a(x) and b(x) are represented as shown in (1), then

d(x) =
∑n−1

i=0 Aix
iw

∑n−1
j=0 Bjx

jw

=
∑n−1

i=0 Ai

∑n−1
j=0 Bjx

(i+j)w

=
∑w−1

k=0 xk
∑n−1

i=0 aiw+k︸ ︷︷ ︸
kth bit of Ai

∑n−1
j=0 Bjx

(i+j)w .

This formula leads to the left-to-right comb method given in Figure 3. The shift operation d(x) = xd(x) in Step

6 of this method is implemented by the pseudo code in Figure 1 for k = 1, N = 2n , and g(x) = f(x) = d(x).

Input: a(x) and b(x) over F2 of degree less than nw .

Output: d(x) = a(x)b(x) over F2 of degree less than 2nw .

1. Di = 0 for 0 ≤ i < 2n

2. for k = w − 1 downto 0

3. for i = 0 to n − 1

4. if the k th bit of Ai is 1

5. Di+j = Di+j + Bj for 0 ≤ j < n

6. d(x) = xd(x), if k �= 0.

Figure 3. Left-to-right Comb Method.

In Figure 3, the bits (coefficients) of a(x) are scanned one bit at a time in Step 4. Thus, its window size

W = 1. The algorithm in Figure 4 is a faster implementation of the comb method, scanning the bits of a(x)

with a larger window (W > 1) and multiply them by b(x) using a lookup table.

596



ERDEM: Fast software multiplication in F2[x] for embedded processors,

Input: a(x) < xnw and b(x) < xnw−W+1 over F2 .

Output: d(x) = a(x)b(x) over F2

1. Di = 0 for 0 ≤ i < 2n

2. Compute and store b′(x) = ε(x)b(x) for all ε(x) < xW

3. for k = W(�w/W	 − 1) downto 0 by W

4. for i = 0 to n − 1

5. ε(x) = �Ai/xk� mod xW

6. Find from lookup b′(x) = ε(x)b(x)

7. Di+j = Di+j + B′
j for 0 ≤ j < n

8. d(x) = xWd(x), if k �= 0

Figure 4. Comb Method for W > 1 .

Step 2 in Figure 4 multiplies the input b(x) by all the polynomials ε(x) < xW and stores the results

b′(x) = ε(x)b(x) < xnw into a lookup table. Note that this table has n-word entries, i.e. b′(x) =
∑n−1

j=0 B′
jx

jw .

Step 5 extracts the W term ε(x) from Ai as follows:

ε(x) = �Ai/xk� mod xW

= �(
∑w−1

j=0 aiw+jx
j)/xk� mod xW

=
∑W−1

j=0 aiw+k+jx
j .

Because Ai and ε(x) are stored as sequences of w and W bits, respectively,

�Ai/xk� mod xW ≡ (Ai � k) AND (2W − 1) = I .

Here, I is the lookup table entry storing the product b′(x) = ε(x)b(x). Steps 6 and 7 take this product from

the lookup and add it to the running sum. Step 8 computes d(x) = xWd(x) by carrying out the pseudo code

in Figure 1 for k = W , N = 2n , and g(x) = f(x) = d(x).

4. Operand scanning method

In the usual operand scanning multiplication, the terms of one operand are scanned successively from the lowest
order to the highest order. Each W terms of this operand are multiplied by the other operand. The resulting
partial products are appropriately shifted and accumulated to a running sum. Since the terms are scanned in
successive order, it is easy to multiply the consecutive terms stored in the same computer word together and
interleave the resulting partial products. In contrary, the comb method does not scan the polynomial terms in
successive order, as can be seen from Figures 3 and 4. In these algorithms, bit position k varies in the most
outer loop. The inner loops just perform the multiplication for a fixed k value. That is the polynomial terms
stored in the same bit positions are scanned together to reduce the bit level shifts.

597



Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

Let d(x) = a(x)b(x). If a(x) and b(x) are represented as shown in (1), then

d(x) =
∑n−1

i=0 Aix
iwb(x)

=
∑n−1

i=0

∑w−1
k=0 aiw+k︸ ︷︷ ︸

kth bit of Ai

b(x)xiw+k

This formula leads to the operand scanning method in Figure 5.

Input: a(x) and b(x) over F2 of degree less than nw .

Output: d(x) = a(x)b(x) over F2 of degree less than 2nw .

1. Di = 0 for 0 ≤ i < 2n

2. for i = 0 to n − 1

3. A = Ai

4. for k = 0 to w − 1

5. if the k th bit of A is 1

6. d(x) = d(x) + b(x)xiw+k

Figure 5. Operand Scanning Method for W = 1.

Practical implementations obtain d(x) = d(x) + b(x)xiw+k in Step 6 of this method, using the pseudo code in

Figure 2 for N = n , f(x) = b(x), and g(x) = d(x).

The algorithm in Figure 6 is a faster implementation of the operand scanning multiplication, using a
larger window (W > 1) and a lookup table. As in the comb method given in Figure 4, Step 3 of this algorithm

computes all the possible products ε(x)b(x) for the polynomials ε(x) of degree less than W and stores the

resulting polynomials into a lookup table. Then, the remaining steps multiply b(x) by the terms of a(x), W
terms at a time, using the lookup table.

Step 4 loads Ai to A and Step 6 splits A into the polynomials

ε(x) = �A/xk� mod xW

= �(
∑w−1

j=0 aiw+jx
j)/xk� mod xW

=
∑W−1

j=0 aiw+k+jx
j ,

for all k = 0,W, 2W, . . . , (�w/W	 − 1)W . Because A and ε(x) are stored as sequences of w and W bits,
respectively, in practice, the computation

�A/xk� mod xW ≡ (A � k) AND (2W − 1) = I .

Here, I is the lookup table entry storing the product b′(x) = ε(x)b(x) < xnw . The steps 7 and 8 take this

product from the lookup and add it to the running sum. The computation d(x) = d(x) + b′(x)xiw+k in Step 8

is achieved by carrying out the pseudo code in Figure 2 for N = n , f(x) = b′(x), and g(x) = d(x).

598



ERDEM: Fast software multiplication in F2[x] for embedded processors,

Input: a(x) < xnw and b(x) < xnw−W+1 over F2 .

Output: d(x) = a(x)b(x) over F2

1. Di = 0 for 0 ≤ i < 2n

2. Compute and store b′(x) = ε(x)b(x) for all ε(x) < xW

3. for i = 0 to n − 1

4. A = Ai

5. for k = 0 to W(�w/W	 − 1) by W

6. ε(x) = �A/xk� mod xW

7. Find from lookup b′(x) = ε(x)b(x)

8. d(x) = d(x) + b′(x)xiw+k

Figure 6. Operand Scanning Method for W > 1 .

4.1. Interleaving partial product accumulation

Steps 5, 6, 7 and 8 of the algorithm in Figure 6 can be modified to accumulate Λ partial products together, as
seen in Figure 7.

for k = 0 to ΛW(�w/ΛW	 − 1) by ΛW

6. ε(λ)(x) = �A/xk+λW� mod xW , λ = 0, . . . , Λ−1

7. Find all b′ (λ)(x) = ε(λ)(x)b(x) in the lookup.

8. d(x) = d(x) +
∑Λ−1

λ=0 b′ (λ)(x)xiw+k+λW

Figure 7. Interleaving the Accumulation of the Partial Products.

Step 6 in Figure 7 processes the terms of A from xk to xk+ΛW−1 in each iteration. Step 6 actually
computes the following Λ integers

I(λ) = (A � (k + λW)) AND (2W − 1)

for λ = 0, 1, . . . , Λ − 1 in practical implementations in place of the polynomials ε(λ)(x). I(λ) is the entry

number for the polynomial b′(λ)(x) stored in the lookup.

Step 8 in Figure 7 accumulates the Λ partial products together. Usually, the word size w = 32 bits.
Also, W = 4 bits is an appropriate choice for the window size. As an example, let Λ = 4. Then, ΛW = 16
and the modified step 8 becomes

d(x) = d(x) +
∑3

λ=0 b′ (λ)(x)xiw+k+λ4

599



Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

for k = 0 and k = 16. Let b′ (λ)(x) =
∑n−1

j=0 B
′ (λ)
j xjw . Then, d(x) can be computed in Step 8 as:

H = 0
for j = 0 to n − 1

U = B
′ (0)
j , L = (U � (k + 0)) XOR H

H = (U � (32 − k))
U = B

′ (1)
j , L = L XOR (U � (k + 4))

H = H XOR (U � (28 − k))
U = B

′ (2)
j , L = L XOR (U � (k + 8))

H = H XOR (U � (24 − k))
U = B

′ (3)
j , L = L XOR (U � (k + 16))

H = H XOR (U � (16 − k))
Di+j = Di+j XOR L

Di+n = Di+n XOR H

The pseudo code in Figure 8 performs the modified step 8 for any Λ.

H = 0

for j = 0 to n − 1

U = B
′ (0)
j

L = (U � k) XOR H

H = (U � (w − k))

for λ = 1 to Λ − 1

U = B
′ (λ)
j

L = L XOR (U � (k + λW))

H = H XOR (U � (w − k − λW))

Di+j = Di+j XOR L

Di+n = Di+n XOR H

Figure 8. Pseudo Code to compute d(x) = d(x) +
Λ−1�

λ=0
b′ (λ)(x)xiw+k+λW .

The complexity of the pseudo code in Figure 8 is given in Table 2. Table 2 includes only the cost of the

loads and stores required for accessing to B
′ (λ)
j and Di+j . The cost of accessing U , L , and H is excluded

since they can be stored in registers.

600



ERDEM: Fast software multiplication in F2[x] for embedded processors,

Table 2. Complexity of the Pseudo Code in Figure 8.

XOR Shift Load/store
2nΛ + 1 2nΛ nΛ + 2n + 2

4.2. Advantage of new method

In the usual multiplication, the words of the running sum d(x) need to be loaded and stored, every time a

partial product is added to d(x). Thus, accumulating Λ partial products requires loading and storing the

words of d(x) Λ times. However, if the partial product accumulation is interleaved as illustrated in Figure 8,

accumulating Λ partial products requires not Λ times but one time memory access to d(x).

The same kind of improvement for the comb method is difficult for the following reasons:

1. The second loop in the proposed method (Figure 6) generates �w/W	 of the partial products ε(x)b(x),

where the word size w is a fixed number (w = 16 or w = 32 in practice). However, the second loop in

the comb method (Figure 4) generates n partial products where the operand size n is a varying number.
The fixed number of the partial products in the proposed method can easily be clustered into the groups
of Λ elements. However, the varying number of partial products in the comb method can not be clustered
into groups at compile time.

2. The partial products generated in the second loop of our method (Figure 6) are easily interleaved since

they are added to the same words of d(x) in Step 8. In this step, xiw is fixed, and thus the partial

products are added to d(x) starting from its ith word. However, i is the loop variable of the second loop

in the comb method (Figure 4), and thus all the partial products generated in the second loop are added

to d(x) starting from a different word. That is, these partial products are misaligned. Thus, accumulating
a group of them together is a tedious job.

5. Complexity comparisons

The Karatsuba-based multiplication methods have an asymptotic time complexity of O(n1.58), while the
proposed method and the comb method have quadratic time complexities. Thus, Karatsuba-based multiplication
methods perform better for large polynomials whose degrees are greater than a threshold. Of course, this
threshold varies from platform to platform.

It is easy to compare the time complexities of the comb method and the proposed method. In this
comparison, we omit the complexities of initializing the output d(x) by zeros, constructing the lookup table,

computing the polynomials ε(x), and locating the partial products ε(x)b(x) in the lookup table. This is because
the costs of these operations are the same for both methods. Actually, both methods have the same lookup
table size and generate the same number of ε(x) from the bits of input a(x). The main difference between
these methods is just the order in which they scan the input bits.

The comb method (Figure 4) needs (n2 + 6n− 2)� w
W 	 shifts and XORs, as well as (3n2 + 5n)� w

W 	 loads

and stores, excluding the omitted costs.

601



Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

This complexity is calculated as follows:

• Accessing Ai in Step 5 takes n� w
W 	 loads.

• Di+j = Di+j + B′
j in Step 7 takes n2� w

W 	 XORs and 3n2� w
W 	 load/stores.

• d(x) = xWd(x) in Step 8 takes (2n − 1)� w
W 	 XORs, (4n − 1)� w

W 	 shifts, and 4n� w
W 	 load/stores.

Here, d(x) = xWd(x) is performed by the pseudo code in Figure 1 for f(x) = d(x), k = W , and N = 2n . Its
complexity is obtained from Table 1.

Our method (the algorithm in Figure 6, with the modification shown in Figure 2) needs (4n2Λ+n)� w
ΛW 	

shifts and XORs, as well as (n2Λ + 2n2 + 2n)� w
ΛW 	 + n loads and stores, excluding the omitted costs. This

complexity is calculated as follows:

• Accessing Ai in Step 4 takes n loads.

• d(x) = d(x) +
∑Λ−1

λ=0 b′(λ)(x)xiw+k+λW in the modified step 8 takes (2n2Λ + n)� w
ΛW 	 XORs, 2n2Λ� w

ΛW 	
shifts, and (n2Λ + 2n2 + 2n)� w

ΛW 	 load/stores.

Here, d(x) = d(x)+
∑Λ−1

λ=0 b′(λ)(x)xiw+k+λW is performed by the pseudo code in Figure 8, whose complexity is

given from Table 2.

Table 3 gives the complexities of the comb method and the proposed method where � w
ΛW 	 = 1

Λ�
w
W 	 . As

seen from the table, the comb method requires fewer number of shifts and XORs than the proposed method.
On the other hand, the proposed method requires fewer load and stores especially for large Λ.

Table 3. The method complexities assuming � w
ΛW � = 1

Λ
� w
W � .

XOR/Shift Load/store
Comb (n2 + 6n− 2)� w

W 	 (3n2 + 5n)� w
W 	

Proposed (4n2 + n
Λ )� w

W 	 (n2 + 2n2+2n
Λ )� w

W 	 + n

6. Simulation results and discussion

The comb method [6], the Karatsuba algorithm [7, 8, 5], and the Karatsuba-like formulae [9] are often used in
embedded cryptosystems. We simulate the performances of these algorithms and the proposed algorithm for
the ARM7TDMI processor, using the Keil μvision development environment (version 3.51).

Table 4 gives the timing results of the proposed method, comb method, and the Karatsuba algorithm for
the polynomial degrees usually encountered in Elliptic Curve Cryptosystems. The proposed method performs
better than these algorithms clearly. The speed improvements obtained by the proposed method are given in the
table. Our simulations show that the optimum window size for the comb method is W = 4 on the ARM7TDMI
platform, while the optimum parameters for the proposed method are W = 4 and Λ = 8. Table 4 also shows
that the Karatsuba algorithm always outperforms the comb method. This result is also demonstrated by a
previous work [11, Figure 1].

602



ERDEM: Fast software multiplication in F2[x] for embedded processors,

Table 4. Computation Times in Cycles for the ARM 7 platform.

n 32n Proposed Comb Speed Karatsuba Speed
words bits Method Method up Algorithm up

6 192 3422 5982 42.8% 3451 0.8%

7 224 4359 7810 44.2% 4907 11.2%

8 256 5398 9360 42.3% 5628 4.1%

9 288 6551 11604 43.5% 8203 20.1%

10 320 7806 13442 41.9% 9327 16.3%

11 352 9175 16102 43.0% 10469 12.4%

12 384 10646 18229 41.6% 11025 3.4%

13 416 12231 21305 42.6% 14000 12.6%

14 448 13918 23719 41.3% 15488 10.1%

15 480 15719 27211 42.2% 16994 7.5%

16 512 17622 29913 41.1% 17731 0.6%

Table 5 compares the timing results of the proposed method and an implementation using the Karatsuba-
like formulae given in [9]. As seen, their performances are very similar. On the other hand, the proposed method
requires several times less memory. The Karatsuba-based implementation, whose timings are given in Table
5, is a combination of Karatsuba-like formulae and the Karatsuba algorithm. This implementation uses the
recursive Karatsuba algorithm to multiply the large inputs. The Karatsuba algorithm recursively defines a large
product in terms of some smaller products. Eventually, the products with small inputs are multiplied by the
nonrecursive methods. Our implementation uses the fast nonrecursive multiplication methods given in [9], each

of which is designed for a specific input size (3, 4, 5, 6, and 7 words). Also, the nonrecursive methods multiplying
the one and two word polynomials are included in the implementation. Though, these special multiplication
methods improve the performance, they increase the code size significantly. As a result, the overall code size of
this implementation is more than 6 kbytes and larger than the code sizes of the other implementations. On the
other hand, the code size of the proposed method is less than 2 kbytes.

Table 5. Computation Times in Cycles for the ARM 7 platform.

n 32n Proposed Karatsuba-like Speed
words bits Method formulae up

6 192 3422 3295 -3.9%

7 224 4359 4224 -3.2%

8 256 5398 5173 -4.3%

9 288 6551 7138 8.2%

10 320 7806 7956 1.9%

11 352 9175 9714 5.6%

12 384 10646 10586 -0.6%

13 416 12231 12502 2.2%

14 448 13918 13469 -3.3%

15 480 15719 15425 -1.9%

16 512 17622 16396 -7.5%

As seen in Tables 4 and 5, speed up values with respect to Karatsuba-based multiplication methods vary
significantly. This is because the performance of the Karatsuba algorithm is sensitive to input size. Karatsuba-
based methods work better when the input size is a power of two. Karatsuba algorithm recursively defines

603



Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

smaller products from the lower and higher halves of their inputs and finds its output from these smaller
products. If the input size is not an even number, the inputs are divided into two approximate halves, and this
degrades the performance. The performance varies depending on how the inputs are divided into smaller inputs
and which Karatsuba-like formulae are used to eventually multiply the small inputs.

In cryptographic applications, polynomial multiplication is usually used to perform field multiplication.
Thus, multiplication results are reduced modulo to an irreducible polynomial. For efficiency, a sparse irreducible
polynomial such as a trinomial or pentanomial is chosen to generate the field. We have implemented the
polynomial reduction for pentanomials. The multiplications in Table 4 and 5 have 12, 14, 16, 18, 20, 22, 24, 26,
28, 30, and 32 word results (two times the input size). We have found that the time required to reduce these
multiplication results are 307, 348, 389, 430, 472, 510, 551, 592, 633, 674, and 717 cycles, respectively. Our
measurements show that polynomial reduction accounts for 4% to 8% of the total computation time required
for the field multiplication when the polynomial multiplication is performed by the proposed method.

7. Conclusion

We propose an efficient software method to implement the binary polynomial multiplication on embedded pro-
cessors. The proposed method is similar to the comb method in many ways. However, our method aims at de-
creasing the number of load and store operations during partial product accumulation. Thus, our method is very
advantageous for embedded processors with limited memory bandwidth. Our simulations on the ARM7TDMI
platform show that the proposed method performs very well for the polynomial degrees usually encountered in
the practical cryptosystems such as elliptic curve cryptography. The proposed method outperforms the comb
method and the Karatsuba algorithm in this range while it shows a similar performance the Karatsuba-based
multiplication method given in [9]. However, this method uses several algorithms customized for particular
input lengths to avoid the iterations and recursions. Hence, it needs much larger code size than the proposed
method.

The architecture of the embedded processor has an important role in the performances of the algorithms.
The load and store instructions take more cycles than the arithmetic and logic instructions in low-end Arm
processors such as Arm7. Also, low-end Arm processors have no cache. As a result, the proposed method,
which saves on the load and store operations, shows a good performance on Arm7. Also, shift operations are
free in Arm processors since they can be combined with other arithmetic and logic instructions. As a result, it
is not advantageous to use the comb method, which saves on the shift operations, in Arm processors. Finally,
high-end Arm processors have both instruction and data cache. Also, they can execute load-store operations
in a single cycle. For this kind of devices, the Karatsuba-based multiplication methods are very affordable and
preferable. The Karatsuba-based multiplication methods are asymptotically faster than the comb method and
the proposed method, which are quadratic in time.

References

[1] J. von zur Gathen and J. Gerhard, “Arithmetic and factorization of polynomial over F2 ” (extended abstract), In

ISSAC, pages 1–9, 1996.

[2] J. von zur Gathen and J. Gerhard, “Polynomial factorization over F2 ”, Mathematics of Computation, 71(240):1677–

1698, 2002.

604



ERDEM: Fast software multiplication in F2[x] for embedded processors,

[3] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren, Handbook of Elliptic and

Hyperelliptic Curve Cryptography, Discrete Mathematics and its Applications, Chapman & Hall/CRC, 2005.

[4] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography, Springer-Verlag New York,

Inc., 2004.

[5] A. Weimerskirch, D. Stebila, and S. C. Shantz, “Generic GF(2) arithmetic in software and its application to ECC”,

In ACISP, pages 79–92, 2003.

[6] J. López and R. Dahab, “High-speed software multiplication in F2m ”, In INDOCRYPT, pages 203–212, 2000.

[7] A. A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on automata”, Soviet Physics-Doklady

(English translation), 7(7):595–596, 1963.

[8] D. E. Knuth, Seminumerical Algorithms, volume 2 of The Art of Computer Programming, Addison-Wesley, Reading,

MA, 3rd edition, 1997.

[9] P. L. Montgomery, “Five, six, and seven-term Karatsuba-like formulae”, IEEE Transactions on Computers,

54(3):362–369, 2005.

[10] R. P. Brent, P. Gaudry, E. Thomé, and P. Zimmermann, “Faster multiplication in GF(2)[x ]”, In ANTS, pages

153–166, 2008.

[11] S. Bartolini, I. Branovic, R. Giorgi, and E. Martinelli, “Effects of instruction-set extensions on an embedded

processor: A case study on elliptic-curve cryptography over GF(2m )”, IEEE Transactions on Computers, 57(5):672–

685, 2008.

605


