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Abstract

We present a new formulation method to solve the kinematic problem of multiarm robot systems. Our

major aims were to formulize the kinematic problem in a compact closed form and avoid singularity problems

in the inverse kinematic solution. The new formulation method is based on screw theory and quaternion

algebra. Screw theory is an effective way to establish a global description of a rigid body and avoids

singularities due to the use of the local coordinates. The dual quaternion, the most compact and efficient dual

operator to express screw displacement, was used as a screw motion operator to obtain the formulation in a

compact closed form. Inverse kinematic solutions were obtained using Paden-Kahan subproblems. This new

formulation method was implemented into the cooperative working of 2 Stäubli RX160 industrial robot-arm

manipulators. Simulation and experimental results were derived.

Key Words: Cooperative working of multiarm robot systems, dual quaternion, industrial robot application,

screw theory, singularity-free inverse kinematic

1. Introduction

Multiarm robot configurations offer the potential to overcome many difficulties by increased manipulation ability
and versatility [1,2]. For instance, single-arm industrial robots cannot perform their roles in the many fields in

which operators do the job with their 2 arms [3]. Multiarm robot systems can also manipulate bulky objects

whose weight exceeds the working capacities of the individually cooperating participants [4]. For these reasons,

the needs for multiarm robot manipulators are increasing in many industrial fields [3]. In addition to industrial
robotics, the main application areas of the cooperative working of multiarm robot systems are medical robotics,
telerobotics and humanoid robotics [5-7].

A fundamental research task of cooperative manipulation is to find the appropriate way to control the
system of robots and objects in the work space at any stage of the cooperative work. This requires an exact
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understanding of the physical nature of the cooperative system and derivation of the mathematical basis for its
description. In the realization of this goal, the first crucial problem is kinematic uncertainty [8].

In the cooperative working of multiarm robot systems, a closed-chain mechanism comes into existence
from the open-chain mechanisms [9]. Regarding the kind of object grasping, the closed-chain mechanism is
usually redundant. The kinematic problem of robots working in cooperation is a highly complex problem
because of redundancy. There are several studies based on differential kinematics to solve the kinematic problem
of the closed-chain mechanism [10-12]. Differential kinematics-based solutions are used as Jacobian operators for
velocity mapping. There are 2 main disadvantages of this method. The first is that joint angles are obtained by
numerical integration of the joint velocities which suffer from errors due to both long-term numerical integration
drift and incorrect initial joint angles. The second is that it needs inversion of the Jacobian matrix in the inverse
kinematic solution. Taking the inverse of a matrix is computationally hard and even impossible at singular
points. Since the closedchain mechanism is redundant the Jacobian matrix is always singular. There are, in
general, 4 main techniques to cope with the kinematic singularity problems. These are avoidance of the singular
configuration method, the robust inverse method, a normal form approach method and the extended Jacobian
method [13-16]. However, the given techniques have some disadvantages which include computational load and

errors [17]

The closed-chain kinematic problem of the cooperative working of multiarm robots can also be solved by
reducing the full kinematic problem into the appropriate subopen-chain kinematic problems. If all of the robot
arms’ positions and orientations can be determined appropriately, the closed-chain robot kinematic problem can
be reduced to serial robot-arm kinematic problems. Several methods are used to solve the kinematic problem
of multiarm robot systems using this approach. Chiacchio et al. used differential kinematics to solve the
subopen-chain kinematic problem [4]. This method also has some disadvantages, which are similar to those
of the differential kinematics-based closed-chain solution; however, there are only single-arm singularities in
this case. Hemami and Zheng used the Denavit-Hartenberg convention, which is the most common method in
robot kinematics to solve the subopen-chain kinematic problem [18,19]. These methods use 4 × 4 homogeneous

transformation matrices as a point transformation operator and suffer from singularity problems [20].

The subopen-chain kinematic problem of multiarm robot systems can also be solved by using screw
theory. There are 2 main advantages of using screw theory for describing rigid body kinematics. The first is
that it allows a global description of rigid body motion that does not suffer from singularities due to the use of
local coordinates. The second is that the screw theory provides a geometric description of rigid motion, which
greatly simplifies the analysis of mechanisms [21]. Several applications of screw theory have been introduced in
robot kinematics. Among these studies, Funda and Paul and Funda et al. analyzed transformation operators
of screw motion. They found that dual operators are the best way to describe screw motion and also that the
dual quaternion is the most compact and efficient dual operator to express screw displacement [22,23].

In this paper, a new formulation method to solve the kinematic problem of multiarm robot systems is
presented. This new formulation method is based on screw theory and it uses the dual quaternion, which
is the most compact and efficient dual operator to express screw displacement, as a screw motion operator.
Thus, the proposed method provides a singularity-free and computationally efficient inverse kinematic solution
for multiarm robot manipulators. The kinematic solution of the cooperative working of a dual-arm robot
manipulator using this new formulation method is given in Section 6. This paper also includes the mathematical
preliminaries for quaternion algebra in Section 2, screw theory by using quaternion algebra in Section 3, the
kinematic scheme of an n-degrees of freedom (DOF) serial robot manipulator in Section 4, the kinematic model
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of a 6-DOF serial robot manipulators in Section 5, cooperative working of serial robot arms in Section 6, and
simulation and experimental results of forward and inverse kinematic solutions of the cooperative working of
dual-arm robot manipulator in Sections 7 and 8, respectively. Conclusions and future works are presented in
the final section.

2. Mathematical preliminaries

2.1. Quaternion

In mathematics, the quaternions are hypercomplex numbers of rank 4, constituting a 4-dimensional vector space
over the field of real numbers [24]. The quaternion can be represented in the form:

q = (qS, qV ), (1)

where qS is a scalar and qV = (q1, q2, q3) is a vector. The sum of 2 quaternions is then:

qa + qb = (qaS + qbS), (qaV + qbV ), (2)

and the product of 2 quaternions is:

qa ⊗ qb = (qaSqbS − qaV · qbV ), (qaSqbV + qbSqaV + qaV × qbV ), (3)

where “⊗”, “ ·”, and “×” denote quaternion products, dot products, and cross products, respectively. The
conjugate, norm, and inverse of the quaternion can be expressed in the forms given below.

q∗ = (qs,−qv) = (qs,−q1,−q2,−q3) (4)

||q||2 = q ⊗ q∗ = q2
s + q2

1 + q2
2 + q2

3 (5)

q−1 =
1

||q||2q∗ and ||q|| �= 0 (6)

These satisfy the relation q−1 ⊗ q = q ⊗ q−1 = 1. When ||q||2 = 1, we get a unit quaternion. Any quaternion
q can be normalized by dividing its norm. For the unit quaternion, we have:

q−1 = q∗. (7)

A unit quaternion can be defined as a rotation operator [25-27]. Rotation about an axis of n by an angle of θ

can be expressed by using the unit quaternion given by:

q = cos
(

θ

2

)
, sin

(
θ

2

)
n. (8)

Definition 1: Let qa and qb be 2 pure quaternions and the product of these 2 quaternions be:

qa ⊗ qb = (qaSqbS − qaV · qbV ), (qaSqbV + qbSqaV + qaV × qbV ) = (−qaV · qbV ), (qaV × qbV ). (9)

Let us then define 2 new functions by using the product of 2 pure quaternions given by the following. Let:

• V {qa ⊗ qb} = qaV × qbV be the vector part of the quaternion multiplication, and

• S {qa ⊗ qb} = − (qaV · qbV ) be the scalar part of the quaternion multiplication.
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2.2. Dual quaternion

The dual quaternion can be represented in the form:

q̂ = (q̂S , q̂V ) or q̂ = q + εqo, (10)

where q̂S = qS + εq0
S is a dual scalar, q̂V = qV + εqo

V is a dual vector, q and qo are both quaternions, and ε

is the dual factor [28]. The sum of 2 dual quaternions is then:

q̂a + q̂b = (qa + qb) + ε(qo
a + qo

b ), (11)

and the product of 2 dual quaternions is:

q̂aΘq̂b = (qa ⊗ qb) + ε(qa ⊗ qo
b + qo

a ⊗ qb), (12)

where “⊗” and “Θ” denote the quaternion and dual quaternion products, respectively. The conjugate, norm,
and inverse of the dual quaternion are similar to the quaternion’s conjugate, norm, and inverse, respectively.

q̂∗ = q∗ + ε(qo)∗ (13)

||q̂||2 = q̂Θq̂∗ (14)

q̂−1 =
1

||q̂||2 q̂∗ and ||q̂|| �= 0 (15)

When ||q̂||2 = 1, we get a unit dual quaternion. For the unit dual quaternion, we have:

||q̂||2 = q̂Θq̂∗ = q̂∗Θq̂ = 1, (16)

q ⊗ q∗ = 1 , q∗ ⊗ qo + (qo)∗ ⊗ q = 0. (17)

The unit dual quaternion can be used as a rigid body transformation operator [29]. Although it has 8 parameters

and it is not minimal, it is the most compact and efficient dual operator [22,23]. This transformation is
very similar to pure rotation, although not for a point but rather for a line. A line in Plücker coordinates

La(m, d)(l̂a = la + εma in dual quaternion form; see Appendix) can be transformed to Lb(m, d) by using unit
dual quaternions as follows:

l̂b = q̂Θl̂aΘq̂∗, (18)

where q̂ is the unit dual quaternion [30].

Definition 2: Let q̂a and q̂b be 2 dual quaternions and let the product of 2 dual quaternions be

q̂ab = q̂aΘq̂b = qab + εqo
ab = (qabS , qabV ) + ε(qo

abS , qo
abV ). (19)

Let us then define 4 new functions by using the product of 2 dual quaternions and definition 1. Let:

• S {R {q̂aΘq̂b}} = qabS be the scalar part of the real part of multiplication,

• S {D {q̂aΘq̂b}} = qo
abS be the scalar part of the dual part of multiplication,

• V {R {q̂aΘq̂b}} = qabV be the vector part of the real part of multiplication, and

• V {D {q̂aΘq̂b}} = qo
abV be the vector part of the dual part of multiplication.
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3. Screw theory

The elements of screw theory can be traced to the work of Chasles and Poinsot in the early 1800s. According
to Chasles, all proper rigid body motions in 3-dimensional space, with the exception of pure translation, are
equivalent to a screw motion (see Figure 1), that is, a rotation about a line together with a translation along

the line [31,32].

x y

z p

d

Figure 1. General screw motion.

The general screw motion operator can be represented by using a dual quaternion as follows:

q̂ = cos

(
θ̂

2

)
+ sin

(
θ̂

2

)
d̂, (20)

where θ̂ = θ + εk and d̂ = d + εm are dual numbers. Here, θ and d = [0, d] indicate the rotation angle and

the screw motion axis, respectively. m = [0, p× d] indicates the moment vector of the rotation axis, where p
is any point on the direction vector of d and k = d · t . Further details of general screw motion formulation
using dual quaternions can be found in [30].

4. Manipulator kinematics

4.1. Forward kinematics

The forward kinematic problem is to determine the position and orientation of the end effector given the values
for the joint variables of the robot. To find the forward kinematics of the serial robot manipulator, we followed
these steps:

Step 1: Determine the joints’ axis and moment vectors. First, the axis vectors that describe the motion
of the joints are attached. The moment vectors of these axes are then obtained for revolute joints (see Appendix).
Hence, the Plücker coordinate notations of these axes are obtained.

Step 2: Obtain transformation operators. For all joints, dual quaternion transformation operators can
be obtained as follows:

q̂i = (q̂Si, q̂Vi) or q̂i = qi + εqo
i . (21)
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For prismatic joints:
qi = (1, 0, 0, 0) and qo

i = (0, qo
1, q

o
2, q

o
3) describe rotation and the amount of translation, respectively.

For revolute joints:

qi = cos
(

θi

2

)
+ sin

(
θi

2

)
di and qo

i = 1
2 (pi − qi ⊗ pi ⊗ q∗i ) ⊗ qi or qo

i = [0, sin
(

θi

2

)
mi] describe rotation and the

amount of translation, respectively.
Here, i = 1, 2, ...., n .

Step 3: Formulate rigid motion. Rigid motion formulation can be obtained by using Eq. (18). For an
n-DOF robot manipulator, the general rigid body transformation operation is given by:

q̂1n = q̂1Θq̂2Θ.....Θq̂n, (22)

where q̂1n = q1n + εqo
1n . The orientation and position of the end effector can be found as follows.

Let l̂n = ln + εlon and l̂n−1 = ln−1 + εlon−1 be the nth and (n – 1)th joints’ Plücker coordinate

representations, respectively. Additionally, let l̂′n = l′n + εlo′n = q̂1nΘl̂nΘq̂∗1n and l̂′n−1 = l′n−1 + εlo′n−1 =

q̂1n−1Θl̂n−1Θq̂∗1n−1 be the nth and (n – 1)th joints’ Plücker coordinate representations after the transformation.

The orientation of the end effector is l̂′n . The position of the end effector can be found using definitions 1 and

2 and Eq. (A.1) from the Appendix, given by:

pn = (V
{

R
{
q̂1nΘl̂nΘq̂∗1n

}}
× V

{
D

{
q̂1nΘl̂nΘq̂∗1n

}}
)+

(V
{
R

{
q̂1n−1Θl̂n−1Θq̂∗1n−1

}}
×V

{
D

{
q̂1n−1Θl̂n−1Θq̂∗1n−1

}}
) · V

{
R

{
q̂1nΘl̂nΘq̂∗1n

}}
∗ V

{
R

{
q̂1nΘl̂nΘq̂∗1n

}}
.

(23)

4.2. Inverse kinematics

The inverse kinematic problem is to determine the values of the joint variables given the end effector’s position
and orientation. Paden-Kahan subproblems are used to obtain the inverse kinematic solution of the serial
robot-arm manipulator [33-35]. The solution of the inverse kinematic problem of a 6-DOF serial robot-arm is
given in the next section.

5. 6-DOF serial robot-arm kinematic model

In this section, the kinematic problem of a serial robot arm, which is shown in Figure 2, is solved by using the
new formulation method.

5.1. Forward kinematics

Step 1: First, the axes of all joints should be determined.

d1 = [0, 0, 1] d2 = [0, 1, 0] d3 = [0, 1, 0]

d4 = [0, 0, 1] d5 = [0, 1, 0] d6 = [0, 0, 1] (24)

The moment vectors of all axes must then be calculated.
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Figure 2. 6-DOF serial robot-arm manipulator in its reference configuration.

m1= p1×d1 m2= p2×d2 m3= p3×d3

m4= p4×d4 m5= p5×d5 m6= p6×d6 (25)

Here,

p1 = [0, 0, lz0], p2 = [0, 0, lz0], p3 = [0, ly0, lz0 + lz1],

p4 = [0, 0, lz0 + lz1 + lz2 ], p5 = [0, 0, lz0 + lz1 + lz2 ], p6 = [0, 0, lz0 + lz1 + lz2 ]. (26)

Step 2: The transformation operator that is in dual quaternion form can be written using the axis and
moment vectors and Eq. (21).

Step 3: Finally, the forward kinematic equation of serial robot manipulator can be obtained as follows:

l̂′6 = l′6 + εlo′6 = q̂16Θl̂6Θq̂∗16 = q̂16Θ(l6 + εlo6)Θq̂∗16,

l̂′5 = l′5 + εlo′5 = q̂15Θl̂5Θq̂∗15 = q̂15Θ(l5 + εlo5)Θq̂∗15, (27)
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where q̂16 = q̂1Θq̂2Θq̂3Θq̂3Θq̂5Θq̂6 and q̂15 = q̂1Θq̂2Θq̂3Θq̂3Θq̂5 . The orientation of the end effector is then l̂′6
and the position of the end effector is:

p6 = (V
{

R
{
q̂16Θl̂6Θq̂∗16

}}
× V

{
D

{
q̂16Θl̂6Θq̂∗16

}}
)+

(V
{
R

{
q̂15Θl̂5Θq̂∗15

}}
× V

{
D

{
q̂15Θl̂5Θq̂∗15

}}
) · V

{
R

{
q̂16Θl̂6Θq̂∗16

}}
∗ V

{
R

{
q̂16Θl̂6Θq̂∗16

}} . (28)

5.2. Inverse kinematics

In the inverse kinematic problem of the serial robot manipulator, we have the position and orientation informa-
tion of the end effector such that q̂in = (qin, qo

in), where qin = (q0, q1, q2, q3); that is, the orientation of the end

effector is the real part of the dual quaternion q̂in , and qo
in = (qo

0 , q
o
1, q

o
2, q

o
3), the position of the end effector,

is the dual part of the of the dual quaternion q̂in . The general inverse kinematic problem should be converted
into the appropriate Paden-Kahan subproblems (see Appendix) to obtain the inverse kinematic solution. This
solution can be obtained as follows.

Step 1: First, we put 2 points at the intersection of the axes. The first is pw , which is at the intersection
of the wrist axes, and the second is pb , which is at the intersection of the first 2 axes. The last 3 joints do not
affect the position of point pw and the first 2 joints do not affect the position of point pb . We can then easily
write Eq. (21).

⎛
⎝ (V

{
R

{
q̂13Θl̂6Θq̂∗13

}}
× V

{
D

{
q̂13Θl̂6Θq̂∗13

}}
)+

(V
{
R

{
q̂13Θl̂5Θq̂∗13

}}
× V

{
D

{
q̂13Θl̂5Θq̂∗13

}}
) · V

{
R

{
q̂13Θl̂6Θq̂∗13

}}
∗ V

{
R

{
q̂13Θl̂6Θq̂∗13

}}
⎞
⎠−

⎛
⎝ (V

{
R

{
q̂12Θl̂2Θq̂∗12

}}
× V

{
D

{
q̂12Θl̂2Θq̂∗12

}}
)+

(V
{
R

{
q̂12Θl̂1Θq̂∗12

}}
×V

{
D

{
q̂12Θl̂1Θq̂∗12

}}
) · V

{
R

{
q̂12Θl̂2Θq̂∗12

}}
∗V

{
R

{
q̂12Θl̂2Θq̂∗12

}}
⎞
⎠=qo

in − pb

(29)
Using the property that the distance between the points is preserved by rigid motions and taking the magnitude
of both sides of Eq. (21), we get:

∥∥∥∥∥∥∥∥∥

⎛
⎝ (V

{
R

{
q̂3Θl̂6Θq̂∗3

}}
× V

{
D

{
q̂3Θl̂6Θq̂∗3

}}
) + (V

{
R

{
q̂3Θl̂5Θq̂∗3

}}
×

V
{
D

{
q̂3Θl̂5Θq̂∗3

}}
) · V

{
R

{
q̂3Θl̂6Θq̂∗3

}}
∗ V

{
R

{
q̂3Θl̂6Θq̂∗3

}}
⎞
⎠−

(
(V

{
R

{
l̂2

}}
× V

{
D

{
l̂2

}}
) + (V

{
R

{
l̂1

}}
× V

{
D

{
l̂1

}}
) · V

{
R

{
l̂2

}}
∗ V

{
R

{
l̂2

}})
∥∥∥∥∥∥∥∥∥

= ‖qo
in − pb‖ .

(30)

Eq. (30) gives us subproblem 3 (see Appendix). The parameters of subproblem 3 are

a = (V
{
R

{
l̂6

}}
× V

{
D

{
l̂6

}}
) + (V

{
R

{
l̂5

}}
× V

{
D

{
l̂5

}}
) · V

{
R

{
l̂6

}}
∗ V

{
R

{
l̂6

}}
,

b =(V
{
R

{
l̂2

}}
× V

{
D

{
l̂2

}}
) + (V

{
R

{
l̂1

}}
× V

{
D

{
l̂1

}}
) · V

{
R

{
l̂2

}}
∗ V

{
R

{
l̂2

}}
.

l is the axis of joint 3, that is, d3 , and δ = qo
in − pb.θ3 can be found by using subproblem 3.
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Step 2: If we use the known θ3 in Eq. (21), we then obtain:

(V
{

R
{

q̂12Θl̂′6Θq̂∗12

}}
× V

{
D

{
q̂12Θl̂′6Θq̂∗12

}}
)+

(V
{

R
{

q̂12Θl̂′5Θq̂∗12

}}
× V

{
D

{
q̂12Θl̂′5Θq̂∗12

}}
) · V

{
R

{
q̂12Θl̂′6Θq̂∗12

}}
∗ V

{
R

{
q̂12Θl̂′6Θq̂∗12

}}
= qo

in

,

(31)

where l̂′6 = q̂3Θl̂6Θq̂∗3 and l̂′5 = q̂3Θl̂5Θq̂∗3 .

Eq. (31) gives us subproblem 2. The parameters of subproblem 2 are:

a = (V
{
R

{
l̂′6

}}
× V

{
D

{
l̂′6

}}
) + (V

{
R

{
l̂′5

}}
× V

{
D

{
l̂′5

}}
) · V

{
R

{
l̂′6

}}
∗ V

{
R

{
l̂′6

}}
.

l1 is the axis of joint 1, or d1 ; l2 is the axis of joint 2, or d2 ; and b = qo
in.θ1 and θ2 can be found by using

subproblem 2 (see Appendix).

Step 3: To find the wrist angles, let us consider point pi = p6 +λd6 (initial point) on axis d6 ; it is not

coincident with the d4 and d5 axes. Two imaginer axes are used to find pe (end point), that is, the position
of point piafter rotation by θ4 and θ5 angles. Point pi is the intersection point of the 2 imaginer axes. Let us
define the 2 imaginer axes that are on the d6 axis and intersect at point pi , given by d7 = [0, 1, 0], d8 = [0, 0, 1] ,

and pi=p7=p8 = [λd6x, ly0 + ly1 + λd6y, lz0 + lz1 + lz2 + λd6z] . The moment vectors are m7 = pi × d7 and

m8 = pi × d8 . We can then easily write:

(V
{
R

{
q̂13Θq̂45Θl̂8Θq̂∗45Θq̂∗13

}}
× V

{
D

{
q̂13Θq̂45Θl̂8Θq̂∗45Θq̂∗13

}}
) + (V

{
R

{
q̂13Θq̂45Θl̂7Θq̂∗45Θq̂∗13

}}
×

V
{

D
{
q̂13Θq̂45Θl̂7Θq̂∗45Θq̂∗13

}}
) · V

{
R

{
q̂13Θq̂45Θl̂8Θq̂∗45Θq̂∗13

}}
∗ V

{
R

{
q̂13Θq̂45Θl̂8Θq̂∗45Θq̂∗13

}}
=qo

in+λd6

,

(32)
which is equal to:

(V
{

R
{
q̂45Θl̂′8Θq̂∗45

}}
× V

{
D

{
q̂45Θl̂′8Θq̂∗45

}}
) + (V

{
R

{
q̂45Θl̂′7Θq̂∗45

}}
×

V
{

D
{

q̂45Θl̂′7Θq̂∗45

}}
) · V

{
R

{
q̂45Θl̂′8Θq̂∗45

}}
∗ V

{
R

{
q̂45Θl̂′8Θq̂∗45

}}
= qo

in + λd6

. (33)

Eq. (23) gives us subproblem 2. The parameters of subproblem 2 are:

a = (V
{
R

{
l̂′8

}}
× V

{
D

{
l̂′8

}}
) + (V

{
R

{
l̂′7

}}
× V

{
D

{
l̂′7

}}
) · V

{
R

{
l̂′8

}}
∗ V

{
R

{
l̂′8

}}
.

l1 is the imaginer axis d7 , l2 is the imaginer axis d8 , and b = qo
in + λd6 . θ4 and θ5 can be found using

subproblem 2 (see Appendix).

Step 4: To find the last joint angle, we need a point that is not on the last joint axis. We call it pd =
p5+λd5 . Two imaginer axes are used to find p′

d , the position of point pd after rotation by θ6 . Point pd is the
intersection point of the 2 imaginer axes. Let us define the 2 imaginer axes that are on the d5 axis and intersect at
point pd , given by d9 = [0, 1, 0] , d10 = [1, 0, 0] , and pd= p9= p10 = [λd5x, ly0+ly1+λd5y, lz0+lz1+lz2+λd5z] .

The moment vectors are m9 = p9 × d9 and m10 = p10 × d10 . We can then easily write Eq. (34).

(V
{
R

{
q̂16Θl̂10Θq̂∗16

}}
× V

{
D

{
q̂16Θl̂10Θq̂∗16

}}
)+

(V
{
R

{
q̂16Θl̂9Θq̂∗16

}}
× V

{
D

{
q̂16Θl̂9Θq̂∗16

}}
) · V

{
R

{
q̂16Θl̂10Θq̂∗16

}}
∗ V

{
R

{
q̂16Θl̂10Θq̂∗16

}}
= qo

in + λd5

(34)
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(34) This is equal to:

(V
{

R
{

q̂6Θl̂′10Θq̂∗6

}}
× V

{
D

{
q̂6Θl̂′10Θq̂∗6

}}
)+

(V
{

R
{

q̂6Θl̂′9Θq̂∗6

}}
× V

{
D

{
q̂6Θl̂′9Θq̂∗6

}}
) · V

{
R

{
q̂6Θl̂′10Θq̂∗6

}}
∗ V

{
R

{
q̂6Θl̂′10Θq̂∗6

}}
= qo

in + λd5

.

(35)

Eq. (35) gives us subproblem 1. The parameters of subproblem 1 are:

a = (V
{
R

{
l̂′10

}}
× V

{
D

{
l̂′10

}}
) + (V

{
R

{
l̂′9

}}
× V

{
D

{
l̂′9

}}
) · V

{
R

{
l̂′10

}}
∗ V

{
R

{
l̂′10

}}
.

l is the axis of joint 6, namely d6 , and b = qo
in +λd5 . θ6 can be found by using subproblem 1 (see Appendix).

6. Cooperative working of serial robot arms

Figure 3 illustrates a possible arrangement of 2 robot arms. In the cooperative working of 2 robot arms, a closed-
chain mechanism comes into existence from 2 open-chain mechanisms. As shown in Figure 3, there are 12 DOF
in the closed-chain mechanism. Since the closed-chain mechanism is redundant, there are infinite solutions
(or singularity) in the inverse kinematic problem. On this account, the kinematic problem of the closed-chain
mechanisms is more difficult than that of the open-chain mechanisms. However, the kinematic problem of the
closed-chain robot arms can be solved by reducing the full kinematic problem to the appropriate subopen-chain
kinematic problem. If the position and orientation of both robot arms can be determined appropriately, the
closed-chain robot kinematic problem can be reduced to the serial robot-arm kinematic problem. It can then
be solved by using the proposed method. Two different methods are used in Section 7. In the first, a path
is determined for an object (a ball). The appropriate positions and orientations of the 2 robot arms are then
determined for each step of the cooperative work. In the second, a path is determined for the first robot arm.
The second robot arm’s path is then determined by using the position and orientation of the first robot arm.
The point symmetry method is used to obtain the position and orientation of the second robot arm [18].

x

z

y x y
z

Master Slave

d

Figure 3. Configuration of the cooperative working of a dual-arm robot manipulator.

7. Simulation results

Stäubli RX160 industrial robot arms were used for the simulation studies. Stäubli RX160 robot-arm series
features an articulated arm with 6 DOF for high flexibility. It covers a wide-ranging area in industrial robot
applications. The kinematic simulation studies were done using MATLAB and the animation applications were
done using the Virtual Reality Toolbox of MATLAB. Stäubli RX160 IGES files, which can be freely obtained
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from the Stäubli web page, were also used for the animation application. Two different animation applications,
which are shown in Figures 4 and 5, were performed.

(A) (B)

(C) (D)

Figure 4. Cooperative working (ball-carrying experiments).

In the first case, the 2 robot arms worked together and carried a ball from its initial position to the
desired target position, as shown consecutively in Figure 4. To implement this case, first a path was determined
for the ball. The inverse kinematic problem of the serial robot arm was then solved by using this path for both
of the robot arms. The orientations of the robot arms were chosen adversely to each other.

The second case involves work in the master-slave mode. In this case, the first robot arm, which has a
ball at the end effector, moved by a given path, and the second robot arm followed the tip point of the first
robot arm, as shown consecutively in Figure 5. To implement this case, first a path was determined for the first
robot arm. The orientation and position information of the first robot arm was then sent to the second robot
arm and the inverse kinematic problem of the second robot arm was solved using the orientation and position
information. The first robot arm, which sends its position and orientation information, works as a master, and
the second robot arm, which follows the tip point of the first robot arm, works as a slave.

Dual operators are the best way to describe screw motion, and the dual quaternion is the most compact
and efficient dual operator to express screw displacement. A dual quaternion requires 8 memory locations
for the definition of the rigid body motion, while a homogeneous transformation matrix requires 16 memory
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locations. The storage requirement affects the computational time because the cost of fetching an operand from
the memory exceeds the cost of performing a basic arithmetic operation [36], and it is very important for the
real-time implementation. Dual quaternion-based rigid transformation requires less computational load. The
performance analysis of the transformation operators can be seen in Table 1.

(A) (B)

(C) (D)

Figure 5. Cooperative working (working in master-slave mode).

Table 1. Performance comparison of rigid transformation operations.

Method Storage Multiplication Add/subtract Total
Hom. trans. matrix* 16 64 48 112

Dual quaternion 8 48 40 88
*Homogeneous transformation matrix

In order to obtain the rigid body transformation operator for an n-link serial robot manipulator:

• 64(n − 1) multiplications and 48(n − 1) additions must be done if the transformation operator is a
homogeneous transformation matrix.

• 48(n − 1) multiplications and 40(n − 1) additions must be done if the transformation operator is a dual
quaternion.
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Figure 6 shows that as the degrees of freedom increase, the method that uses the dual quaternion as a rigid
body transformation operator becomes more advantageous.

The computational efficiency of the dual quaternion-based and homogeneous transformation matrix-based
solutions are given in Figures 7 and 8. The computation time was evaluated using MATLAB’s tic-toc commands.
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Figure 6. Performance comparison of the rigid body

transformation chaining operations.

Figure 7. Simulation times of the forward kinematic

solutions (s).

As can be seen from Figures 6, 7, and 8, the method that uses a dual quaternion as a screw motion
operator is more computationally efficient than the homogenous transformation matrix-based method since the
dual quaternion-based method describes screw motion using fewer parameters and has less computational load.
The running environment is given in Table 2.

Table 2. Running environment.

CPU CPU memory Operating system Simulation software
Intel Core 2 Duo 2.2 GHz 2 GB Windows XP MATLAB 7

8. Experimental results

In the experimental study, we used Stäubli RX 160 and RX 160L serial robot arms and a CS8 controller,
which includes a low-level programming package to control the robot under a VxWorks r© real-time operating
system. The given kinematic algorithm was applied to the Stäubli RX 160 robots using the Stäubli Robotics
LLI Programming Interface S6.4, which is a C programming interface for low-level robot control. LLI stands
for low-level interface; it is a software package that includes the minimum functions required to construct a
robot control mechanism via C/C++ API [37]. The algorithm was written in C++ language using the library
functions of the LLI software package and embedded in the controller.

In order to verify the simulation results, an experiment was performed using the Stäubli RX 160 and RX
160L robot arms shown in Figure 9.

In the experimental study, a cubic trajectory that passed through the singular configurations of the robot
arms was determined for the first robot arm, the RX 160L (master). The trajectory of the second robot arm,

the RX 160 (slave), was determined using the point symmetry method explained in section 7. The trajectory

619



Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

tracking results for the position and orientation of dual-arm cooperative work are shown in Figures 10 and 11.
Figure 10 shows the position of the end effectors of both robot arms on the x, y, and z coordinates. Figure 11
shows the orientation angle of the master robot. Ellipses in Figures 10 and 11 show that the robot arms pass
through singular configurations at those trajectories.
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Figure 8. Simulation times of the inverse kinematic so-

lutions (s).

Figure 9. Stäubli RX 160 and RX 160L serial robot

arms.
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Figure 10. Trajectory tracking for the x, y, and z coordinates.

The trajectory tracking errors are given in Figure 12. As can be seen from Figures 10, 11, and 12, a
satisfactory singularity-free trajectory tracking application was implemented.
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Figure 11. Trajectory tracking for the Roll, Pitch, and Yaw orientation angles of the master robot.
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Figure 12. Trajectory tracking errors for position and orientation.
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(A) (IB)

(C) (D)

(E) (F)

(G) (H)

Figure 13. An industrial robot application (cooperative and independent working of dual-arm robot system).
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An industrial robotics application was also done for the experimental study. This experimental study can
be seen consecutively in Figure 13. In this study, both the cooperative and independent workings of the robot
arms were implemented. First, 2 robots were worked independently. They took the products from the computer
numerical control machines and gathered them on the tablet. Both of the robot arms then cooperatively carried
the heavy tablet from the initial position to the target position. In the independent working of the robot arms,
position kinematic control satisfies the desired task; however, velocity kinematic control is also needed for the
synchronization of the robot arms in the cooperative work.

Conclusion

In this paper, a singularity-free inverse kinematic solution method of serial robot-arm manipulators was imple-
mented into the cooperative working of the industrial robot-arm manipulators. This solution method is based
on screw theory and quaternion algebra. Screw theory is an effective way to establish a global description of
the rigid body and avoids singularities due to the use of local coordinates. Compared with other methods,
screw theory methods establish just 2 coordinates, and screw theory’s geometrical meaning is obvious. Screw
theory with the dual quaternion method is the most compact and efficient way to express screw displacement.
As the complexity and the degrees of freedom of the system increase, the methods based on screw theory and
quaternion algebra give better results. This is because, as the degrees of the freedom of the systems increase,
they have many more singularity points, more computational loads, and more complex geometrical structures.
On these accounts, the wider use of screw theory-based methods and quaternion algebra in robot kinematic
studies has to be considered by the robotics community.

In future work, collision-free path planning of multiarm robot systems should be studied by using this
new formulation method. In addition, velocity and dynamic analysis based on screw theory with quaternion
algebra should be studied.

Appendix

A.1 Plücker coordinates

Any line can be completely defined by using position (p) and direction (d) vectors. It can also be represented

by using Plücker coordinates given by Lp(m, d), where m = p×d is the moment vector of d about the chosen

reference origin [38].

Note that m is independent of which point p on the line is chosen: m = p × d = (p + td) × d .

The Plücker coordinate representation is not minimal since it uses 6 parameters for the line representation.
The main advantage of Plücker coordinate representation is that it is homogeneous. Lp(m, d) represents the

same line as Lp(km, kd), where k ∈ � .

A.2 Dual numbers

In analogy with a complex number, a dual number can be defined by û = u + εuo , where u and uo are real

numbers and ε2 = 0 [39]. Dual numbers can be used to express Plücker coordinates given by û = d + εm ,
where dand m = p × d are the orientation and moment vectors of the line, respectively.
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A.3 Intersection of 2 orthogonal unit line vectors

The intersection of 2 orthogonal lines is shown in Figure A.1.

x y

z

r

rra
b

La

Lb

(m , d )a a

(m  , d  )b b

Figure A.1. Intersection of 2 lines.

The intersection point of 2 lines can be found given by [40]:

r = db ×mb + (da ×ma · db)db or r = da × ma + (db ×mb · da)da (A.1)

A.4 Paden-Kahan subproblems using quaternion algebra

A.4.1 Subproblem 1: Rotation about a single axis

Point a rotates about the axis of l until point a is coincident with point b . This rotation is shown in Figure
A.2.

a

b

x

y

l

r

θ

Figure A.2. Rotate a about the axis of l until it is coincident with b .

Let r be a point on the axis of l , and let x = a− r and y = b− r be 2 vectors. The rotation angle θ

about the axis of l can be found as follows:

θ = arctan 2 (S {l ⊗ x′ ⊗ y′} , S {x′ ⊗ y′}) , (A.2)

where x′ = x − S {l ⊗ x} l and y′ = q ⊗ x ⊗ q∗ − S {l ⊗ q ⊗ x ⊗ q∗} l .

Here, x = [0, x] , y = [0, y] , and l = [0, l] is the pure quaternion form of vectors x, y , and l , respectively,

and q = [cos
(

θ
2

)
, sin

(
θ
2

)
l] .
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A.4.2 Subproblem 2: Rotation about 2 subsequent axes

First, point a rotates about the axis of l1 by θ1 and then about the axis of l2 by θ2 ; hence, the final location
of a is coincident with point b . This rotation is shown in Figure A.3.

a

b

c
x

y

z

r

l

θ

l

1

2

1

2

θ

Figure A.3. Rotate a about the axis of l1 , followed by a rotation around the axis of l2 , until it is coincident with

point b .

Let r be the intersection point of the 2 axes, and let x = a− r and y = b− r be 2 vectors. Let
c be the intersection point of the rotations that is shown in Figure A.3 and let z = c − r be the vector
that is defined between points c and r , with z = [0, z] the pure quaternion form of vector z . We can

also define 2 rotations given by q1 ⊗ x ⊗ q∗1 = z = q2 ⊗ y ⊗ q∗2 , where q1 = [cos
(

θ1
2

)
, sin

(
θ1
2

)
l1] , q2 =

[cos
(
−θ2

2

)
, sin

(
−θ2

2

)
l2] , and x=[0, x] and y=[0, y] . Since l1 , l2 , and l1 × l2 are linearly independent, we can

write z = αl1 + βl2 + γ [0, V {l1 ⊗ l2}] , where:

α = S{l1⊗l2}S{l2⊗x}−S{l1⊗y}
(S{l1⊗l2})2−1

, β = S{l1⊗l2}S{l1⊗y}−S{l2⊗x}
(S{l1⊗l2})2−1

, γ2 = ||x||2−α2−β2−2αβS{l1⊗l2}
||V {l1⊗l2}||2 . Thus, subprob-

lem 2 is reduced to subproblem 1. The angles of rotation axes θ1 and θ2 can be solved using subproblem
1.

q1 ⊗ x ⊗ q∗1 = z and q2 ⊗ y ⊗ q∗2 = z (A.3)

A.4.3. Subproblem 3: Rotation to a given distance

Point a rotates about the axis of l until the point is at distance δ from b , as shown in Figure A.4.

a

b

x

y

r

l

θ

δ

Figure A.4. Rotate a about the axis of l until it is at distance δ from b .
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Let r be a point on the axis of l and let x = [0, a− r] and y = [0, b− r] be pure quaternion forms of
vectors x and y, respectively. Rotation angle θ about the axis of l can be found as follows:

θ = θ0 ± cos−1

(
||x′||+ ||y′|| − δ′2

2||x′||||y′||

)
, (A.4)

where θ0 = arctan 2 (S {l ⊗ x′ ⊗ y′} , S {x′ ⊗ y′}) ,

x′ = [0, x′] = x − S {l ⊗ x} l, y′ = [0, y′] = q ⊗ x ⊗ q∗ − S {l ⊗ q ⊗ x⊗ q∗} l, δ′2 = δ2 − |S {l ⊗ (a − b)} |2,

and q = [cos
(

θ
2

)
, sin

(
θ
2

)
l] .
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