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Abstract

This paper presents a new transformer model displaying hysteresis using the MATLABTM Simulink

environment. The proposed model displays a complete scheme for the simulation of 3-phase transformers.

The new model is mainly based on the transmission line model and the Jiles-Atherton model of a power

system using lumped parameters. Jiles-Atherton model parameters were determined by curve fitting and

numerical optimization iteration. The developed model is particularly suitable for fault analysis and protective

relaying studies under harmonic conditions where the transformer is driven into the nonlinear regime. The

performance of the method was evaluated by both theorical and experimental data.
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1. Introduction

The power transformer is one of the most important elements of power systems, since the continuity of
transformer operation has vital importance in maintaining the reliability of the power supply. Therefore,
various modeling schemes have been developed over the decades to provide a proper protective method for the
transformers, and there have been many attempts to precisely estimate the hysteresis behavior of ferromagnetic
materials, especially in the transformer’s core [1].

The development and validation of protective algorithms for the transformers requires the preliminary
determination of the transformer model. The model used is required to simulate the power system’s normal
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and faulted conditions and to estimate the behavior of the protection algorithm under abnormal conditions.
In particular, it must allow for the simulation of internal and external fault conditions. Most of the present
electromagnetic transient programs are able to accurately simulate some of the phenomena occurring in the
transformer, like magnetizing inrush current, excitation current, and transformer saturation [2]. However, the

implementations of the present monitoring methods [3,4] tend to cost too much to be applied to distribution
transformers. Such analysis also usually requires commercial software such as FEMLAB, MAGNET, or ANSYS
Maxwell. However, most of the present simulation programs are not able to properly simulate the hysteresis
characteristic of the core material [5].

This paper presents a 3-phase transformer model displaying hysteresis based on Jiles-Atherton (J-A)
magnetization with a modified Langevin function and determination of model parameters; it is an extended

version of [1]. The nonlinear behavior of the transformer’s core was modeled using the MATLABTM Simulink

environment. The proposed model is based on the transmission line model (TLM) method for simulating
transformers, which can consider nonlinear hysteresis. To validate the proposed technique, a 3-phase, 2-winding
laboratory-type transformer was modeled using the TLM method including the J-A technique with parameter
estimation. The TLM method converts a second-order circuit into a first-order one, which simplifies the solution
of the circuit at any discrete time. In addition to this, it facilitates the incorporation of time-dependent models
such as the J-A model, which is described in Section 2. The proposed modeling technique is suitable for modeling
transformer-related phenomena such as magnetizing inrush, internal faults, and loading conditions.

2. Three-phase, two-winding transformer model

The TLM method was first developed in the early 1970s for modeling 2-dimensional field problems. Since
then, it has been extended to cover 3-dimensional problems and circuit simulations. For circuit simulation, the
TLM method can be used to develop a discrete circuit model directly from the system without setting up any
integro-differential equations. The TLM algorithm is discrete in nature and ideally suited for implementation
on computer-based systems [6].

The hysteresis specs of the transformer are based on the J-A technique in TLM simulations. The J-
A technique describes the relationship between magnetic moment M and magnetic field intensity H using
the current physical theories of magnetic domains in ferromagnetic materials [7], and it is able to present
a possible anisotropic steel behavior in transformers. The J-A model requires the following input parameters:
magnetization saturation, thermal energy parameter, domain flexing constant, domain anisotropy constant, and
interdomain coupling parameter. These are not parameters that transformer manufacturers or manufacturers
of transformer magnetic material can provide for users. In fact, they cannot even be determined directly
through measurements. The various core hysteresis parameters required in this model are theorical and can be
calculated from experimental measurements of coercivity, remanence, saturation flux density, initial anhysteretic
susceptibility, initial normal susceptibility, and the maximum differential susceptibility [8]. Moreover, the J-A
model requires little memory storage, as its status is totally described by only 5 parameters. On the other
hand, convergence problems may be encountered in the identification of these parameters by using iterative
procedures. More details about the J-A technique can also be found in [9-11].

Conversion between the B-H loop and an M-H loop is straightforward and is calculated using Eq. (1).

B = μ0(H + M) (1)
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The J-A hysteresis model decomposes the whole magnetization M into the reversible component Mrev

and the irreversible component Mirr [12].

M = Mrev + Mirr (2a)

Its current-related equation is given in Eq. (2b).

Im = Irev + Iirr (2b)

The reversible component is defined as in Eq. (3).

Mrev = c(Man − Mirr) (3a)

Its current-related equation is given in Eq. (3b).

Irev = c(Ian − Iirr) (3b)

Man is the anhysteretic magnetization provided by the Langevin equation. The magnetization relationship
between B and H is replaced by the anhysteretic magnetization curve between H and M as follows:

Man = Ms.f(He), (4)

where He = H + αM and is called the Weiss effective field. This is linked with magnetic field intensity H by
the modified Langevin function in Eq. (5) and the differential equation in Eq. (6).

Man = Ms

(
coth

H + αM

a
− a

H + αM

)
(5a)

Its current-related equation is given in Eq. (5b).

Ian = Is

(
coth(

IL + αIm

a
− a

IL + αIm

)
(5b)

dMirr

dH
=

δm(Man − Mirr)
kδ − α(Man − Mirr)

(6a)

Its current-related equation is given in Eq. (6b).

dIirr

dIL
=

δm(Ian − Iirr)
kδ − α(Ian − Iirr)

, (6b)

where δm and δ are given by:

δm =

⎧⎪⎪⎨
⎪⎪⎩

1 : IF dH
dt > 0 and Man > Mirr

1 : IF dH
dt < 0 and Man < Mirr

0:otherwise

. (7a)
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Its current related equation is given in Eq. (7b).

δm =

⎧⎪⎪⎨
⎪⎪⎩

1 : IF dIL

dt
> 0 and Ian > Iirr

1 : IF dIL

dt < 0 and Ian < Iirr

0 : otherwise

(7b)

δ =

⎧⎨
⎩

1 : IF dH
dt

> 0

1 : IF dH
dt

< 0
(8a)

Its current-related equation is given in Eq. (8b).

δ =

⎧⎨
⎩

1 : IF dIL

dt
> 0

1 : IF dIL

dt < 0
(8b)

a, α, c, k, and Ms are the parameters of the model, where a is a form factor, α is the interaction between the
domains, c is the coefficient of reversibility of the movement of the walls, k represents the hysteresis losses,
and Ms is the saturation magnetization. Numerical iterative techniques such as least-square curve fitting
quasi-Newton approaches are used to determine these parameters.

3. Parameter estimation

The literature presents several step-by-step methods for the identification of the J-A model parameters from
experimental B-H loops, which are based on the physical meaning of the parameters. Among them, random and
deterministic searches of the J-A model parameters [13], particle swarm optimization [14], the simplex method

and simulated annealing algorithm [15], estimations by using a global optimization technique known as “branch

and bound” [16], and usage of the genetic algorithm for parameter estimation [17] are the recent studies in the
literature. In this work, parameters are extracted using a least-square method, imposing the condition of the
local minimum, and solving the equations using Newton’s method.

3.1. Anhysteretic susceptibility

The anhysteretic susceptibility at the origin can be used to define a relationship among Ms , a , and α [18].

Xan =
(

dMan

dH

)
M=0,H=0

(9a)

α =
Ms

3

(
1

Xan
+ α

)
(9b)

Its current-related equation is given in Eqs. (9b) and (10b).

Xan =
(

dIan

dIL

)
Im=0,IL=0

(10a)

α =
Is

3

(
1

Xan
+ α

)
(10b)
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3.2. Initial susceptibility

The reversible magnetization component is expressed via parameter c in the hysteresis equation, Eq. (6a),
defined by:

xini =
(

dM

dH

)
M=0,H=0

=
cMs

3α
. (11a)

Its current-related equation is given in Eq. (11b).

xini =
(

dIm

dIL

)
Im=0,IL=0

=
cIs

3α
(11b)

3.3. Coercivity

The hysteresis loss parameter k can be determined from coercivity Hc and the differential susceptibility at
coercive point Xan(Hc).

k =
Man(Hc)

1 − c

⎡
⎣α +

1

X(Hc) −
(

c
1−c

)
dM
dH

⎤
⎦ (12a)

Its current-related equation is given in Eq. (12b).

k =
Ian(Ic)
1 − c

⎡
⎣α +

1

X(Ic) −
(

c
1−c

)
dIm

dIL

⎤
⎦ (12b)

3.4. Remanence

The coupling parameter α can be determined independently if it is known by using remanence magnetization
Mr and the differential susceptibility at remanence.

Mr = Man(Mr) +
k

a
a−c + k

X(Mr)−c dM
dH

(13)

4. Modeling procedure

Figure 1 shows the transformer core type under modeling consideration. In Figure 1, Na and Nb represent the
number of turns of primary and secondary windings, respectively. Lowercase subscripts represent the primary
side parameters, while capitalized subscripts represent secondary side parameters. The linear transformer model
is shown in Figure 2.

The main modeling equations, such as Va−b−c , VA−B−C (primary and secondary voltages, respectively),

and Ma−b−c (magnetization intensities of the phases), are defined in Eq. (14), respectively. For simplicity, only
phase a and phase A equations are explained here.

Va =
LaadIa

dt
+

LaAdIA

dt
+ Na

LmdIma

dt

VA =
LAAdIAa

dt
+

LaAdIa

dt
+ NA

LmdIma

dt

(14)

483



Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

Va Vb Vc

Ia I b I c

VA VB VC

IA IB I C

1Φ 2Φ 3Φ

Figure 1. A 3-phase, 2-winding star/star-connected transformer.
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Figure 2. Linear modeling of the 3-phase, 2-winding transformer.

Here, Laa = μ0N2
aA

l , LAA = μ0N2
AA

l , Lm = μ0A
l , A is the cross-sectional area in square meters, and l is the

length of the magnetic path in meters. These are initially calculated as the simulation starts. The characteristic
impedances of the primary and secondary sides are then calculated as follows:

Zaa = 2Laa

dt ,

ZAA = 2LAA

dt .
(15)

Similarly, the characteristic impedances of the magnetizing branches are calculated using the following equations.

LaA = (μ0NaNAA)/l

ZaA = 2LaA/dt
(16)
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Leakage inductances and related characteristic impedances are calculated using Eq. (10).

ZLaS = 2LaS/dt

ZLAS = 2LAS/dt
(17)

ZLaS and ZLAS are the leakage characteristic impedances of the primary and secondary sides, respectively.
For a lossless linear transformer, the mutual TLM voltages are defined in Eq. (18) and Eq. (14) as follows:

VaA = ZaAIA + 2V i
aA, (18)

VAa = ZAaIa + 2V i
Aa, (19)

where ZaA = 2LaA

dt and dt is the sampling interval.

After these calculation steps, the primary and secondary currents, Ia and IA , are calculated using Eqs.
(20) and (21).

ZaaIa + ZaAIA = Va − 2(V i
aa + V i

aA) (20)

ZaAIa + ZAAIA = −2(V i
Aa + V i

AA) (21)

Here, Zaa = 2Laa

dt
.

In Eq. (14), Va is the source voltage of phase a. The calculations are repeated until the end of the
simulation time. Figure 3 shows a 3-phase, 2-winding transformer model displaying hysteresis.

The required calculations for the hysteresis model of a 3-phase transformer are somewhat complicated
in the linear model. To have a complete model, source and load impedances are added to the simulation. To
simplify the whole procedure, the equations are given for only phase a here.

The whole calculation procedure, step by step, is explained below.

Step 1. V k
a is obtained, k = 1, 2, 3, ...N . N is the number of samples.

Step 2. Phase-neutral voltage is calculated as:

V k
sa = V k

a + RaI
k
a ,

where Ra is the source resistance.
Step 3. J-A calculations are begun from this step. Total ampere turns is calculated as:

Ik
ha = NaIk

a + NAIk
A.

Step 4. The exciting current is calculated as:

Ik
ea = Ik

ha + αIk
ma.

Step 5. Updating of the total ampere turns of the phases as:

dIk+1
ha = Ik

ha − (NaIk−1
a + NAIk−1

A ).

Step 6. Directional flag is defined according to dk
ha as:

IF dk
ha < 0 THEN Δk

a = −1 ELSE Δk
a = 1.

485



Turk J Elec Eng & Comp Sci, Vol.20, No.4, 2012

aV
+ -- +

i
aAV2

aAZ
aAV

AI

i
bBV2

bBZ
bBV

BI

i
cCV2

cCZ
cCV

CI

i
AaV2

AaZ
AaV

aI

i
BbV2

BbZ
BbV

bI

i
CcV2

CcZ
CcV

cI

aR
aI

i
LaSV2

LaSZ
i

aAV2
aaZ

+ - + -
aAV maVn

Source Primary Windings

bV

+ -- +
bR

bI
i

LbSV2
LbSZ

i
bBV2

bbZ
+ - + -

bBV mbVn

bV

+ -- +
bR

bI
i

LbSV2
LbSZ

i
bBV2

bbZ
+ - + -

bBV mbVn

i
maV2

maZ
maV

maI

i
mbV2

mbZ
mbV

mbI

i
mcV2

mcZ
mcV

mcI

maAVn AaV
AAz

i
AAV2

LASz
LAzAR

- + - +

i
LAV2i

LASV2

+ -+ -- + AI

mbBVn BbV
BBz

i
BBV2

LBSz
LBzBR

- + - +

i
LBV2i

LBSV2

+ -+ -- + BI

mcCVn CcV
CCz

i
CCV2

LCSz
LC

zC

R
- + - +

i
LCV2i

LCSV2

+ -+ -- + CI

SourceSecondary Windings

Figure 3. A 3-phase, 2-winding transformer model displaying hysteresis.

Step 7. To avoid numerical instability, the following condition is defined in TLM calculations for
anhysteretic current.

IF
∣∣Ik

ea

∣∣ > 0.001Iac THEN Ik
ana = Isc

(
coth Ik

ea

Iac
− Iac

Ik
ea

)
and

(
dIana

dIha

)k

=
Isc

Iac

⎛
⎜⎝ −1

sin
(

Ik
ea

Iac

)2 +
(

Iac

Ik
ea

)2

⎞
⎟⎠ ELSE
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Ik
ana =

IscI
k
ea

3Iac
and

(
dIana

dIha

)k

=
Isc

3Iac

Step 8. Irreversible current is defined as:

dIk
irra = dIk

ha

Ik
ana − Ik

irra

Δk
aIcc − α(Ik

ana − Ik
irra)

.

Step 9. A migration flag is defined for each phase as:

IF Δk
a > 0and Ik

ana > Ik
irra or Δk

a < 0and Ik
ana < Ik

irra THEN

migk
a = 1

ELSE
migk

a = 0.

Step 10. Updating of the irreversible current as:

Ik
irra = migk

adIk
irra.

Step 11. Migration flags are defined as:

IF migk
a = 1and dIk

ha
∼= 0 THEN

(
dIma

dIha

)k

= βc

(
dIana

dIha

)k

+ migk
a(1 − βc)

(
dIk

irra

dIk
ha

)

ELSE (
dIma

dIha

)k

= βc

(
dIana

dIha

)k

.

Step 12. Magnetization current is defined as:

Ik+1
ma = (1 − βc)Ik+1

irra + βcI
k
ana.

Step 13. The following procedure is required for calculation of the phase current.

Uk
a = V k

sa − (Sk
aa − Sk

aA + NaSk
ma)

Uk
A = (Sk

Aa − Sk
AA + NaSk

ma)

Voltage components are written as a column vector in the following equation.

f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik
a (Ra + Zaa + ZLaS) + Ik

AZaA + NaIk+1
ma Zma − Uk

a

...

...

Ik
A(RA + ZAA + ZLaS + ZLA) + Ik

a ZaA + NaIk+1
ma Zma − Uk

A

...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The Jacobian matrix is defined as below.

J =

[
J11 J12

J21 J22

]

J11 =

⎡
⎢⎢⎣

Ra + ZLaS + Zaa

(
1 +

(
dIma

dIha

)k
)

0 0

0 ... 0

0 0 ...

⎤
⎥⎥⎦

J12 =

⎡
⎢⎢⎣

ZaA

(
1 +

(
dIma

dIha

)k
)

0 0

0 ... 0

0 0 ...

⎤
⎥⎥⎦

J21 = J12J22 =

⎡
⎢⎢⎣

RA + ZLAS + ZLA + ZAA

(
1 +

(
dIma

dIha

)k
)

0 0

0 ... 0

0 0 ...

⎤
⎥⎥⎦

The Newton-Raphson iteration method is applied to calculate the next sample of phase currents.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik+1
a

...

...

Ik+1
A

...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik
a

...

...

Ik
A

...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− J−1f

Step 14. Updating of the magnetizing current is defined as:

fma = Ik+1
a (Ra + Zaa) + Ik+1

A ZaA + NaIk+1
ma Zma − Uk

a

Ik+1
ma = Ik

ma − fma

NaZma
.

Step 15. This step includes the updating procedures for accumulator values.

Sk+1
aa = −(Sk

aa + 2Ik+1
a Zaa)

Sk+1
Aa = −(Sk

Aa + 2Ik+1
a ZaA)

Sk+1
AA = −(Sk

AA + 2Ik+1
A ZAA)

Sk+1
ma = −(Sk

ma + 2Ik+1
ma Zma)

Step 16. This step includes the calculation of simulation outcomes.

ψa = dt
V k

a − V k−1
a

2
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Bk
a =

μ0

l
(NaIk+1

a + NAIk+1
A + Ik+1

ma )

Hk
a =

(NaIk+1
a + NAIk+1

A )
l

These equations are executed in the MATLABTM Simulink environment. The simulation parameters of
the modeled transformer can easily be changed. The user can easily change the required parameters by double
clicking each block inside the model. The main TLM transformer block is suitable for implementing different
types of 3-phase connections on both sides. The “powergui” option in the proposed model is used for waveform
analysis. Basically, the TLM model consists of current-voltage measurement units, J-A implementation units,
and a Jacobean matrix calculation module (subsystem4) for each phase.

Figure 4 shows the overall flowchart for a single phase.

Initial Calculations
Calculate all characteristic impedances, (Zaa, ZAA), (ZaA ), (Zma), (ZLaS, ZLAS)
Calculate saturation current, and anhysteretic  current and coercive current, (Isc, Iac, Icc)

Define primary and secondary currents as zero initially (Ia, IA=0)
Define initial accumulator values as zero (S aa, S aA , S Aa, S AA, Sma=0)

Read the primary voltage (Va)

Calculate magnetizing current by Jiles -Atherton method (Im)

Calculate load resistance and inductance by using short window algorithm (R y, Ly)

Calculate primary and secondary currents (Ia, IA)

Update accumulator values as zero (S aa, S aA , S Aa, S AA, Sma)

Calculate simulation outputs (B, H)

Figure 4. A complete flowchart for a single-phase modeling procedure.

5. Model verification

To demonstrate the validity of the modeling procedure, a 3-phase, 2-winding test transformer was used in the
laboratory and modeled using the TLM method described in Section 2. The transformer was loaded with
a star-connected R-L load to simulate normal and faulted conditions. As seen in Figure 4, the user defines

the following parameters: source frequency, magnetic path length (m), core area (m2), number of turns for

primary and secondary windings, saturation magnetization (m−1), anhysteretic form factor (m−1), interdomain

coupling coefficient, coercive field magnitude (m−1), magnetization weight factor, permeability of free space,
leakage inductances of primary and windings, source resistors, load impedances, and load factor.

The performance of the proposed technique was evaluated by root mean square error (RMSE). Figure 5
shows the primary phase currents obtained using the TLM and J-A models.

In this particular example, the 3-phase source voltage is defined as VpeakSin(wt + φ)(1 − e−15t).
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Figure 6 shows the B-H curve of phase a.
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Figure 5. Simulated primary phase currents ( ia, ib, ic) . Figure 6. Real and simulated (best-fit) B-H curve of the

transformer for phase A. RMSE for H is 7.9803, for B is

5.8065 × 10−4 .

To simulate the magnetizing inrush condition in the J-A model, a (zero crossing) source voltage of
√

2∗ 220 ∗ sin(w ∗ t) is applied. Figure 7 shows the typical inrush current of the modeled transformer and Figure
8 shows the real and simulated B-H curve of the transformer.
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Figure 7. Real and simulated inrush currents of the

modeled transformer for phase A. RMSE = 0.0029.

Figure 8. Real and simulated B-H curve of the trans-

former during inrush phenomenon for phase A. RMSE for

Ha is 34.94, for B is 0.0144.

6. Conclusion

This paper introduces a time domain model of a 3-phase, 2-winding transformer with nonlinear and hysteretic

behavior. It is a complete 3-phase transformer model in the MATLABTM Simulink environment. The user can
easily change the parameters by double clicking the “TLM Model of 3-Phase Transformer Model” block. The
hysteretic model using the modified Langevin function is based on the J-A model of ferromagnetic hysteresis.
The simulation results produce an acceptable transformer transient response and show that the proposed overall
technique is ideal for simulating 3-phase transformers.

The proposed modeling technique displaying hysteresis is suitable for most types of 3-phase, 2-windings
transformers. The suggested modeling technique is also able to simulate the transformers during single or
multiple internal faults.
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Appendix

Data for test transformer:
U1 /U2 = 380/220 V, star/star-connected

f = 50 Hz

B = 1 T
S = 1 kVA
lm = 24.10−3 m, magnetic path length

a = 454.10−6 m2 , core area
Na = 565, primary turns

NA = 255, secondary turns

Ms = 170000 m−1 , saturation magnetization

Ha = 42 m−1 , anhysteretic form factor

α = 8.10−6 , interdomain coupling coefficient

Hc = 78 A Tm−1 , coercive field magnitude

βc = 0.55, magnetization weighting factor
Ra , Rb , Rc = 10 Ω, source resistances

μ0 = 4π × 10−7 H m−1 , permeability of the free space
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